

Technical Report OSU-CISRC-1/13-TR01

Department of Computer Science and Engineering

The Ohio State University

Columbus, OH 43210-1277

Ftpsite: ftp.cse.ohio-state.edu

Login: anonymous

Directory: pub/tech-report/2013

File: TR01.pdf

Website: http://www.cse.ohio-state.edu/research/techReport.shtml

Factorization-Based Texture Segmentation

Jiangye Yuan

Computational Sciences and Engineering Division

Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA

yuanj@ornl.gov

DeLiang Wang

Department of Computer Science and Engineering & Center for Cognitive Science

The Ohio State University, Columbus, OH 43210, USA

dwang@cse.ohio-state.edu

Abstract – This paper introduces a factorization-based approach that efficiently segments textured images. We

use local spectral histograms as features, and construct an M×N feature matrix using M-dimensional feature

vectors in an N-pixel image. Based on the observation that each feature can be approximated by a linear

combination of several representative features, we factor the feature matrix into two matrices – one consisting

of the representative features, and the other containing the weights of representative features at each pixel used

for linear combination. The factorization method is based on singular value decomposition and nonnegative

matrix factorization. The method uses local spectral histograms to discriminate region appearances in a

computationally efficient way and at the same time accurately localizes region boundaries. The experiments

conducted on synthetic and natural images show the promise of this simple yet powerful approach.

Index Terms – matrix factorization, texture segmentation, spectral histogram.

2

1 INTRODUCTION

mage segmentation is a critical task for a wide range of
applications including autonomous robots, remote sens-
ing, and medical imaging. In this paper, we focus on

segmentation of textured images, which partitions an im-
age into a number of regions with similar texture appear-
ance. As segmentation serves as an initial step for higher
level image analysis tasks, such as recognition and classi-
fication, we aim to develop segmentation algorithms with
low computational complexity. In addition, we do not use
object-specific or scene-specific knowledge, which are
typically not available.

Texture segmentation literature addresses two main is-
sues: 1) finding an image model that defines region ho-
mogeneity, and 2) designing a strategy for producing
segments. In general, these two issues are not treated in-
dependently due to the fact that a successful segmentation
methodology should couple a good texture model and an
effective segmentation strategy.

A popular choice for texture segmentation uses model-
based methods, which regard textures as probability dis-
tributions and label pixels to different segments by maxi-
mum a posteriori (MAP) estimation. A typical example is
to model a textured image as a Markov random field
(MRF) [1] [2] [3], which takes interactions between the
neighboring pixels into account. MRF provides an elegant
framework for segmenting textured images.

Another line of work in texture segmentation is to ex-
tract features from local image patches and then feed
them to general clustering or segmentation algorithms [4].
Various features are designed to characterize texture ap-
pearance. Widely used ones are based on filtering [5] [6],
which uses filterbanks to decompose an image into a set
of sub-bands, and statistical modeling [7] [8], which char-
acterizes texture as resulting from some underlying prob-
ability distributions. Here, statistical modeling analyzes
local distributions to produce features, in contrast with
the model-based methods that obtain pixel labeling
through parameter estimation. The features can be empir-
ical distributions or estimated model parameters.

Recent work on texture analysis shows an emerging
consensus that an image should first be convolved with a
bank of filters [9]. Texture descriptors constructed based
on local distributions of filter responses show promising
performance for texture synthesis and texture discrimina-
tion. Such descriptors can be coupled with well-
established segmentation methods to segment textured
images [10] [11]. This treatment, however, has two main
problems. The first problem stems from the high feature
dimensionality of multiple filter responses and their dis-
tribution representations. Many widely used segmenta-
tion approaches, e.g., graph partitioning [12], curve evolu-
tion [13], and mean shift [14], heavily rely on measuring
the distance among local features, and thus applying them
to the texture descriptors requires a high computational
cost for distance calculation. More importantly, it is al-

ways a thorny issue to select a proper distance measure
for a high-dimensional space. Although dimensionality
reduction techniques can be utilized, whether a technique
is suitable for a feature often lacks theoretical justification.
Using well-defined probability models to represent distri-
butions can result in compact features that only involve a
small number of parameters. However, these models usu-
ally lack expressive power.

The second problem is attributed to the texture de-
scriptors generated from the image windows across
boundaries. Such windows generate uncharacteristic fea-
tures, which causes difficulty in accurately localizing re-
gion boundaries [10]. In order to address this problem,
quadrant filters and other similar strategies are often em-
ployed, which compute features from shifted local win-
dows around a pixel [15][16]. Another popular technique
is to use local windows of different sizes, also referred to
as scales [9] [17]. Boundaries are then determined by ana-
lyzing information across scales. Despite their success,
these methods are ad hoc to some extent (e.g., using a dis-
crete set of shifts), or require additional computation to
analyze multiscale information. In such situations, it
would be desirable to find a segmentation approach that
can utilize the texture descriptors to discriminate region
appearances in a computationally efficient way and at the
same time accurately localize region boundaries.

 In this paper, we propose a factorization-based seg-
mentation method. The feature we use in this paper is a
particular form of texture descriptors based on local dis-
tribution of filter responses, called local spectral histo-
grams [18]. The proposed method represents an image by
an M×N feature matrix, which contains M-dimensional
feature vectors computed from N pixels. We regard the
feature at each pixel as a linear combination of representa-
tive features, which encodes a natural criterion to identify
boundaries. Consequently, the feature matrix is expressed
by a product of two matrices, which respectively contain
representative features and their combination weights per
pixel. The combination weights indicate segment owner-
ship for each pixel. We use singular value decomposition
and nonnegative matrix factorization to factor the feature
matrix, which leads to accurate segmentation.

The remainder of the paper is organized as follows. In
Section 2, we present the factorization based image model,
which uses local spectral histogram representation. Sec-
tion 3 presents our segmentation algorithm in detail. In
Section 4, we show experimental results on different types
of images. Finally, we conclude in Section 5.

2 FACTORIZATION BASED IMAGE MODEL

2.1 Local Spectral Histograms

For a window W in an input image, a set of filter respons-
es is computed through convolution with a chosen bank

I

 3

of filters {F, = 1, 2, …, K}. For a sub-band image W,
the corresponding histogram is denoted as ()

WH . 1 The
spectral histogram with respect to a chosen filterbank is
then defined as:

 (1) (2) ()

W W W W

1
, ,..., KH H H H

W
, (1)

where |∙| denotes cardinality. The size of the window is
referred to as an integration scale. Spectral histograms
capture local spatial patterns via filtering and global im-
pression through histograms. It has been shown in [18]
that when the filters are selected properly, the spectral
histogram can uniquely represent an arbitrary texture
appearance up to a translation.

A local spectral histogram is computed over the square
window centered at each pixel location. In order to obtain
meaningful features, the integration scale has to be large
enough. Thus, computing all local histograms is computa-
tionally expensive. To address this issue, we use the inte-
gral images to speed up the histogram generation process.
With integral histograms computed, any local spectral
histogram can be obtained by three vector arithmetic op-
erations regardless of window size. A detailed description
of the fast implementation can be found in [16].

2.2 Image Model

Without the loss of generality, let us consider an image as
composed of homogenously textured regions as illustrat-
ed in Fig. 1(a). We assume that the spectral histograms
within homogeneous regions are approximately constant.
Local spectral histograms representative of each region
can be computed from windows inside each region. Let us
consider only the intensity filter for the time being, which
gives the intensity value of each pixel as the filter re-
sponse. Then the local spectral histogram is equivalent to
the histogram of a local window. Under the assumption of
spectral histogram constancy within the region, the local
histogram of pixel A can be well approximated by the
weighted sum of representative histograms of two neigh-
boring regions, where the weights correspond to area
coverage within the window and thus indicate which re-
gion pixel A belongs to. We can have the same analysis
for other filter responses, as long as the scales of filters are
not so large to cause significantly distorted histograms
near the boundaries. Because the purpose of filtering in
local spectral histogram is to capture elementary patterns,
the chosen filters generally have small scales.

By extending the above analysis, the feature of each
pixel can be regarded as the linear combination of all the
representative features weighted by the corresponding
area coverage. In the case when a window is completely
within one region, the weight of the representative feature
for that region is close to one, while the other weights are
close to zero.

Given an image with N pixels and feature dimensional-
ity of M, all the feature vectors can be compiled into an M
× N matrix, Y. Assuming that there are L representative

1 Based on previous studies [18], we use eleven equal-width bins for
each filter response.

features, the image model can be expressed as:

 Y Zβ ε , (2)

where Z is an M × L matrix whose columns are repre-
sentative features, is an L × N matrix whose columns are
weight vectors, and is model error.

This image model has been studied from a multivariate
linear regression perspective in [19]. The representative
feature matrix Z is computed from manually selected
windows within each homogeneous region, and is then
estimated by least squares estimation:

1

T T

β Z Z Z Y . (3)

Segmentation is obtained by examining β̂ – each pixel is
assigned to the segment where the corresponding repre-
sentative feature has the largest weight. For example, we
compute three representative features from pixels around
the center of each region in Fig. 1(a) and obtain the seg-
mentation result shown in Fig. 1(b). We use an intensity
filter and two LoG (Laplacian of Gaussian) filters with the
scale values of 0.5 and 1.0 to compute local spectral histo-
grams. The integration scale is chosen at 19 × 19. Given
the ground truth, the segmentation error, which is the
percentage of mislabeled pixels, is 1.1% for this segmenta-
tion.

3 FACTORIZATION BASED SEGMENTATION

For fully automatic segmentation, both Z and are un-
knowns, and we aim to estimate these two matrices by
factoring the matrix Y. In this section, we present the fac-
torization algorithm, which can produce segmentation
with high accuracy and efficiency.

3.1 Low Rank Approximation

For a unique solution in (2) to exist, Z has to be full rank
so that ZTZ in (3) is invertible. Thus, the rank of Z is the
number of columns, i.e., representative features (the fea-
ture dimension is generally larger than the number of rep-
resentative features). In other words, representative fea-
tures have to be linearly independent in order to have a
unique segmentation solution. Since each feature is a line-
ar combination of representative features, the rank of the
feature matrix Y should be equal to the rank of Z. Howev-
er, due to image noise, the matrix Y tends to be full rank.
Hence, the noise-free feature matrix should be a matrix

Fig. 1. Linear combination of representative features. (a) Textured
image with size 320 × 320. The feature at pixel A can be approxi-
mated by the weighted sum of two neighboring representative fea-
tures. (b) Segmentation result using least squares estimation.

(a) (b)

A

4

that has the rank equal to the number of representative
features.

A typical solution to low rank approximation is singu-
lar value decomposition (SVD) [20], where the feature
matrix is decomposed into:

TY = U V . (4)

Here U and V are orthogonal matrices of size M × M and
N × N, respectively. The columns of U are the eigenvec-
tors of matrix YY

T, and the columns of V are the eigenvec-
tors of matrix Y

T
Y. is an M × N rectangular diagonal

matrix, where the diagonal terms, called singular values,
are the square roots of the eigenvalues of the matrix YY

T,
or Y

T
Y. The singular values are sorted in a nonincreasing

order. The well-known Eckart–Young theorem [21] states
that the best rank-r approximation to Y, in the least-
squares sense, has the same form of SVD, except that is
replaced with a new matrix that contains only the first r
singular values (the other singular values are replaced by
zero).

We need to determine the underlying rank of the fea-
ture matrix, which corresponds to the number of repre-
sentative features, or segments2. Let Y′ be the approximat-
ed matrix of rank-r. The approximation error can be ob-
tained as follows:

 2

1

M

i

i r

 Y - Y = , (5)

where ||∙|| denotes the Frobenius norm, which is the square
root of the sum of the squares of all matrix entries. 1, 2,
…, M are singular values in a nonincreasing order. There-
fore, the error corresponds to the discarded singular val-
ues in the approximation. In practice, we can determine
the number of segments by thresholding the error. That is,
we estimate the segment number n as

2

1

min :
M

i

i

n i N

= , (6)

where is a pre-specified threshold that depends on the
noise level of images.

3.2 SVD Based Solution

Assuming that the first r singular values are chosen using
(6), (4) can be rewritten as:

T Y = UΣV (7)

where U′ and V′ consist of the first r columns of U and V
in the SVD of matrix Y, respectively. ′ is an r × r matrix
with the largest r singular values on the diagonal. If we
define Z1 = U′ and 1 =′V′

T, the two matrices Z1 and 1 are
of the same size as the matrices Z and in (2). Thus, Z1
and 1 can serve as a solution in the model in (2), which
simultaneously ensures a minimum least square error due
to the Eckart–Young theorem. However, the decomposi-
tion is not unique due to the fact that

1

1 1 1 1
 -

Y Z β Z QQ β (8)

where Q can be any invertible square matrix, suggesting

2A representative feature corresponds to a segment. The connectivity of
segments is not considered here, which can be achieved by postpro-
cessing.

that (Z1Q) and (Q-1
1) can also be possible solutions.

Therefore, Z1 and 1 generally differ from the desired ma-
trices that represent underlying representative features
and combination weights. Although the decomposition
cannot directly give a valid solution, it leads to a striking
fact that the representative features should be in the form
of Z1Q, i.e., a linear transformation of Z1. Likewise, com-
bination weightsshould be a linear transformation of 1.

In order to obtain a segmentation result, we need to es-
timate Q. Based on the fact that the desired matrix of rep-
resentative features is a linear transformation of Z1, we
know that the representative features should lie in an r-
dimensional subspace spanned by the columns of Z1.
Since Z1 forms an orthonormal basis, each column of Q is
the Cartesian coordinate of each representative feature in
the subspace. In the absence of noise, all other features
also lie in the subspace because they are certain linear
combinations of representative features. Meanwhile, there
exist additional properties of the feature distribution ow-
ing to constraints on combination weights. Because the
combination weights of a feature represent the coverage
fraction of its local window, the weights should be
nonnegative, and the sum of weights for each feature
should be one. These two conditions restrict the features
within a convex set with the vertices defined by repre-
sentative features. In the case of r representative features,
all features lie in an r-vertex convex hull, or an (r-1)-
simplex, in an r-dimensional space.

As an illustration, we project all the features from the
image in Fig. 1(a) onto the 3-dimensional space spanned
by Z1, and show the scatterplot in Fig. 2(a). The data
points are downsampled in order to better show the dis-
tribution. It is clear that the features approximately lie in a
triangle. Most points are concentrated on the vertices,
which correspond to the features inside each region, and
the points along the edges correspond to the features near
region boundaries. There are some points within the tri-
angle, which correspond to the features computed over
windows straddling all three regions.

As shown in the example above, most features aggre-
gate densely at simplex vertices thanks to the discrimina-
tive power of local spectral histograms. Thus, we apply k-
means clustering in the subspace with k equal to r, and
cluster centers correspond to the representative features,
which immediately give Q. Then, can be easily solved
based on (8), which provides the segmentation result. As

Fig. 2. Scatterplot of features in subspace. (a) Scatterplot of fea-
tures projected onto the 3-d subspace. (b) Scatterplot after remov-
ing features with high edgeness

(a) (b)

 5

features are in a Cartesian space, the Euclidean distance is
used as a metric.

It is well known that k-means clustering is sensitive to
initialization. We employ two strategies to reduce the sen-
sitivity. Because features near boundaries could make the
clustering process stuck at local minima, we remove those
features before clustering by computing an edge indicator.
The indicator value of a feature at (x, y) is chosen as the
sum of the two feature distances between the pixel loca-
tions <(x + h, y), (x – h, y)> and <(x, y + h), (x, y – h)>,
where h is chosen as half of the window size. The features
with low values are expected to reside within the homog-
enous regions. Fig. 2(b) shows the features without those
of high edgeness, which form well-grouped clusters. The
second strategy is to choose initial means with maximum
distance from each other [22]. Specifically, we choose the
first initial mean e1 as the feature with the maximum
length; then, the jth initial mean ej is the feature with the
largest distance to the set Sj-1 = { e1, e2,…, ej-1}, where the
distance between a feature k and Sj-1, denoted by d(k, Sj-1),
is defined as d(k, Sj-1) = min{d(k, e1), d(k, e2), …, d(k, ej-1)}.
By doing so, the initial means are near the simplex verti-
ces. In our experiments, we observe that clustering results
are very stable by incorporating these two simple strate-
gies.

The representative feature matrix can alternatively be
estimated by clustering in the original feature space.
However, clustering in the subspace, derived from the
above analysis, provides two major advantages. First, giv-
en the segment number, the SVD based solution guaran-
tees minimum error, while the solution from direct clus-
tering does not. As we showed earlier, the representative
features from the subspace constructed by Z1 can give the
best possible rank-r approximation that minimizes least
square error, due to the Eckart–Young theorem. In con-
trast, the representative features from direct clustering are
not guaranteed to lie in that subspace, and thus do not
assure such a minimum error. Secondly, the subspace pro-
jection greatly reduces feature dimensionality, which
speeds up the clustering significantly.

3.3 Nonnegativity Constraint

As we noted earlier, according to their interpretations,
the combination weights should have two constraints,
nonnegativity and full additivity (sum-to-one). However,
the algorithm presented above does not enforce the com-
bination weights to obey the constraints. When the fea-
tures are very noisy, estimated combination weights can
violate the constraints to a large extent, leading to incor-
rect segmentation. This problem is especially severe when
the number of representative features is relatively large.
Fig. 3(a) shows an image containing seven textures in 16
patches. The segmentation results from the unconstrained
solution are shown in Fig. 3(b), where a large number of
pixels are incorrectly segmented.

For a more accurate solution, we need to impose the
constraints when estimating combination weights. This
can be treated as constrained least squares estimation giv-
en the representative features from the SVD based solu-

tion. While a closed form solution exists for imposing full
additivity [23], we find that the combination weights from
the SVD-based solution are close to full additivity and the
results with and without full additivity are very similar.
The nonnegativity constraint can be achieved by a
nonnegative least squares (NNLS) algorithm [24]. Our
experiments show that this algorithm indeed improves
segmentation accuracy, but the computation time is in-
creased significantly, which remains a major limitation of
the NNLS algorithm.

Alternating Least Squares (ALS) algorithms are pro-
posed to efficiently provide a low rank approximation
with nonnegative factored matrices [25]. ALS algorithms
start from an initial matrix A and compute a matrix B us-
ing least squares estimation. After setting negative ele-
ments in B to zero, A is recomputed using least squares
estimation. The operations are repeated in an alternating
fashion. ALS algorithms have been applied to nonnega-
tive matrix factorization problems and shown to be effec-
tive and fast in a number of studies [25]. ALS algorithms
can be readily applied to our factorization problem, ini-
tialized with the representative features Z obtained from
the SVD based solution. Based on the previous analysis,
the initial Z should be close to the desired solution, hence
a good initialization. Note that the initial Z is nonnegative
because each column is a cluster center of all the features
that are nonnegative histograms. As a result, ALS algo-
rithms will converge to a solution near the initial Z and
also enforce the combination weights to be nonnegative.

We employ a modified ALS algorithm [26], which min-
imizes the following function

2 2 2

1 2(,)f Z β Y Zβ Z β (9)

where Z and have to be nonnegative and and are
small regularization parameters. The regularization terms
are used to penalize the factored matrices with very large
norms. For all the experiments, we set both and to 0.1.
The main steps of the algorithm are:

1. Initialize Z as the representative features of the
SVD-based solution from Section 3.2.

2. Solve for in matrix equation (ZT
Z +I) = Z

T
Y.

3. Set all negative elements in to 0.
4. Solve for Z in matrix equation (T +I) ZT

= Y
T
.

5. Set all negative elements in Z to 0.
6. Check whether stopping criteria are reached. If not,

return to step 2.

Fig. 3. Segmentation with nonnegativity constraint. (a) Synthetic
image containing seven textures in 16 patches. (b) Segmentation
result from the SVD-based solution. (c) Segmentation result with
the nonnegativity constraint.

(a) (b) (c)

6

Here I is the identity matrix. In each alternating step, Z
and are solved using least squares estimation. In addi-
tion to a maximum number of iterations (set to 100 in our
experiments), we use a second stopping criterion: the dif-
ference of approximation errors between two consecutive
iterations is less than 10-3. Fig. 3(c) shows the segmenta-
tion result after applying the ALS algorithm. We can see
that the segmentation accuracy is significantly improved.

3.4 Influence of Integration Scale

Local spectral histograms involve multiple scale pa-
rameters, including filter scales and integration scales.
This is analogous to another widely used image de-
scriptor, the structure tensor [27]. For a structure tensor,
one scale corresponds to the scale of computing gradients,
and the other describes the extent of local patches over
which the structure tensor is constructed. Despite no theo-
retical relations, it is common in many practical applica-
tions to couple the two scale parameters in structure ten-
sors by a constant. For local spectral histograms, with
multiple filters, it is more complicated to couple the filter
scales with the integration scales. Considering that the
goal of filtering is to capture basic and small structures,
we will use a set of filters with fixed scales and other pa-
rameters and focus on the effect of integration scales.

The choice of integration scales has a direct effect on
segmentation results. Specifically, as the integration scale
increases, the proposed method tends to produce smooth-
er boundaries. To illustrate such an effect, we show an
image containing jagged boundaries in Fig. 4(a), where a
square window is used to compute a local feature. Ac-
cording to the coverage of the two regions within the
window, the proposed method segments the correspond-
ing pixel (the dot) into the darker region, as shown in Fig.
4(b). With the integration scale sufficiently large, we ob-
tain a segmentation result shown in Fig. 4(c), where the
boundary is close to a straight line.

Although the smoothing effect may cause loss of im-
portant details, like corners and small objects, it is interest-
ing to note that the effect tends to reduce the total length
of boundaries, and thus can serve as a form of regulariza-
tion, which is often explicitly included as an objective for
image segmentation in itself [28]. In our case, the smooth-
ing effect emerges as a byproduct of the segmentation
algorithm. Smoothing is apparent in the experimental
analysis discussed in Section 4.

3.5 Computation Time

The feature extraction step in our algorithm, including
filtering and spectral histogram computation, takes linear
time with respect to the number of pixels. In our algo-
rithm, we do not need to perform a complete SVD. After
the eigenvalue decomposition of YY

T, which is an M × M
matrix (M is the feature dimension), we only need the first
several eigenvalues and the corresponding eigenvectors to
construct Z1. 1 can be obtained by least square estimation.
This process can be quickly completed. The k-means clus-
tering for finding the matrix Q is also very fast because
the features are projected onto a low dimensional sub-

space and the clusters are well grouped. The ALS algo-
rithm generally stops in less than five iterations. We have
implemented the whole system using Matlab. To segment
a 256 × 256 image using seven filters, our algorithm takes
a few seconds on an Intel Core 2 Quad 2.6 GHz processor.

4 EXPERIMENTAL RESULTS

In this section, we show the performance of our method
on different types of images.

4.1 Texture Mosaics

We test our method on the Outex texture segmentation
dataset [29]. The dataset contains 100 texture mosaics,
which are generated using the ground truth image shown
in the first column of Fig. 5. The size of each image is 512
× 512. Here we use two LoG filters with the scale values of
1.5 and 3.0 and eight Gabor filters with the orientations of
0, 45, 90, and 135 and the scale values of3.0 and 5.0.
The integration scale is set to 55 × 55. By comparing the
segmentation result with the ground truth, we calculate
the segmentation error rates, the average of which on the
dataset is 12.3%. To clarify the contribution of imposing
the nonnegativity constraint, we examine the segmenta-
tion results from the SVD based solution, which gives an
average error rate of 17.5%. Thus, using the ALS algo-
rithm to enforce nonnegativity provides a clear improve-
ment.

Fig. 5 presents four examples. In the columns contain-
ing three images, the first row shows the original images,
the second row the results from the SVD based solution,
and the last row the results from the complete method. As
we can see in the last row, the regions with different tex-
tures are separated successfully, and the boundaries are
localized well. Compared with the SVD based results, the
complete method gives similar results when the SVD solu-
tion works sufficiently well, while considerably improves
the results when the SVD solution fails to produce good
segmentation. It is worth noting that a sizable portion of
errors in the results are due to the smoothing effect, which
tends to eliminate high frequency sinusoids on bounda-
ries.

To quantitatively show the influence of the integration
scale on segmentation results, we apply our algorithm to
the images in Fig. 5 using four different integration scales,
and the error rates are presented in Table I. As we can see,
some integration scales are more favorable than others, as

Fig. 4. Illustration of smoothing effect. (a) Synthetic image contain-
ing two regions with different Gaussian noise. (b) Segmentaion
result using our method. (c) Segmentation result with a very large
integration scale.

(a) (b) (c)

 7

TABLE I
Segmentation error for the proposed method using

different integration scales

Image 45 × 45 55 × 55 65 × 65 75 × 75

1 15.13% 4.26% 5.09% 5.19%

2 3.47% 3.88% 4.11% 4.19%

3 15.47% 11.77% 8.82% 8.32%

4 5.54% 4.45% 4.80% 5.01%

they achieve a good compromise between capturing
meaningful local features and smoothing boundaries. We
can also see that increasing integration scales does not
lead to serious performance degradation.

4.2 Natural Images

We have also applied our method to the Berkeley Seg-
mentation Dataset (BSD) [30]. To deal with color images,
we include one intensity filter and two LoG filters with
scale values of 0.5 and 1.0 to each color channel and com-
pute local spectral histograms using all resulting bands.
The integration scale is set to 17 × 17, and the threshold
is set to 0.45 to determine the segment number. It has been
noted that the L*a*b* color space is more perceptually uni-
form [31], which motivates the use of this color space for
natural image segmentation [32] [33]. In our experiments,
we convert RGB color values to the L*a*b* color space and
apply filters to the converted color channels. Fig. 6 illus-
trates some representative segmentation results. It can be

seen that, without involving any object-specific models or
human intervention, our method generates rather mean-
ingful results, where main regions are clearly segmented.

To put the performance of our method in perspective,
we quantitatively compare with four publicly available
segmentation methods: Multiscale Normalized Cut (MNC)
[34], Compression-based Texture Merging (CTM) [32],
Texture and Boundary Encoding-based Segmentation
(TBES) [33], and Oriented Watershed Transform Ultra-
metric Contour Maps with globalPb as contour detector
(gPb-owt-ucm) [4]. The comparison is based on 100 color
images of the BSD testset. Two region-based quantitative
measures are used, Probabilistic Rand Index (PRI) [35]
and Variation of Information (VOI) [36]. PRI measures the
probability that a pair of samples is labeled consistently in
two segmentations, which has high values if two segmen-
tations are similar. VOI measures the information differ-
ence between two segmentations, which gives low values
if two segmentations are similar. Since each image in BSD
has multiple ground-truth segmentations provided by
different human subjects, a machine-generated segmenta-
tion is compared with each ground-truth segmentation,
and the value of measures is given by the average. In ad-
dition to region-based evaluation, we also use a bounda-
ry-based measure, global F-measure (GFM) [9], which is
defined as the harmonic mean of precision and recall. Pre-
cision measures the fraction of true boundaries in the de-
tected boundaries, and recall measures the fraction of
ground-truth boundaries that are detected. We apply the
method used in [4] to compute the GFM measure with

Fig. 5. Texture image segmentation. The first column is the ground truth. In the columns with three images, the first row is the original
image, the second the segmentation result using the SVD based solution, the third the segmentation result using the complete method.

8

multiple ground-truth segmentations.
We intend to consider both segmentation accuracy and

computation time in comparison. The evaluation scores of
four comparison methods on BSD are reported in [33] and
[4]. We run the codes of comparison methods distributed
by the authors on BSD to obtain computation time. The
quantitative measures and the average time are presented
in three plots of Fig. 7. For all three measures, our method
does better than MNC. Compared with CTM, our method
gives better PRI score, slightly better GFM score, and low-
er VOI score, which is partially because CTM optimizes
information-theoretic criteria and thus favored by VOI.
TBES and gPb-owt-ucm outperform our method, but at a
much higher computational cost. Worth mentioning is
that gPb-owt-ucm requires training images for the contour
detector, while all othe methods are unsupervised. Over-
all, our method gives competitive results, but with the
shortest running time.

Sandler and Lindenbaum propose a segmentation
method based on nonnegative matrix factorization [37],
which bears some resemblance to our method. However,
there exist major differences. In their method, an image is
divided into small tiles, and the histograms of all the tiles
comprise the original matrix. Under their formulation,
segmentation is performed based on tiles, and thus addi-
tional efforts are required to refine boundaries. Apart
from a very different factorization algorithm, the factored
matrices in their method cannot directly yield accurate
segmentation, and anisotropic diffusion is performed to
obtain final results. As reported in [37], their method gives
a similar performance to MNC on the BSD testset at a fair-
ly high computational cost (it takes minutes to obtain a
useful factorization for a small matrix of size 32×256).
Compared with their method, the proposed method gives
better results with higher efficiency.

Fig. 6. Natural image segmentation. In each pair, the left is the original image, and the right the segmentation result from the proposed
method, where each region is indicated by its mean color.

 9

5 CONCLUDING REMARKS

In this paper, we have developed a new method for seg-
menting textured images. Using local spectral histograms
as features, we frame the segmentation problem as a ma-
trix factorization task. An efficient algorithm is proposed
to produce factored matrices, which lead to accurate seg-
mentation. Results of experiments on synthetic and natu-
ral images are very encouraging. The proposed method
extends that in [19]. In that work, the feature subspace is
not fully revealed, and the results are similar to those
from the SVD based solution, but with less stability due to
lack of proper initialization. More importantly, this paper
explicitly relates segmentation to matrix factorization,
more specifically to nonnegative matrix factorization. Alt-
hough matrix factorization has been explored in many
computer vision problems [38] [39], very little work has
been done on its connection to image segmentation [37].
This important connection makes it possible to leverage
extensively studied factorization techniques for improv-
ing segmentation results or adapting the method for spe-
cific tasks.

The proposed method is not limited to segmenting tex-
tured images. As can be seen in Section 4.2, satisfying re-
sults are obtained for non-textured natural images. How-
ever, the current version of our method is more suited for
segmenting textured images because spectral histogram
representations are particularly powerful for capturing
texture information. For non-textured images, the pro-
posed method works under the assumption that local his-
tograms are similar within regions. Although such an as-
sumption holds in many applications, similarity of local
histograms can fail to reflect homogeneity in a non-
textured region; e.g., histograms are sensitive to lighting
changes. How to improve the performance of our method
on general non-textured images will be a topic for future
research.

ACKNOWLEDGEMENT

This work was supported in part by an NGA University
Research Initiatives grant (HM 1582-07-1-2027). The au-

thors would like to thank Dr. Alper Yilmaz for valuable
suggestions.

REFERENCES

[1] G.R. Cross and A. Jain, Markov random field texture models,

PAMI, 5(1): 25–39, 1983

[2] S. Krishnamachari and R. Chellappa, Multiresolution Gauss-

Markov random field models for texture segmentation, IP, 6(2):

251–267, 1997

[3] D. Benboudjema and W. Pieczynski, Unsupervised statistical

segmentation of nonstationary images using triplet Markov

fields, PAMI, 29(8): 1367–1378, 2007.

[4] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detec-

tion and hierarchical image segmentation. PAMI, 33(5): 898–916,

2011.

[5] A. Jain and R. Farrokhsia, Unsupervised texture segmentation

using Gabor filters, Pattern Recognition, 24: 1167–1186, 1991.

[6] T. Randen and J. Hakon, Filtering for texture classification: a

comparative study, PAMI, 21(4): 291–310, 1999.

[7] J. Mao and A. Jain, Texture classification and segmentation

using multiresolution simultaneous autoregressive models, Pat-

tern Recognition, 25: 173–188, 1992.

[8] M. Tuceryan and A. Jain, Texture analysis, in The Handbook of

Pattern Recognition and Computer Vision, C. H. Chen, L. F.

Pau, and P. S. P. Wang, Eds., 2nd ed. River Edge, NJ: World Sci-

entific, 207–248, 1998.

[9] D. Martin, C. Fowlkes, and J. Malik, Learning to detect natural

image boundaries using local brightness, color, and texture

cues, PAMI, 26(5): 530–549, 2004.

[10] J. Malik, S. Belongie, T. Leung, and J. Shi, Contour and texture

analysis for image segmentation, IJCV, 43(1): 7–27, 2001.

[11] N. Paragios and R. Deriche, Geodesic active regions and level

set methods for supervised texture segmentation, IJCV, 46(3):

223-247, 2002.

[12] J. Shi and J. Malik, Normalized cuts and image segmentation,

PAMI, 22(8): 888–905, 2000.

[13] T. Chan and L. Vese, Active contours without edges, IP, 10(2):

266–277, 2001.

[14] D. Comaniciu and P. Meer, Mean shift: a robust approach to-

ward feature space analysis, PAMI, 24(5): 603-619, 2002.

[15] S.C. Kim and T.J. Kang, Texture classification and segmentation

using wavelet packet frame and Gaussian mixture model, Pat-

Fig. 7. Comparison on the BSD. The left is a PRI versus time plot, the middle a VOI versus time plot, and the right a GFM versus time
plot. Four comparision methods are Multiscale Normalized Cut (MNC), Compression-based Texture Merging (CTM), Texture and Bounda-
ry Encoding-based Segmentation (TBES), and Oriented Watershed Transform Ultrametric Contour Maps with globalPb as contour detec-
tor (gPb-owt-ucm).

10

tern Recognition, 40(4): 1207–1221, 2007.

[16] X. Liu and D. L. Wang, Image and texture segmentation using

local spectral histograms, IP, 15(10): 3066–3077, 2006.

[17] M. Galun, E. Sharon, R. Basri, and A. Brandt, Texture segmenta-

tion by multiscale aggregation of filter responses and shape el-

ements, In ICCV, 2003.

[18] X. Liu and D. L. Wang, A spectral histogram model for texton

modeling and texture discrimination, Vision Research, 42: 2617–

2637, 2002.

[19] J. Yuan, D. L. Wang, and R. Li, Image segmentation using local

spectral histograms and linear regression, Pattern Recognition

Letters, 33(5): 615–622.

[20] G. Golub and C. Van Loan, Matrix Computations, 3rd ed., The

Johns Hopkins University Press, 1996.

[21] C. Eckart and G. Young, The approximation of one matrix by

another of lower rank, Psychometrika, 1: 211–218, 1936.

[22] J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles.

Reading, MA: Addison-Wesley, 1974.

[23] S. M. Kay, Fundamentals of Statistical Signal Processing: Esti-

mation Theory, Englewood Cliffs, NJ: Prentice Hall, 1993.

[24] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems,

Englewood Cliffs, NJ: Prentice-Hall, 1974.

[25] M. Berry, M. Browne, A. Langville, V. Pauca, and R. Plemmons.

Algorithms and applications for approximate nonnegative ma-

trix factorization. Comput. Stat. and Data Anal., 52(1):155–173,

2007.

[26] R. Albright, J. Cox, D. Duling, A. Langville, and C. Meyer, Algo-

rithms, initializations, and convergence for the nonnegative ma-

trix factorization, NCSU Technical Report Math 81706, 2006.

[27] C. Harris and M. Stephens, A combined corner and edge detec-

tor, In Alvey Vision Conference, 1988.

[28] D. Mumford and J. Shah, Optimal approximations by piecewise

smooth functions and associated variational problems, Comm.

Pure Appl. Math., 42(5): 577–685, 1989.

[29] T. Ojala, T. Mäenpää, M. Pietikäinen, J. Viertola, J. Kyllönen,

and S. Huovinen, Outex—New framework for empirical evalua-

tion of texture analysis algorithms, In ICPR, 2002.

[30] D. Martin, C. Fowlkes, D. Tal, and J. Malik, A database of hu-

man segmented natural images and its application to evaluating

segmentation algorithms and measuring ecological statistics, In

ICCV, 2001.

[31] A. Jain, Fundamentals of Digital Image Processing, Prentice Hall,

1989.

[32] A. Yang, J. Wright, Y. Ma, and S. Sastry, Unsupervised segmen-

tation of natural images via lossy data compression. CVIU,

110(2):212–225, 2008.

[33] H. Mobahi, S. Rao, A. Yang, S. Sastry, and Y. Ma, Segmentation

of natural images by texture and boundary compression, IJCV,

95(1): 86–98, 2011.

[34] T. Cour, F. Benezit, and J. Shi, Spectral segmentation with mul-

tiscale graph decomposition, In CVPR, 2005.

[35] W. Rand, Objective criteria for the evaluation of clustering

methods, J. of the Am. Stat. Assoc., 66(336): 846–850, 1971.

[36] M. Meila, Comparing clusterings: an axiomatic view, In ICML,

2005.

[37] R. Sandler and M. Lindenbaum, Nonnegative matrix ractoriza-

tion with earth mover's distance metric for image analysis,

PAMI, 33(8): 1590–1602, 2011.

[38] C. Tomasi and T. Kanade. Shape and motion from image

streams under orthography: A factorization method. IJCV, 9(2):

137-154, 1992.

[39] D. D. Lee and H. S. Seung. Learning the parts of objects by non-

negative matrix factorization. Nature, 401(6755): 788–791, 1999.

