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Abstract – This paper introduces a factorization-based approach that efficiently segments textured images. We 

use local spectral histograms as features, and construct an M×N feature matrix using M-dimensional feature 

vectors in an N-pixel image. Based on the observation that each feature can be approximated by a linear 

combination of several representative features, we factor the feature matrix into two matrices – one consisting 

of the representative features, and the other containing the weights of representative features at each pixel used 

for linear combination. The factorization method is based on singular value decomposition and nonnegative 

matrix factorization. The method uses local spectral histograms to discriminate region appearances in a 

computationally efficient way and at the same time accurately localizes region boundaries. The experiments 

conducted on synthetic and natural images show the promise of this simple yet powerful approach. 

Index Terms – matrix factorization, texture segmentation, spectral histogram.  



2  

 

 

1 INTRODUCTION

mage segmentation is a critical task for a wide range of 
applications including autonomous robots, remote sens-
ing, and medical imaging. In this paper, we focus on 

segmentation of textured images, which partitions an im-
age into a number of regions with similar texture appear-
ance. As segmentation serves as an initial step for higher 
level image analysis tasks, such as recognition and classi-
fication, we aim to develop segmentation algorithms with 
low computational complexity. In addition, we do not use 
object-specific or scene-specific knowledge, which are 
typically not available.  

Texture segmentation literature addresses two main is-
sues: 1) finding an image model that defines region ho-
mogeneity, and 2) designing a strategy for producing 
segments. In general, these two issues are not treated in-
dependently due to the fact that a successful segmentation 
methodology should couple a good texture model and an 
effective segmentation strategy. 

A popular choice for texture segmentation uses model-
based methods, which regard textures as probability dis-
tributions and label pixels to different segments by maxi-
mum a posteriori (MAP) estimation. A typical example is 
to model a textured image as a Markov random field 
(MRF) [1] [2] [3], which takes interactions between the 
neighboring pixels into account. MRF provides an elegant 
framework for segmenting textured images. 

Another line of work in texture segmentation is to ex-
tract features from local image patches and then feed 
them to general clustering or segmentation algorithms [4]. 
Various features are designed to characterize texture ap-
pearance. Widely used ones are based on filtering [5] [6], 
which uses filterbanks to decompose an image into a set 
of sub-bands, and statistical modeling [7] [8], which char-
acterizes texture as resulting from some underlying prob-
ability distributions. Here, statistical modeling analyzes 
local distributions to produce features, in contrast with 
the model-based methods that obtain pixel labeling 
through parameter estimation. The features can be empir-
ical distributions or estimated model parameters. 

Recent work on texture analysis shows an emerging 
consensus that an image should first be convolved with a 
bank of filters [9]. Texture descriptors constructed based 
on local distributions of filter responses show promising 
performance for texture synthesis and texture discrimina-
tion. Such descriptors can be coupled with well-
established segmentation methods to segment textured 
images [10] [11]. This treatment, however, has two main 
problems. The first problem stems from the high feature 
dimensionality of multiple filter responses and their dis-
tribution representations. Many widely used segmenta-
tion approaches, e.g., graph partitioning [12], curve evolu-
tion [13], and mean shift [14], heavily rely on measuring 
the distance among local features, and thus applying them 
to the texture descriptors requires a high computational 
cost for distance calculation. More importantly, it is al-

ways a thorny issue to select a proper distance measure 
for a high-dimensional space. Although dimensionality 
reduction techniques can be utilized, whether a technique 
is suitable for a feature often lacks theoretical justification. 
Using well-defined probability models to represent distri-
butions can result in compact features that only involve a 
small number of parameters. However, these models usu-
ally lack expressive power.  

The second problem is attributed to the texture de-
scriptors generated from the image windows across 
boundaries. Such windows generate uncharacteristic fea-
tures, which causes difficulty in accurately localizing re-
gion boundaries [10]. In order to address this problem, 
quadrant filters and other similar strategies are often em-
ployed, which compute features from shifted local win-
dows around a pixel [15][16]. Another popular technique 
is to use local windows of different sizes, also referred to 
as scales [9] [17]. Boundaries are then determined by ana-
lyzing information across scales. Despite their success, 
these methods are ad hoc to some extent (e.g., using a dis-
crete set of shifts), or require additional computation to 
analyze multiscale information. In such situations, it 
would be desirable to find a segmentation approach that 
can utilize the texture descriptors to discriminate region 
appearances in a computationally efficient way and at the 
same time accurately localize region boundaries. 

 In this paper, we propose a factorization-based seg-
mentation method. The feature we use in this paper is a 
particular form of texture descriptors based on local dis-
tribution of filter responses, called local spectral histo-
grams [18]. The proposed method represents an image by 
an M×N feature matrix, which contains M-dimensional 
feature vectors computed from N pixels. We regard the 
feature at each pixel as a linear combination of representa-
tive features, which encodes a natural criterion to identify 
boundaries. Consequently, the feature matrix is expressed 
by a product of two matrices, which respectively contain 
representative features and their combination weights per 
pixel. The combination weights indicate segment owner-
ship for each pixel. We use singular value decomposition 
and nonnegative matrix factorization to factor the feature 
matrix, which leads to accurate segmentation.  

The remainder of the paper is organized as follows. In 
Section 2, we present the factorization based image model, 
which uses local spectral histogram representation.  Sec-
tion 3 presents our segmentation algorithm in detail. In 
Section 4, we show experimental results on different types 
of images. Finally, we conclude in Section 5.  

2 FACTORIZATION BASED IMAGE MODEL 

2.1 Local Spectral Histograms 

For a window W in an input image, a set of filter respons-
es is computed through convolution with a chosen bank 
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of filters {F, = 1, 2, …, K}. For a sub-band image W, 
the corresponding histogram is denoted as ( )

WH  . 1  The 
spectral histogram with respect to a chosen filterbank is 
then defined as: 

 (1) (2) ( )

W W W W

1
, ,..., KH H H H

W
,    (1) 

where |∙| denotes cardinality. The size of the window is 
referred to as an integration scale. Spectral histograms 
capture local spatial patterns via filtering and global im-
pression through histograms. It has been shown in [18] 
that when the filters are selected properly, the spectral 
histogram can uniquely represent an arbitrary texture 
appearance up to a translation. 

A local spectral histogram is computed over the square 
window centered at each pixel location. In order to obtain 
meaningful features, the integration scale has to be large 
enough. Thus, computing all local histograms is computa-
tionally expensive. To address this issue, we use the inte-
gral images to speed up the histogram generation process. 
With integral histograms computed, any local spectral 
histogram can be obtained by three vector arithmetic op-
erations regardless of window size. A detailed description 
of the fast implementation can be found in [16]. 

2.2 Image Model 

Without the loss of generality, let us consider an image as 
composed of homogenously textured regions as illustrat-
ed in Fig. 1(a). We assume that the spectral histograms 
within homogeneous regions are approximately constant. 
Local spectral histograms representative of each region 
can be computed from windows inside each region. Let us 
consider only the intensity filter for the time being, which 
gives the intensity value of each pixel as the filter re-
sponse. Then the local spectral histogram is equivalent to 
the histogram of a local window. Under the assumption of 
spectral histogram constancy within the region, the local 
histogram of pixel A can be well approximated by the 
weighted sum of representative histograms of two neigh-
boring regions, where the weights correspond to area 
coverage within the window and thus indicate which re-
gion pixel A belongs to.  We can have the same analysis 
for other filter responses, as long as the scales of filters are 
not so large to cause significantly distorted histograms 
near the boundaries. Because the purpose of filtering in 
local spectral histogram is to capture elementary patterns, 
the chosen filters generally have small scales. 

By extending the above analysis, the feature of each 
pixel can be regarded as the linear combination of all the 
representative features weighted by the corresponding 
area coverage. In the case when a window is completely 
within one region, the weight of the representative feature 
for that region is close to one, while the other weights are 
close to zero. 

Given an image with N pixels and feature dimensional-
ity of M, all the feature vectors can be compiled into an M 
× N matrix, Y. Assuming that there are L representative 
 

1 Based on previous studies [18], we use eleven equal-width bins for 
each filter response. 

features, the image model can be expressed as: 

 Y Zβ ε ,                                 (2) 

where Z is an M × L matrix whose columns are repre-
sentative features, is an L × N matrix whose columns are 
weight vectors, and is model error. 

This image model has been studied from a multivariate 
linear regression perspective in [19]. The representative 
feature matrix Z is computed from manually selected 
windows within each homogeneous region, and  is then 
estimated by least squares estimation: 

 
1

T T


β Z Z Z Y .                        (3) 

Segmentation is obtained by examining β̂  – each pixel is 
assigned to the segment where the corresponding repre-
sentative feature has the largest weight. For example, we 
compute three representative features from pixels around 
the center of each region in Fig. 1(a) and obtain the seg-
mentation result shown in Fig. 1(b). We use an intensity 
filter and two LoG (Laplacian of Gaussian) filters with the 
scale values of 0.5 and 1.0 to compute local spectral histo-
grams. The integration scale is chosen at 19 × 19. Given 
the ground truth, the segmentation error, which is the 
percentage of mislabeled pixels, is 1.1% for this segmenta-
tion. 

3 FACTORIZATION BASED SEGMENTATION 

For fully automatic segmentation, both Z and  are un-
knowns, and we aim to estimate these two matrices by 
factoring the matrix Y. In this section, we present the fac-
torization algorithm, which can produce segmentation 
with high accuracy and efficiency. 

3.1 Low Rank Approximation 

For a unique solution in (2) to exist, Z has to be full rank 
so that ZTZ in (3) is invertible. Thus, the rank of Z is the 
number of columns, i.e., representative features (the fea-
ture dimension is generally larger than the number of rep-
resentative features). In other words, representative fea-
tures have to be linearly independent in order to have a 
unique segmentation solution. Since each feature is a line-
ar combination of representative features, the rank of the 
feature matrix Y should be equal to the rank of Z. Howev-
er, due to image noise, the matrix Y tends to be full rank. 
Hence, the noise-free feature matrix should be a matrix 

Fig. 1. Linear combination of representative features. (a) Textured 
image with size 320 × 320. The feature at pixel A can be approxi-
mated by the weighted sum of two neighboring representative fea-
tures. (b) Segmentation result using least squares estimation. 

(a)                                    (b) 

A 
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that has the rank equal to the number of representative 
features. 

A typical solution to low rank approximation is singu-
lar value decomposition (SVD) [20], where the feature 
matrix is decomposed into: 

TY = U V .                                        (4) 

Here U and V are orthogonal matrices of size M × M and 
N × N, respectively. The columns of U are the eigenvec-
tors of matrix YY

T, and the columns of V are the eigenvec-
tors of matrix Y

T
Y. is an M × N rectangular diagonal 

matrix, where the diagonal terms, called singular values, 
are the square roots of the eigenvalues of the matrix YY

T, 
or Y

T
Y.  The singular values are sorted in a nonincreasing 

order. The well-known Eckart–Young theorem [21] states 
that the best rank-r approximation to Y, in the least-
squares sense, has the same form of SVD, except that  is 
replaced with a new matrix that contains only the first r 
singular values (the other singular values are replaced by 
zero).  

We need to determine the underlying rank of the fea-
ture matrix, which corresponds to the number of repre-
sentative features, or segments2. Let Y′ be the approximat-
ed matrix of rank-r. The approximation error can be ob-
tained as follows: 

 2

1

M

i

i r


 

 Y - Y = ,                                (5) 

where ||∙|| denotes the Frobenius norm, which is the square 
root of the sum of the squares of all matrix entries. 1, 2, 
…, M are singular values in a nonincreasing order. There-
fore, the error corresponds to the discarded singular val-
ues in the approximation. In practice, we can determine 
the number of segments by thresholding the error. That is, 
we estimate the segment number n as 

2

1

min :
M

i

i

n i N 


  
 

  
= ,                       (6) 

where is a pre-specified threshold that depends on the 
noise level of images. 

3.2 SVD Based Solution 

Assuming that the first r singular values are chosen using 
(6), (4) can be rewritten as: 

T   Y = UΣV                                          (7) 

where U′ and V′ consist of the first r columns of U and V 
in the SVD of matrix Y, respectively. ′ is an r × r matrix 
with the largest r singular values on the diagonal. If we 
define Z1 = U′ and 1 =′V′

T, the two matrices Z1 and 1 are 
of the same size as the matrices Z and  in (2). Thus, Z1 
and 1 can serve as a solution in the model in (2), which 
simultaneously ensures a minimum least square error due 
to the Eckart–Young theorem. However, the decomposi-
tion is not unique due to the fact that 

1

1 1 1 1
   -

Y Z β Z QQ β                                  (8) 

where Q can be any invertible square matrix, suggesting 

 

2A representative feature corresponds to a segment. The connectivity of 
segments is not considered here, which can be achieved by postpro-
cessing. 

that (Z1Q) and (Q-1
1) can also be possible solutions. 

Therefore, Z1 and 1 generally differ from the desired ma-
trices that represent underlying representative features 
and combination weights. Although the decomposition 
cannot directly give a valid solution, it leads to a striking 
fact that the representative features should be in the form 
of Z1Q, i.e., a linear transformation of Z1. Likewise, com-
bination weightsshould be a linear transformation of 1. 

In order to obtain a segmentation result, we need to es-
timate Q. Based on the fact that the desired matrix of rep-
resentative features is a linear transformation of Z1, we 
know that the representative features should lie in an r-
dimensional subspace spanned by the columns of Z1. 
Since Z1 forms an orthonormal basis, each column of Q is 
the Cartesian coordinate of each representative feature in 
the subspace. In the absence of noise, all other features 
also lie in the subspace because they are certain linear 
combinations of representative features. Meanwhile, there 
exist additional properties of the feature distribution ow-
ing to constraints on combination weights. Because the 
combination weights of a feature represent the coverage 
fraction of its local window, the weights should be 
nonnegative, and the sum of weights for each feature 
should be one. These two conditions restrict the features 
within a convex set with the vertices defined by repre-
sentative features. In the case of r representative features, 
all features lie in an r-vertex convex hull, or an (r-1)-
simplex, in an r-dimensional space. 

As an illustration, we project all the features from the 
image in Fig. 1(a) onto the 3-dimensional space spanned 
by Z1, and show the scatterplot in Fig. 2(a). The data 
points are downsampled in order to better show the dis-
tribution. It is clear that the features approximately lie in a 
triangle. Most points are concentrated on the vertices, 
which correspond to the features inside each region, and 
the points along the edges correspond to the features near 
region boundaries. There are some points within the tri-
angle, which correspond to the features computed over 
windows straddling all three regions.  

As shown in the example above, most features aggre-
gate densely at simplex vertices thanks to the discrimina-
tive power of local spectral histograms. Thus, we apply k-
means clustering in the subspace with k equal to r, and 
cluster centers correspond to the representative features, 
which immediately give Q. Then, can be easily solved 
based on (8), which provides the segmentation result. As 

Fig. 2. Scatterplot of features in subspace. (a) Scatterplot of fea-
tures projected onto the 3-d subspace. (b) Scatterplot after remov-
ing features with high edgeness 

(a)                                              (b) 
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features are in a Cartesian space, the Euclidean distance is 
used as a metric. 

It is well known that k-means clustering is sensitive to 
initialization. We employ two strategies to reduce the sen-
sitivity. Because features near boundaries could make the 
clustering process stuck at local minima, we remove those 
features before clustering by computing an edge indicator. 
The indicator value of a feature at (x, y) is chosen as the 
sum of the two feature distances between the pixel loca-
tions <(x + h, y), (x – h, y)> and <(x, y + h), (x, y – h)>, 
where h is chosen as half of the window size. The features 
with low values are expected to reside within the homog-
enous regions. Fig. 2(b) shows the features without those 
of high edgeness, which form well-grouped clusters. The 
second strategy is to choose initial means with maximum 
distance from each other [22]. Specifically, we choose the 
first initial mean e1 as the feature with the maximum 
length; then, the jth initial mean ej is the feature with the 
largest distance to the set Sj-1 = { e1, e2,…, ej-1}, where the 
distance between a feature k and Sj-1, denoted by d(k, Sj-1), 
is defined as  d(k, Sj-1) = min{d(k, e1), d(k, e2), …, d(k, ej-1)}. 
By doing so, the initial means are near the simplex verti-
ces. In our experiments, we observe that clustering results 
are very stable by incorporating these two simple strate-
gies.  

The representative feature matrix can alternatively be 
estimated by clustering in the original feature space. 
However, clustering in the subspace, derived from the 
above analysis, provides two major advantages. First, giv-
en the segment number, the SVD based solution guaran-
tees minimum error, while the solution from direct clus-
tering does not. As we showed earlier, the representative 
features from the subspace constructed by Z1 can give the 
best possible rank-r approximation that minimizes least 
square error, due to the Eckart–Young theorem. In con-
trast, the representative features from direct clustering are 
not guaranteed to lie in that subspace, and thus do not 
assure such a minimum error. Secondly, the subspace pro-
jection greatly reduces feature dimensionality, which 
speeds up the clustering significantly. 

3.3 Nonnegativity Constraint  

As we noted earlier, according to their interpretations, 
the combination weights should have two constraints, 
nonnegativity and full additivity (sum-to-one). However, 
the algorithm presented above does not enforce the com-
bination weights to obey the constraints. When the fea-
tures are very noisy, estimated combination weights can 
violate the constraints to a large extent, leading to incor-
rect segmentation. This problem is especially severe when 
the number of representative features is relatively large. 
Fig. 3(a) shows an image containing seven textures in 16 
patches. The segmentation results from the unconstrained 
solution are shown in Fig. 3(b), where a large number of 
pixels are incorrectly segmented.  

For a more accurate solution, we need to impose the 
constraints when estimating combination weights. This 
can be treated as constrained least squares estimation giv-
en the representative features from the SVD based solu-

tion. While a closed form solution exists for imposing full 
additivity [23], we find that the combination weights from 
the SVD-based solution are close to full additivity and the 
results with and without full additivity are very similar. 
The nonnegativity constraint can be achieved by a 
nonnegative least squares (NNLS) algorithm [24]. Our 
experiments show that this algorithm indeed improves 
segmentation accuracy, but the computation time is in-
creased significantly, which remains a major limitation of 
the NNLS algorithm.  

Alternating Least Squares (ALS) algorithms are pro-
posed to efficiently provide a low rank approximation 
with nonnegative factored matrices [25]. ALS algorithms 
start from an initial matrix A and compute a matrix B us-
ing least squares estimation. After setting negative ele-
ments in B to zero, A is recomputed using least squares 
estimation. The operations are repeated in an alternating 
fashion. ALS algorithms have been applied to nonnega-
tive matrix factorization problems and shown to be effec-
tive and fast in a number of studies [25]. ALS algorithms 
can be readily applied to our factorization problem, ini-
tialized with the representative features Z obtained from 
the SVD based solution. Based on the previous analysis, 
the initial Z should be close to the desired solution, hence 
a good initialization. Note that the initial Z is nonnegative 
because each column is a cluster center of all the features 
that are nonnegative histograms. As a result, ALS algo-
rithms will converge to a solution near the initial Z and 
also enforce the combination weights to be nonnegative.  

We employ a modified ALS algorithm [26], which min-
imizes the following function 

2 2 2

1 2( , )f     Z β Y Zβ Z β               (9) 

where Z and  have to be nonnegative and  and  are 
small regularization parameters. The regularization terms 
are used to penalize the factored matrices with very large 
norms. For all the experiments, we set both  and  to 0.1. 
The main steps of the algorithm are: 

1. Initialize Z as the representative features of the 
SVD-based solution from Section 3.2. 

2. Solve for in matrix equation (ZT
Z +I) = Z

T
Y. 

3. Set all negative elements in  to 0. 
4. Solve for Z in matrix equation (T +I) ZT

= Y
T
. 

5. Set all negative elements in Z to 0. 
6. Check whether stopping criteria are reached. If not, 

return to step 2. 

Fig. 3. Segmentation with nonnegativity constraint. (a) Synthetic 
image containing seven textures in 16 patches. (b) Segmentation 
result from the SVD-based solution. (c) Segmentation result with 
the nonnegativity constraint.  

(a)                            (b)                            (c) 
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Here I is the identity matrix. In each alternating step, Z 
and  are solved using least squares estimation. In addi-
tion to a maximum number of iterations (set to 100 in our 
experiments), we use a second stopping criterion: the dif-
ference of approximation errors between two consecutive 
iterations is less than 10-3. Fig. 3(c) shows the segmenta-
tion result after applying the ALS algorithm. We can see 
that the segmentation accuracy is significantly improved. 

3.4 Influence of Integration Scale 

Local spectral histograms involve multiple scale pa-
rameters, including filter scales and integration scales. 
This is analogous to another widely used image de-
scriptor, the structure tensor [27]. For a structure tensor, 
one scale corresponds to the scale of computing gradients, 
and the other describes the extent of local patches over 
which the structure tensor is constructed. Despite no theo-
retical relations, it is common in many practical applica-
tions to couple the two scale parameters in structure ten-
sors by a constant. For local spectral histograms, with 
multiple filters, it is more complicated to couple the filter 
scales with the integration scales. Considering that the 
goal of filtering is to capture basic and small structures, 
we will use a set of filters with fixed scales and other pa-
rameters and focus on the effect of integration scales. 

The choice of integration scales has a direct effect on 
segmentation results. Specifically, as the integration scale 
increases, the proposed method tends to produce smooth-
er boundaries. To illustrate such an effect, we show an 
image containing jagged boundaries in Fig. 4(a), where a 
square window is used to compute a local feature. Ac-
cording to the coverage of the two regions within the 
window, the proposed method segments the correspond-
ing pixel (the dot) into the darker region, as shown in Fig. 
4(b). With the integration scale sufficiently large, we ob-
tain a segmentation result shown in Fig. 4(c), where the 
boundary is close to a straight line. 

Although the smoothing effect may cause loss of im-
portant details, like corners and small objects, it is interest-
ing to note that the effect tends to reduce the total length 
of boundaries, and thus can serve as a form of regulariza-
tion, which is often explicitly included as an objective for 
image segmentation in itself [28]. In our case, the smooth-
ing effect emerges as a byproduct of the segmentation 
algorithm. Smoothing is apparent in the experimental 
analysis discussed in Section 4. 

3.5 Computation Time 

The feature extraction step in our algorithm, including 
filtering and spectral histogram computation, takes linear 
time with respect to the number of pixels. In our algo-
rithm, we do not need to perform a complete SVD. After 
the eigenvalue decomposition of YY

T, which is an M × M 
matrix (M is the feature dimension), we only need the first 
several eigenvalues and the corresponding eigenvectors to 
construct Z1. 1 can be obtained by least square estimation. 
This process can be quickly completed. The k-means clus-
tering for finding the matrix Q is also very fast because 
the features are projected onto a low dimensional sub-

space and the clusters are well grouped. The ALS algo-
rithm generally stops in less than five iterations. We have 
implemented the whole system using Matlab. To segment 
a 256 × 256 image using seven filters, our algorithm takes 
a few seconds on an Intel Core 2 Quad 2.6 GHz processor.  

4 EXPERIMENTAL RESULTS 

In this section, we show the performance of our method 
on different types of images.  

4.1 Texture Mosaics 

We test our method on the Outex texture segmentation 
dataset [29]. The dataset contains 100 texture mosaics, 
which are generated using the ground truth image shown 
in the first column of Fig. 5. The size of each image is 512 
× 512. Here we use two LoG filters with the scale values of 
1.5 and 3.0 and eight Gabor filters with the orientations of 
0, 45, 90, and 135 and the scale values of3.0 and 5.0. 
The integration scale is set to 55 × 55. By comparing the 
segmentation result with the ground truth, we calculate 
the segmentation error rates, the average of which on the 
dataset is 12.3%. To clarify the contribution of imposing 
the nonnegativity constraint, we examine the segmenta-
tion results from the SVD based solution, which gives an 
average error rate of 17.5%. Thus, using the ALS algo-
rithm to enforce nonnegativity provides a clear improve-
ment.  

Fig. 5 presents four examples. In the columns contain-
ing three images, the first row shows the original images, 
the second row the results from the SVD based solution, 
and the last row the results from the complete method. As 
we can see in the last row, the regions with different tex-
tures are separated successfully, and the boundaries are 
localized well. Compared with the SVD based results, the 
complete method gives similar results when the SVD solu-
tion works sufficiently well, while considerably improves 
the results when the SVD solution fails to produce good 
segmentation. It is worth noting that a sizable portion of 
errors in the results are due to the smoothing effect, which 
tends to eliminate high frequency sinusoids on bounda-
ries. 

To quantitatively show the influence of the integration 
scale on segmentation results, we apply our algorithm to 
the images in Fig. 5 using four different integration scales, 
and the error rates are presented in Table I. As we can see, 
some integration scales are more favorable than others, as 

Fig. 4. Illustration of smoothing effect. (a) Synthetic image contain-
ing two regions with different Gaussian noise. (b) Segmentaion 
result using our method. (c) Segmentation result with a very large 
integration scale. 
 

(a)                               (b)                               (c) 
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TABLE I 
Segmentation error for the proposed method using  

different integration scales 

 

Image 45 × 45 55 × 55 65 × 65 75 × 75 

1  15.13% 4.26% 5.09% 5.19% 

2 3.47% 3.88% 4.11% 4.19% 

3 15.47% 11.77% 8.82% 8.32% 

4  5.54% 4.45% 4.80% 5.01% 

 

they achieve a good compromise between capturing 
meaningful local features and smoothing boundaries. We 
can also see that increasing integration scales does not 
lead to serious performance degradation.   

4.2 Natural Images 

We have also applied our method to the Berkeley Seg-
mentation Dataset (BSD) [30]. To deal with color images, 
we include one intensity filter and two LoG filters with 
scale values of 0.5 and 1.0 to each color channel and com-
pute local spectral histograms using all resulting bands. 
The integration scale is set to 17 × 17, and the threshold  
is set to 0.45 to determine the segment number. It has been 
noted that the L*a*b* color space is more perceptually uni-
form [31], which motivates the use of this color space for 
natural image segmentation [32] [33]. In our experiments, 
we convert RGB color values to the L*a*b* color space and 
apply filters to the converted color channels. Fig. 6 illus-
trates some representative segmentation results. It can be 

seen that, without involving any object-specific models or 
human intervention, our method generates rather mean-
ingful results, where main regions are clearly segmented. 

To put the performance of our method in perspective, 
we quantitatively compare with four publicly available 
segmentation methods: Multiscale Normalized Cut (MNC) 
[34], Compression-based Texture Merging (CTM) [32], 
Texture and Boundary Encoding-based Segmentation 
(TBES) [33], and Oriented Watershed Transform Ultra-
metric Contour Maps with globalPb as contour detector 
(gPb-owt-ucm) [4]. The comparison is based on 100 color 
images of the BSD testset. Two region-based quantitative 
measures are used, Probabilistic Rand Index (PRI) [35] 
and Variation of Information (VOI) [36]. PRI measures the 
probability that a pair of samples is labeled consistently in 
two segmentations, which has high values if two segmen-
tations are similar. VOI measures the information differ-
ence between two segmentations, which gives low values 
if two segmentations are similar. Since each image in BSD 
has multiple ground-truth segmentations provided by 
different human subjects, a machine-generated segmenta-
tion is compared with each ground-truth segmentation, 
and the value of measures is given by the average. In ad-
dition to region-based evaluation, we also use a bounda-
ry-based measure, global F-measure (GFM) [9], which is 
defined as the harmonic mean of precision and recall. Pre-
cision measures the fraction of true boundaries in the de-
tected boundaries, and recall measures the fraction of 
ground-truth boundaries that are detected. We apply the 
method used in [4] to compute the GFM measure with 

Fig. 5. Texture image segmentation. The first column is the ground truth. In the columns with three images, the first row is the original 
image, the second the segmentation result using the SVD based solution, the third the segmentation result using the complete method. 
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multiple ground-truth segmentations. 
We intend to consider both segmentation accuracy and 

computation time in comparison. The evaluation scores of 
four comparison methods on BSD are reported in [33] and 
[4]. We run the codes of comparison methods distributed 
by the authors on BSD to obtain computation time. The 
quantitative measures and the average time are presented 
in three plots of Fig. 7. For all three measures, our method 
does better than MNC. Compared with CTM, our method 
gives better PRI score, slightly better GFM score, and low-
er VOI score, which is partially because CTM optimizes 
information-theoretic criteria and thus favored by VOI. 
TBES and gPb-owt-ucm outperform our method, but at a 
much higher computational cost. Worth mentioning is 
that gPb-owt-ucm requires training images for the contour 
detector, while all othe methods are unsupervised. Over-
all, our method gives competitive results, but with the 
shortest running time.   

Sandler and Lindenbaum propose a segmentation 
method based on nonnegative matrix factorization [37], 
which bears some resemblance to our method. However, 
there exist major differences. In their method, an image is 
divided into small tiles, and the histograms of all the tiles 
comprise the original matrix. Under their formulation, 
segmentation is performed based on tiles, and thus addi-
tional efforts are required to refine boundaries. Apart 
from a very different factorization algorithm, the factored 
matrices in their method cannot directly yield accurate 
segmentation, and anisotropic diffusion is performed to 
obtain final results. As reported in [37], their method gives 
a similar performance to MNC on the BSD testset at a fair-
ly high computational cost (it takes minutes to obtain a 
useful factorization for a small matrix of size 32×256). 
Compared with their method, the proposed method gives 
better results with higher efficiency. 

Fig. 6. Natural image segmentation. In each pair, the left is the original image, and the right the segmentation result from the proposed 
method, where each region is indicated by its mean color.   
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5 CONCLUDING REMARKS 

In this paper, we have developed a new method for seg-
menting textured images. Using local spectral histograms 
as features, we frame the segmentation problem as a ma-
trix factorization task. An efficient algorithm is proposed 
to produce factored matrices, which lead to accurate seg-
mentation. Results of experiments on synthetic and natu-
ral images are very encouraging. The proposed method 
extends that in [19]. In that work, the feature subspace is 
not fully revealed, and the results are similar to those 
from the SVD based solution, but with less stability due to 
lack of proper initialization. More importantly, this paper 
explicitly relates segmentation to matrix factorization, 
more specifically to nonnegative matrix factorization. Alt-
hough matrix factorization has been explored in many 
computer vision problems [38] [39], very little work has 
been done on its connection to image segmentation [37]. 
This important connection makes it possible to leverage 
extensively studied factorization techniques for improv-
ing segmentation results or adapting the method for spe-
cific tasks. 

The proposed method is not limited to segmenting tex-
tured images. As can be seen in Section 4.2, satisfying re-
sults are obtained for non-textured natural images. How-
ever, the current version of our method is more suited for 
segmenting textured images because spectral histogram 
representations are particularly powerful for capturing 
texture information. For non-textured images, the pro-
posed method works under the assumption that local his-
tograms are similar within regions. Although such an as-
sumption holds in many applications, similarity of local 
histograms can fail to reflect homogeneity in a non-
textured region; e.g., histograms are sensitive to lighting 
changes. How to improve the performance of our method 
on general non-textured images will be a topic for future 
research. 
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