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Abstract

Blue noise sampling is a core component for a variety of graph-
ics applications including rendering, imaging, modeling, and ani-
mation. Prior blue noise methods consider mostly spatial domain
properties such as density and anisotropy. This might not be suffi-
cient for non-spatial properties such as image or geometry features.

We present bilateral blue noise sampling, a method that considers
both spatial and feature properties. Our core idea is a sample dis-
tance measure that incorporates both sample positions and domain
features. This idea, inspired by bilateral filtering, is very simple
and can be easily combined with prior sampling algorithms. We de-
scribe corresponding synthesis methods for sample generation and
analysis methods for distribution quality. We demonstrate the ef-
ficacy of bilateral sampling for a variety of applications including
geometry sampling, image stippling, and dynamic domains.

Keywords: bilateral, blue noise, sampling, rendering, imaging,
geometry, animation

1 Introduction

Sampling is a fundamental component for a variety of computa-
tional tasks. The basic goal is to represent a target domain in a
certain best way under a given budget of samples. The notion of
“best” is often scenario dependent, and can favor different proper-
ties. For example, some applications need to place enough samples
at prominent regions to ensure accurate reproduction of image or
geometric features [Lévy and Liu 2010; Li and Mould 2011], while
others prefer samples distributed in a uniform random blue-noise
fashion at smooth image regions for reasons perceptual (e.g. textur-
ing [Li et al. 2010], animation [Yu et al. 2009], or stippling [Balzer
et al. 2009; Fattal 2011]) or numerical (e.g. anti-aliasing [Cook
1986], reaction diffusion [Turk 1992], or crack simulation [Ebeida
et al. 2011]). Some applications may favor both feature-preserving
and blue-noise properties, e.g. half-toning [Pang et al. 2008; Chang
et al. 2009] or geometry processing [Öztireli et al. 2010]. However,
despite such needs, there is a lack of general methods that can si-
multaneously preserve both features and blue noise properties for
different applications.

In particular, even though adaptive sampling allows samples to be
distributed with density proportional to the importance of domain
regions, this is not the same as feature preservation. For one, im-
portance sampling is likely to miss a sharp or thin feature with near
zero area, even if a very high importance value is given. Also, if
the importance changes dramatically as can happen in images and
geometry models, samples in less importance areas may squeeze
out nearby samples over sharp features. It is desirable to have a
feature-preserving blue-noise sampling method without these prob-
lems. See Figure 2, 9 & 11 for comparisons.

We present bilateral blue-noise sampling, a general method that
can produce sample distributions preserving both features and blue
noise properties within the same target domain. Our basic idea is
a sample distance measure that incorporates both spatial positions
and domain features. This idea is inspired by bilateral filtering
[Tomasi and Manduchi 1998], a very simple and elegant technique
that has found widespread applications in various graphics, vision,
and image processing tasks (see e.g., [Paris et al. 2009] and ref-
erences within). Our idea shares similar simplicity and generality
and can be easily combined with prior sample analysis and syn-
thesis algorithms. We describe both synthesis methods for sample
generation and analysis methods for gauging distribution quality.

Figure 1: Bilateral blue noise sampling. Our method preserves both fea-
tures and blue noise properties, with applications in geometry sampling,
dynamic domains, and image stippling.

We demonstrate scenarios that can benefit from bilateral sampling
versus traditional pure blue-noise or feature-preserving techniques,
as well as applications in geometry sampling, image stippling, and
dynamic domains (Figure 1).

2 Previous Work

Bilateral filtering Bilateral filtering is a simple and yet very ef-
fective method for feature-preserving smoothing, and has been ap-
plied over a variety of tasks for images and meshes [Tomasi and
Manduchi 1998; Jones et al. 2003; Paris et al. 2009]. Our method is
inspired by these methods but targets sampling instead of filtering,
and is able to preserve features better than prior blue noise methods.

Blue noise sampling Blue noise sampling places samples in a
random and yet uniform fashion and offers unique advantages such
as visually pleasantries in the spatial domain, replacing aliasing
by high frequency noise in the spectrum domain, and robustness
for certain numerical computations [Lloyd 1983; Dippé and Wold
1985; Cook 1986; Mitchell 1987; Turk 1992; Glassner 1994; Alliez
et al. 2002; Dutre et al. 2002; Pharr and Humphreys 2004; Ostro-
moukhov et al. 2004; Kopf et al. 2006; Ostromoukhov 2007; Fu
and Zhou 2008; Balzer et al. 2009; Wei 2010; Öztireli et al. 2010;
Fattal 2011; Ebeida et al. 2011; Kalantari and Sen 2011; Schlömer
et al. 2011]. However, most blue noise sampling methods are not
suitable for feature preservation, even under importance sampling
(Figure 2). Some recent methods start to pay attention to feature
preservation and can produce impressive results (e.g. [Pang et al.
2008; Chang et al. 2009; Li et al. 2010; Kalantari and Sen 2011]),
but these are either restricted to specific domains and/or applica-
tions (e.g. regular grid for halftoning [Pang et al. 2008; Chang et al.
2009], thin image features through maximal point set + min-conflict
metric [Kalantari and Sen 2011]), or feature preservations at the ex-
pense of blue noise properties [Li et al. 2010; Li and Mould 2011]).

Feature aware sampling Many sampling methods have been de-
signed to preserve features for various applications such as stippling
[Kim et al. 2008] and meshing [Lévy and Liu 2010]. However,
they usually do not preserve blue noise properties. The spectral
sampling in [Öztireli et al. 2010] is a notable exception in that it
also attempts to keep some blue noise properties as a by-product
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Figure 2: Comparisons between adaptive and bilateral sampling. Shown
here are sampling results for geometry and images. Results within each row
are produced with similar number of samples (∼2800/17900 for geome-
try/image). Notice that our method preserves features better (e.g. geometry
edges, image contours).

of feature-preservation. However, as shown in their Figure 9 and
our Section 6.2, the blue noise properties are not as well preserved.
Furthermore, most of these methods are designed for one particular
application instead of being a general methodology as ours.

3 Bilateral Sampling

Goal The goal is to sample a given target domain so that the sam-
ple set exhibits both blue noise properties and preserves application
specific features (e.g. geometric ridges or image contours). The for-
mer can be analyzed through a unified approach (e.g. power spec-
trum or spatial uniformity [Wei and Wang 2011]) while the latter
via application dependent measures, such as surface reconstruction
for geometry sampling, visual perception for image stippling, or
temporal coherence for dynamic motions.

Idea Our basic idea is to measure the distance d between any two
samples s and s′ via the following formula:

dp(s, s′) =
p(s)− p(s′)

σp
, dp(s, s

′) =
∣∣dp(s, s′)

∣∣
dv(s, s′) =

v(s)− v(s′)

σv
, dv(s, s′) =

∣∣dv(s, s′)
∣∣

d(s, s′) =
(
dp(s, s′),dv(s, s′)

)
d(s, s′) =

∣∣d(s, s′)
∣∣ =

√
d2p(s, s′) + d2v(s, s′) (1)

, where p indicates sample position, v the application dependent
sample “feature”, dp\dv the spatial\feature distance, and σp\σv
the relative weights. The p and v parts are our sampling analogy to
the domain and range parts of bilateral filtering. Specifically:

dp This is essentially the spatial sample distance in traditional blue
noise sampling, either Euclidean (e.g. image sampling) or
Riemannian (e.g. surface sampling).

dv This is the application-specific feature distance. For example,
in geometry sampling, we can have v = n, the surface nor-
mal. In image stippling, we can have v = c, the pixel colors.

We will use Equation 1 for both synthesis and analysis. In particu-
lar, for synthesis, our goal is to distribute samples within the given
domain Ω so that they are uniform under the distance measure in
Equation 1. For analysis, we will use Equation 1 for various qual-
ity measures, including spatial measures like minimum spacing ρ

[Lagae and Dutré 2008] and spectrum measures like differential do-
main analysis (DDA) [Wei and Wang 2011]. Note that Equation 1 is
the only key difference between our method and prior sampling al-
gorithms. Since the sample distance measure is mostly orthogonal
to the specific analysis or synthesis algorithms, our method can be
easily incorporated with these by simply replacing their position-
only distance with our bilateral distance.

However, even though this basic idea is simple, it can bring signifi-
cant benefits for many different applications such as geometry sam-
pling, image stippling, and dynamic domains, as will be detailed
in Section 6. In particular, all these can be done by simply using
different features in our formulation, instead of having to design
different algorithms for different applications. Using this bilateral
distance for sampling does incur additional implementation and al-
gorithm innovations, as will be described in the rest of the paper.

By tuning the relative values of σp and σv , we can control the rela-
tive degrees of blue noise and feature preservation. When σv =∞,
our method reduces to traditional blue noise sampling. With smaller
σv
σp

ratio, our method puts more emphasis on features and less on
blue noise. Since only the relative values of σv to σp matters, we
usually set σp = 1. Note that Equation 1 bears strong similarity to
bilateral image filtering [Tomasi and Manduchi 1998] where our v
part encourages samples to be placed at dominant features.

Our method is not the first to consider both positions and features
in sampling, much like [Tomasi and Manduchi 1998] is not the first
filtering method to consider both. Arguably many sampling algo-
rithms have done this in a certain form (e.g. considering radiance
[Pharr and Humphreys 2004] or geometry [Öztireli et al. 2010] as
features). However, just like [Tomasi and Manduchi 1998] that pro-
vides a very simple formulation for bilateral filtering, to our best
knowledge ours is the first one that provides a simple and direct
formulation for bilateral sampling, especially for blue noise.
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u
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Ω

Ω

Figure 3: Manifold interpretation. Given a spatial domain Ω (horizontal
axis) with features v (vertical axis), if we perform a uniform sampling (red)
in the corresponding manifold M (green) embedded in a higher dimensional
space, the corresponding samples manifested in Ω (blue) can have non-
uniform distributions induced by the features.

Interpretation We can interpret Equation 1 as measuring dis-
tances in a higher dimensional space Ω̂ with samples located within
an embedded lower dimensional manifold M . (See Figure 3 for
illustration. Similar interpretations have also appeared in prior bi-
lateral filtering papers, e.g. [Chen et al. 2007].) For example,
Equation 1 measures 6D distances for samples distributed over a
2-manifold with 3D surface normal directions as features, and 3D
distances for samples distributed over a 2D image with 1D gray
scale colors as features. Under the simplest case of uniform anal-
ysis/synthesis with v as the only source of non-uniformity, we are
essentially performing a uniform sampling of M for synthesis, and
similarly gauging the distribution uniformity over M during analy-
sis. 1

1This interpretation assumes a geodesic measure on M for both dp and
dv . However, the latter is actually Euclidean in our current implementation.
Thus the statements are only approximate but become more accurate under
denser sampling rate.



Specifically, let ϕ−1 indicates the mapping from Ω to M (and its
inverse, ϕ, can be considered as a projection that rids v):

ϕ−1(s) = (
p(s)

σp
,
v(s)

σv
) (2)

. Without further non-uniformity, the distribution of ϕ−1(S) over
M is uniform even though the sample set S might not be uniform
over the original domain Ω due to v.

Approximation Performing a direct sampling over a high dimen-
sional manifold M , even though possible, can be daunting both
algorithmically and computationally. We can avoid this and keep
all computations in the original domain Ω through the anisotropic
approximations described in [Li et al. 2010]. Intuitively, we absorb
all anisotropy introduced by features v between Ω and M into local
Jacobian matrices J , and use these as local linear approximations
for conducting analysis or synthesis on Ω. We compute J follow-
ing the approach of [Li et al. 2010], treating Equation 1 as a global
map/warp ϕ from a high dimensional ( p

σp
, v
σv

) (uniform) domain
Ω′ to the p only (non-uniform anisotropic) domain Ω (Equation 2).

For domain Ω , the corresponding Jacobian J can be derived as
follows. For notational simplicity, let

p̂ =
p

σp
, v̂ =

v

σv
(3)

. We have

J(ϕ−1) =

(
Jp(p̂)
Jp(v̂)

)
(4)

, where Jx(y) indicates the jacobian of y relative to x. Note that
Jp(p̂) = 1

σp
I (with I indicating the identity matrix) only if the

domain Ω is (spatially) Euclidean.

For clarify, in the following we treat σp and σv as global constants;
the derivations can be easily extended for varying σp and σv .

4 Synthesis

Our method can be easily applied to prior sampling methods; all
one needs to do is to replace the traditional position-only distance
measures in prior algorithms with our bilateral one described in
Section 3. Below, we provide concrete examples for two popular
algorithms, dart throwing and relaxation.

4.1 Dart Throwing

Our method can be easily applied for dart throwing [Dippé and
Wold 1985; Cook 1986], where samples are produced stochasti-
cally subject to the constraint that no two samples s and s′ can
be closer to each other than a pre-determined distance threshold
r(s, s′). All we need to do is to plug in our distance measure d
from Equation 1 in lieu of the Euclidean distance in traditional dart
throwing. By using different r(s, s′) representations, our method
can be easily and orthogonally applied for various sampling sce-
narios, including uniform (r is a constant), isotropic (r(s, s′) =
r(s)+r(s′)

2
where r(s) indicates the diameter of a (hypothetical)

disk centered at s), and anisotropic (an accurate directional func-
tion r(s, s′) or the Jacobian approximation in [Li et al. 2010]).

4.2 Relaxation

Lloyd relaxation [Lloyd 1983] is another classical method that has
been applied to generating blue noise samples. Unlike dart throw-
ing which generates samples from scratch, relaxation starts from
a given sample distribution and gradually improves its uniformity.
Let S be a set of samples (or “sites” in the jargon of [Balzer et al.

2009]) whose distribution we wish to optimize for. The uniformity
of S can be measured by the following energy function:

E(S,V) =
∑
i

∫
s′∈Vi

d2(s′, si)ds
′ (5)

, where V is the Voronoi tessellation generated from S, Vi the
Voronoi region corresponding to site si ∈ S, s′ a point in the do-
main Ω. The major difference here is that we are using our bilateral
distance measure for d in Equation 1 instead of a pure spatial do-
main distance. Lloyd relaxation minimizes this energy function by
iterating between the following two steps, Voronoi and centroid,
until sufficient convergence:

Voronoi For each point s′ ∈ Ω, find the site s(s′) that is the clos-
est to s′ among all sites in S:

s(s′) = arg min
s∈S

d2(s′, s) (6)

. Our bilateral distance can be directly plugged in here without
changing the underlying search algorithm.

Centroid Move each site si ∈ S to the centroid mi of the cor-
responding Voronoi region Vi ∈ V to minimize the corresponding
energy term: ∫

s′∈Vi
d2(s′, si)ds

′ (7)

. For traditional (Euclidean) spatial domain distance measure d, this
is a quadratic energy term and can be minimized by setting mi to
the (Euclidean) centroid of Vi.

Unfortunately, due to the presence of features dv in our d, we do
not have a corresponding analytically minimizable solution. One
possibility is to follow our manifold interpretation in Section 3, and
compute the centroids over an embedded manifold M in a high di-
mensional space (e.g. a 2D manifold in a 6D space for 3D surfaces
with 3D normal) following the methodology in [Du et al. 2002],
but this can be a quite complex process. Fortunately, under the
usual case of sufficient sampling rate, we can adopt the Jacobian
approximation as described in [Li et al. 2010] as follows:

mi =

(∫
Vi

JTJ(s′)ds′
)−1 ∫

Vi

JTJ(s′)s′ds′ (8)

, where J is the Jacobian computed via Equation 4.

Note that even though our centroid step is only approximate, it
works well when the sampling density is sufficient (relative to do-
main variations), as discussed in [Li et al. 2010]. Also, unlike [Li
et al. 2010] whose Voronoi step is also approximate, our Voronoi
step uses exact d without any approximation. This is usually a
good tradeoff, as the Voronoi step tends to involve longer spaced
site/point pairs than the centroid step, especially during the earlier
stages of the iterations.

Non-uniformity The descriptions above assume uniform sam-
pling aside from the feature v part. For additional non-uniformity,
such as adaptive or anisotropic sampling for the p and/or v part,
we can incorporate the additional r(.) (for local isotropic adaptiv-
ity as in [Wei 2008]) or J̇ (for local anisotropy as in [Li et al. 2010],
a square matrix with dimension equals to the dimension of p + v,
different from J in Equation 4) information on top of our bilaterally
derived d and J above. Specifically, for isotropic sampling over the
p + v manifold (Section 3), we multiply both d(s, s′) in Equation 1
(for the Voronoi step) and J(s) from Equation 4 (for the centroid
step) by 1

r(s)
. Similarly, for anisotropic sampling, we multiply both

d(s, s′) and J(s) by J̇(s).



4.3 Discussion

As described above, the application of our bilateral distance in
Equation 1 to prior sampling algorithms can benefit from a Jacobian
approximation as in Equation 4. A similar Jacobian approximation
is also adopted in [Li et al. 2010].

However, despite this similarity, the two methods differ fundamen-
tally in several important aspects:

Concept The basic idea of [Li et al. 2010], as illustrated in their
Equation 1, is to transform everything into spatial anisotropy
(encoded in their square JTJ matrix) and subsequently con-
sider only the resulting anisotropic spatial domain during
sampling. In contrast, our Equation 1 directly considers both
spatial and feature domains without any such intermediation.

Computation The fundamental conceptual difference above has
important consequences in the application to various sampling
algorithms: [Li et al. 2010] has to rely on the Jacobian ap-
proximation everywhere, whereas our method can use a direct
and accurate distance measure. In particular, their distance
measure needs to be computed approximately both in dart-
throwing and relaxation. In contrast, we used Jacobian only in
the centroid step of Lloyd relaxation for computational conve-
nience (to avoid high dimensionality). Both our dart throwing
and the Voronoi step of relaxation do not use any approxima-
tion.

In sum, our method uses [Li et al. 2010] as part of the machinery,
but is not an extension of it.

5 Analysis

We analyze sample distributions through a variety of criteria, in-
cluding both qualitative visual comparisons as well as quantitative
measures, including spatial uniformity ρ [Lagae and Dutré 2008]
and differential-domain spectrums (DDA) [Wei and Wang 2011] for
blue noise, and Hausdorff distance H for geometry feature preser-
vation. Some of these methods can be applied directly (e.g. H),
while others (e.g. ρ and DDA) need to incorporate our bilateral
distance measure (Equation 1). Below we provide a concrete ex-
ample for [Wei and Wang 2011], a general method for analyzing
non-uniform distributions using spatial statistics with direct con-
nection to Fourier spectrums.

Exact computation In general, sample distributions produced by
our methods in Section 4 can be anisotropic due to the presence of
the feature term in Equation 1, even though the domain Ω itself
is uniform without considering the features. Conceptually, we can
follow the manifold interpretation in Section 3 and perform exact
analysis by warping every sample s in the original domain Ω into
the higher dimensional M (Equation 2), and perform all kinds of
spatial and spectrum analysis there. For example, we can use the
following formula for the differential domain analysis in [Wei and
Wang 2011]

χ(d = s− s′) = ϕ−1(s)− ϕ−1(s′) (9)

, where d is the differential between samples s and s′ in Ω, χ the
differential transformation, and χ(d) the transformed d in Ω̂.

However, in order to do the above, we will need to define a global
orientation field over M (analogous to the analysis of surface sam-
pling in [Wei and Wang 2011]). This is doable for lower dimen-
sional M (e.g. for stippling gray scale images for which M is a
2-manifold embedded in a 3D Ω̂), it is not clear to us how to com-
pute such orientation fields for higher dimensional cases (e.g. a
2-manifold M embedded in a 6D Ω̂ for sampling 3D surfaces). For
such cases, we resort to approximations described below.

Approximation We can avoid directly dealing with higher di-
mensional manifolds M and keep all analysis computations in the
original domain Ω using the anisotropic analysis method in [Wei
and Wang 2011] with the Jacobian approximation described in Sec-
tion 3. However, the Jacobian in Equation 4 above might not be
square due to the presence of v. This can cause issues for analy-
sis methods that require square Jacobians such as [Wei and Wang
2011] which needs to preserve the dimension of d after χ. We
can address this following the approach described in the extended
version of [Wei and Wang 2011] based on the simple observation:
since the distance measure in [Li et al. 2010] depends on only JTJ ,
not J itself, all we need is to derive a square J ′ so that

JTJ = J ′TJ ′ (10)

. This can be achieved by the standard matrix square root method:

JTJ = V TDV (11)

, where V is an orthonormal matrix and D a diagonal matrix.
Note that since JTJ is positive definite, D will contain only non-
negative diagonal elements. Thus, we have

J ′ = V T
√
DV (12)

. Following Equation 15 of [Wei and Wang 2011] for anisotropic
sampling, we have

χ(d = s− s′) =
1

E (λ)

(
J ′−1(s) + J ′−1(s′)

2

)−1

(s− s′)T

(13)

, whereE (λ) is the mean of the eigenvalues of J ′(.) over Ω. Notice
the use of J ′ instead of J allows us to compute different domain
spectrum with the same dimensionality as the sample space Ω.

6 Results

Here, we present our results with applications in geometry sampling
(Section 6.2), image stippling (Section 6.3), and dynamic domains
(Section 6.4).

σv = 2.0
H = 0.93

σv = 9.0
H = 2.01

σv = 15.0
H = 2.51

σv →∞
H = 13.14

Figure 4: The effect of σv . The smaller the σv relative to σp (which is 1 by
default), the more samples are placed near features (such as cube edges and
corners). Setting σv =∞ will reduce our method to traditional blue noise
sampling. We also provide Hausdorff distances H (in units of 10−4) of the
reconstructed surfaces to the original cube for additional feature measure-
ments (details in Section 6.2).

6.1 Parameters

σv and σp The main parameters our method are σp and σv . We
usually set σp = 1 so that our method would reduce to traditional
(non-bilateral) blue noise sampling with σv = ∞. σv needs to be
low enough to preserve features while high enough to maintain blue
noise properties (see Figure 4). Even though it is entirely possible
to pick custom values depending on particular application needs,
through extensive experiments with different domains (both analyt-
ical and discrete), we have found that a good range is [7 11], with a
good default value 9 which we have used for all our results (unless
stated otherwise).
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[Öztireli et al. 2010] subsampling dart throwing

Figure 5: Blue noise properties of geometry sampling via dart throwing. Shown here are sampling results of different domains with varying topological and
geometrical properties. Detailed statistics for each case can be found in Table 1. Shown in each group are the spatial samples, DDA spectrum, and its radial
mean and anisotropy [Wei and Wang 2011]. Notice the more uniform distributions of our results (larger inner ring of the DDA spectrums).
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[Öztireli et al. 2010] gradient ascent relaxation

Figure 6: Blue noise properties of geometry sampling via relaxation/gradient-ascent following the results from Figure 5. We run 10 iterations of CCVT
[Balzer et al. 2009] for relaxation. Notice the lower amount of anisotropy in our results.

Complexity Our method simply increases the dimension of sam-
ples from np to np + nv , where np and nv are the dimensions
for spatial positions and features. This information can be eas-
ily plugged into various analysis and synthesis algorithms to de-
rive speed and storage complexity. For example, the speed of dart
throwing and the Voronoi step of relaxation will be slowed by a
rough constant factor of 1 + nv

np
, and the centroid step of relaxation

roughly (1 + nv
np

)2 (squared due to the Jacobian). The exact perfor-
mance depends on particular applications, but as a ballpark number,
our current implementation generates about tens of thousands sam-
ples per second on a single commodity PC core.

6.2 Geometry Sampling

Geometry sampling is important for graphics and simulation, and
can benefit from sample distributions that preserve both features
and blue noise properties [Öztireli et al. 2010]. In particular, al-
locating samples at features such as tips and creases are needed
to preserve the original geometry, while distributing samples with
blue noise properties can avoid undesirable aliasing or bias in com-
putations involving surface samples [Turk 1991; Turk 1992; Fu and
Zhou 2008]. Our method can be of help here by simply using sur-
face normal n as the feature v in our basic formulation in Sec-
tion 3.

We have applied our method to sample a variety of models with
different geometric and topological properties, and analyzed both
their blue noise and feature preservation properties. For the former



fil
ig

re
e

ge
nu

s-
3

original subsampling dart throwing gradient ascent relaxation

Figure 7: Visual quality comparison. Here, we display the surface reconstruction results from down-sample sets generated by different methods (surfaces
are reconstructed using the same PSS algorithm as in [Öztireli et al. 2010]). The filigree results (top row) are produced with about 84K samples each, where
the input contains roughly 514K points. (These results are produced under the same setting as Figure 11 of [Öztireli et al. 2010]).) The genus-3 results are
from Figure 5 and 6, where the input contains 440K points while our algorithm subsamples it to about 2.89K points. Notice the better reconstruction quality of
our results (dart throwing and relaxation) versus [Öztireli et al. 2010] (subsampling and gradient ascent). The filigree contains regularly distributed samples
while genus-3 less regular white noise samples, providing different stress tests.

case # samp ρ H(10−5)

d s r g d s r g
genus-3 2.89K 0.75 0.50 0.75 0.43 59.39 64.42 58.27 66.01
bumpy 18.65K 0.75 0.48 0.75 0.003 17.54 22.52 17.30 22.77
head 32.08K 0.75 0.54 0.75 0.01 8.41 9.50 8.7 8.19

Table 1: Statistics for geometry sampling results in Figure 5 &
6. The measures include ρ (the larger the better up to ∼
0.85) for spatial uniformity and Hausdorff distance H (the smaller
the better) for feature preservation. (All surface areas are normal-
ized to 1 for comparable H computation.) d\s\r\g represents dart-
throwing\subsampling\relaxation\gradient-ascent, respectively. Each
case is computed by averaging 10 sets except for “head” for which only
3 sets are used. σn/σp = 14 for head, and 9 otherwise. Note that ρ for
[Öztireli et al. 2010] can be very small.

we measure the differential domain spectrum [Wei and Wang 2011]
and ρ [Lagae and Dutré 2008] directly over the original surfaces,
while for the latter we first reconstruct surfaces (via Tight-Cocone
[Dey and Goswami 2003]) from the samples followed by Hausdorff
distance H and qualitative comparison. As shown in Figure 5, Fig-
ure 6, Table 1 and Figure 7, our method can preserve both features
and blue noise properties. Note that in these figures and tables, we
are comparing our method with a state-of-the-art feature-preserving
geometry sampling method proposed in [Öztireli et al. 2010], which
we will describe in more detail next.

Spectral manifold sampling Here we compare our method with
[Öztireli et al. 2010], a state of art geometry sampling method that
aims primarily at feature preservation but also retains some blue
noise properties. [Öztireli et al. 2010] performs manifolds sam-
pling based on a feature measure µ̃ derived from the current output
sample set S = {si}:

µ̃(s) = 1− kTK−1k/k(s, s) (14)

, where k(s, s′) is a Gaussian kernel measuring the distances be-
tween two samples s and s′ considering both position and nor-
mal similar to our bilateral distance, k a vector with component
ki = k(s, si), and K a matrix with component Kij = k(si, sj).
µ̃(s) is a quantity between 0 and 1; intuitively, the higher the value,
the more “feature” s represents relative to S.

[Öztireli et al. 2010] provides two sampling algorithms based on
µ̃: (1) randomized linear scan (referred to as subsampling in the
figures and tables), which sub-samples an input point set by se-
quentially picking samples with µ̃ greater than a certain threshold
ε, and (2) iterative gradient ascent, which optimizes the location of
a sample set by maximizing the individual µ̃ values locally. The
sub-sampling and gradient ascent parts are analogous to our bilat-
eral versions of dart throwing and relaxation, respectively.

Compared to [Öztireli et al. 2010], our method is much simpler and
easier to implement. Our method also provides explicit controls for
both feature preservation and blue noise, and can be easily hooked
up with prior sampling methods (e.g. dart throwing and relaxation).
Mostly importantly, our method preserves both features and blue
noise properties better.

The corresponding results are shown in Table 1 and Figure 5 &
6. Notice that our method has comparable numerical measures for
feature preservation (H in Table 1) and better blue noise properties
(higher ρ in general, more uniform spectrum profiles in Figure 5,
and less anisotropy in Figure 6). We have set the parameters for
both their sub-sampling and gradient ascent methods to be compat-
ible with our dart throwing and relaxation parts. In particular, we
pick their kernel sizes according to our r, and number of gradient
ascent iterations to be identical to our relaxation.

In Figure 7 we provide a qualitative visual comparison for recon-
struction quality from sample sets produced by [Öztireli et al. 2010]
and our method. As shown, for models with regular initial sampling
(e.g. filigree) our dart throwing slightly outperforms their subsam-
pling while our relaxation performs similarly to their gradient as-
cent; however for models with less regular initial sampling (e.g.
genus-3) both our methods perform noticeably better.

6.3 Image Stippling

Stippling refers to techniques that use small primitives (e.g. dots)
to illustrate images [Secord 2002; Balzer et al. 2009; Li et al. 2010;
Fattal 2011]. The primitives are usually of the same color (e.g.
black) or from a small palette of colors [Wei 2010]. Since human
visual systems tend to blend multiple dots in local spatial regions,
stippling with limited colors can still faithfully reproduce continu-
ous image tones. Such trick for trading off spatial for color resolu-
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Figure 8: Image stippling results. We compare our method against [Li and Mould 2011], a state of art stippling method that considers structure, blue noise,
and tone reproduction. As shown, our results have competitive tones and structures (e.g. better boundary between the chin and background in the lower left
corner of old man face) but better blue noise properties (e.g. more uniform sample distributions).

tions has also been taken advantage of in image halftoning where
samples lie on discrete regular pixel grids [Pang et al. 2008; Chang
et al. 2009; Li and Mould 2011].

For both stippling (continuous domain sample location) and
halftoning (discrete domain sample location) applications, it is well
known that sample sets with blue noise properties are more visu-
ally pleasing. In addition to blue noise, it could also be desirable
to maintain image structures or features [Pang et al. 2008; Chang
et al. 2009; Li and Mould 2011].

However, to our knowledge, prior methods that consider both blue
noise and features have certain limitations. They may sacrifice blue
noise properties to preserve features (e.g. contrast aware halftoning
[Li and Mould 2010; Li and Mould 2011]), they might not offer
flexible enough controls to tune the relative weights of blue noise
and feature preservation (e.g. [Chang et al. 2009; Li and Mould
2011]), and most of them operate in discrete grids (e.g. [Pang et al.
2008; Chang et al. 2009]) and might not be suitable for continu-
ous domain applications such as stippling. ([Li and Mould 2011]
demonstrated impressive stippling results via error diffusion; how-
ever, sufficiently large neighborhoods have to be used. See [Wei
2010] for relevant discussions about other potential issues for pro-
ducing continuous domain effects via discrete domain sampling.)

Our method can be applied for such feature-aware blue noise image
stippling or halftoning by simply using gray-scale image color c

as features v in Equation 1. It is applicable to both discrete and
continuous domains, and very easy to combine with prior blue noise
stippling algorithms [Balzer et al. 2009; Li et al. 2010; Fattal 2011]
by simply plugging the distance measure in Equation 1. As shown
in Figure 2 and Figure 8, our method preserves features and blue-
noise-properties better than prior techniques.

Note that the only difference between traditional stippling and our
method is the presence of the feature term in Equation 1, where the
former can be considered as a special case with σv = ∞. In par-
ticular, our bilateral distance measure in Equation 1 is orthogonal
with other aspects of blue noise sampling, such as using intensity
as the importance field to define local r(.) fields.

To preserve tones, we set our stipple radius proportional to dp(s)

d(s)
,

i.e. the ratio of the local average distance at sample s computed by
traditional position-only method and our bilateral distance in Equa-
tion 1. (We compute this through the ratio of the eigen-values of the
Jacobian matrices from d and dp.) Users can also optionally cap the
ratio (and thus the corresponding d) of the smallest to largest pos-
sible stipple sizes for additional control (e.g. artistic reasons). We
have found that uniform stipple size adequate for many cases, but
variable stipple size beneficial for sufficiently complex images.

Figure 9 compares our bilateral distance with other conflict metrics
such as mean-conflict [Wei 2008] and min-conflict [Kalantari and
Sen 2011] for dart throwing. As shown, our result has the best



quality, especially around features. This is a further confirmation
(beyond Figure 2) that our method is better than traditional adaptive
sampling for simultaneous blue noise and feature preservations.

(a) input (b) mean conflict

(c) min conflict (d) bilateral

Figure 9: Distance metric comparison. Here, we compare our bilateral
distance metric with alternative measures including mean [Wei 2008] and
min [Kalantari and Sen 2011] conflicts. Each case contains about 35K sam-
ples produced by dart throwing. Notice that mean conflict metric can pro-
duce noticeable knock-out effects (e.g. lower-middle of the second right col-
umn) and a max conflict metric can produce even worse results (not shown
here but see [Kalantari and Sen 2011] Figure 8). Min-conflict metric pro-
duces less knock-out effects, but still preserves features less well than our
bilateral method (e.g. compare the boundaries of the rectangular paintings
and circular objects on the wall behind the columns).

6.4 Dynamic Distribution

Blue noise sampling has been applied for a variety of applications
involving dynamic phenomena, such as sprite-based animation [Yu
et al. 2009], video stippling [Chen et al. 2012], and hybrid point
distribution [Vanderhaeghe et al. 2007]. The key, as stated in [Van-
derhaeghe et al. 2007], is to maintain the balance between 2D blue
noise uniformity, 2D temporal coherence, and 2D (video) or 3D
(object) motion depiction. This is a challenging problem due to
multiple spatial and temporal constraints. To our best knowledge,
prior dynamic blue noise sampling methods have yet to consider
domain features when placing samples. Our method can benefit
these applications to help bring out the features. And similar to
other applications introduced earlier, our method can be easily and
orthogonally combined with these prior dynamic blue noise sam-
pling algorithms by simply plugging our bilateral distance measure
(Equation 1).

Here, we describe two particular dynamic point distribution appli-
cations: cross sampling for 2D stylization of dynamic 3D objects
and spatial-temporal sampling for video stylization. Both are de-
scribed in [Vanderhaeghe et al. 2007]. The basic idea is to perform
blue noise sampling for the first frame, advect the samples accord-
ing to the scene motions (e.g. 3D object motions or 2D video optical
flows), and maintain blue noise properties by removing and adding
samples from crowded and sparse regions, respectively.

Feature v For video stylization, we simply use colors c as v.
For cross-dimensional sampling (2D stylization of 3D objects), we
define the v(s) for each 2D screen space sample s as a combination
of the 2D screen space shading c(s) and the 3D object space normal
n(s′):

s′ = raycast(s), v(s) =
(
αc(s),n(s′)

)
(15)

, where α is the relative weight between c and n, s′ the 3D ob-
ject surface point corresponding to s (obtained through ray casting
from the eye point), and n the 3D object normal in the eye coor-
dinate system. (If raycast(s) does not hit the object surface, we
set n(s′) to 0.) This choice allows us to emphasize both shad-
ing and projected geometric features better than only 3D geometry
(Section 6.2) or 2D image (Section 6.3) features. Some common
examples include interior and exterior silhouettes (e.g. the genus
3 model in Figure 10) and shallow ridges that might not be very
prominent on the original 3D geometry but can be enhanced due to
projection and shading (e.g. the claw model in Figure 10).

Cross dimensional sampling Figure 10 provides examples for
applying our method for cross dimensional sampling, i.e. placing
stipples on a 2D plane to render dynamic 3D objects. There, we
compare our cross sampling method against our bilateral sampling
in either the screen space or object space only, as well as cross di-
mensional (non-bilateral) blue noise sampling [Vanderhaeghe et al.
2007]. As shown, our cross-sampling method provides better qual-
ity than these alternatives, including tone reproduction, features in
both image and object spaces, flatness (screen space blue noise uni-
formity), motion depiction, and temporal coherence. (The latter
three are desiderata from dynamic stylization [Bénard et al. 2011]
while the first two from static image stippling.) For tone reproduc-
tion, we set the local radius r(s) according to the shading value.

This application can be considered as a hybrid of our other two
applications, geometry sampling (Section 6.2) and image stippling
(Section 6.3) in that we place samples on a 2D plane similar to
the latter while preserving features considering the former, but with
two main differences: (1) the 3D features are sampled after projec-
tion; thus, we can produce more uniform screen-space blue noise
samples (uniform blue noise samples over a 3D object surface can
become highly non-uniform after projection, e.g. near the silhou-
ettes of the genus-3 model in Figure 10) and better preserve fea-
tures that might not be very prominent in the 3D geometry but can
get enhanced after projection (e.g. the shallow ridge in the claw
model in Figure 10), and (2) we need to take into account dynamic
effects such as object motions, and thus provide better motion illus-
trations than 2D sampling which can produce temporal incoherence
or shower-door artifacts (as demonstrated in [Vanderhaeghe et al.
2007] and our video).

Video stylization Figure 11 demonstrates our spatial-temporal
sampling application for video stylization. This can be considered
as a generalization of stippling static images to dynamic videos with
the need to consider motion depiction and temporal coherence sim-
ilar to the cross sampling application. However, unlike cross sam-
pling 3D objects, the motions are computed through video optical
flow instead of projection tracking (as in Equation 15). Further-
more, in addition to gray scale color or shading as used in our pre-
vious applications, here we also demonstrate the application of our
method for color videos. This can be easily achieved in our method
by using 3-channel RGB instead of 1-channel intensity in our c fea-
ture. As shown in Figure 11, our method preserves features better
than non-bilateral blue noise sampling [Vanderhaeghe et al. 2007]
while maintains its other advantages including motion depiction,
temporal coherence, and screen space blue noise.
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Figure 10: Cross dimensional dynamic sampling for 2D stylization of 3D objects. Here we compare our cross dimensional bilateral
blue noise sampling against alternative methods, including bilateral sampling in either object- or screen-space only (as described in
Section 6.2 & 6.3, respectively), as well as cross dimensional (non-bilateral) blue noise sampling [Vanderhaeghe et al. 2007]. Notice
that our method provides better effects, including shading/tone reproduction, features in image and object spaces, as well as temporal
coherence. Compared to object space sampling, our cross bilateral sampling has more uniform screen space distribution (notice highly
distorted and non-uniform sample distributions near the silhouettes of the genus-3 model for pure object space sampling) and illustrates
clearer those geometric features that are not very prominent on the original 3D model but can get enhanced due to screen projection,
such as the shallow ridge in the middle right of the claw model. Compared to screen space sampling, our method does not suffer from
temporal coherence issues such as shower door or temporal discontinuity (see video). Compared to cross dimensional (non-bilateral)
blue noise sampling, our method preserves features better. Each case of genus3\claw contains∼ 4500\8000 visible samples. The input
models are shown on the left. Please refer to the accompany video for animation effects.
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Figure 11: Spatial-temporal sampling for video stylization. Notice the better feature preservation of our method, such as the gecko mouth and eye, and the
doll face and clothing. Each frame of gecko\Alma contains ∼ 2200\19000 samples. Please refer to the accompany video for animation effects.

7 Limitations and Future Work

Currently we determine the parameters σp and σv empirically and
would like to pursue more rigorous analytical methods. In addition,
all our current results are produced with uniform σp and σv , and we
believe varying them spatially may benefit certain applications.

We still rely on Jacobian approximations for various synthesis (e.g.
centroid step for relaxation) and analysis (e.g. DDA [Wei and Wang
2011]) algorithms. It would be great to devise precise solutions to

cleanly use our bilateral formulation in Equation 1.

Our current analysis method is derived from [Wei and Wang 2011].
We are not aware of better alternatives for analyzing non-uniform
sample distributions, but [Wei and Wang 2011] is not perfect either.
In particular, we will have to share distance measure and approx-
imations for some of the synthesis and analysis parts. A potential
future work is to develop analysis methods that are standalone and
independent of any sample synthesis algorithms.

In our formulation we have been using either Euclidean or Rieman-



nian positional distance dp, but only Euclidean feature distance dv .
Even though this suffices so far, we wonder if there are scenarios
that can benefit from a non-Euclidean dv .

We have not yet attempted to combine our bilateral sample distance
with a maximal sampling method such as [Cline et al. 2009; Gamito
and Maddock 2009; Ebeida et al. 2011; Kalantari and Sen 2011].
Such combination should be doable, and could preserve features
even better.

Our current implementation adopted prior acceleration methods
based on spatial measures only, such as grids for dart throwing [Wei
2008]. This is too conservative, as our bilateral distance is never
smaller than its spatial component. Further refinements in acceler-
ation methods will help the performance of bilateral sampling.

Finally, even though we have applied bilateral sampling only to blue
noise, the idea could be extended for more general sampling appli-
cations.
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Supplementary Materials

A Jacobian

Here we show that the approximation in Equation 4 will be in-
finitely closer to Equation 1 under sufficient sampling rates and
accurate computation of all derivatives.

Let s and s′ are nearby samples, denote:

δp(s) = p(s′)− p(s) (16)

δv(s) = v(s′)− v(s) (17)

. First, following Equation 1, we have:

δd(s) =

(
δp(s)

σp

δv(s)

σv

)
(18)

. Then, following Equation 4, we have

Jδp(s) =

(
δp(s)

σp

δv(s)

σv

)
(19)

. Note that Equation 18 and Equation 19 produce the same results
under the assumption that δp is small, thus:

δd = Jδp (20)

.

B Derivatives

A core component of our algorithms is

(a) wrong (b) right

Figure 12: Derivative
comparison.

computing derivatives. Care has to be
taken to ensure they are accurately esti-
mated to avoid artificial distortions such
as anisotropically warped different do-
main spectrum results (see Figure 12).

The basic idea is to fit a smooth surface
over the feature field before taking deriva-
tives, for robustness reasons. In our ex-

periments, we have found it suffice to fit a locally quadratic func-
tion ṽ(p) of sample positions p. A first order (linear) function
may have discontinuous derivatives, while higher order functions
(3 or more) are more expensive to compute without visible quality
improvements. To make sure the fitting is robust (over instead of
under constrained), we use a local neighborhood of size 3-5 rings
for regularly sampled Euclidean domains (e.g. height fields).

(a) uniform stipple size (b) variable stipple size

Figure 13: Stippling with variable dot sizes. Notice the
better structure and tone reproduction of (b) versus (a). The
source image is shown on the left.

7K samples 12K samples

21K samples 57K samples

95K samples 192K samples (original)

Figure 14: Surface reconstruction of our results with varying sample
rates. All results are produced by our bilateral dart throwing algorithm.
As shown, our method can well preserve features under a variety of sam-
pling rates.

case # samp ρ H(10−5)

d s r g d s r g
uniform 2.89K 0.75 0.47 0.75 0.79 0 0 0 0
1d-sine 6.50K 0.75 0.44 0.75 0.76 13.26 17.06 12.83 16.60
2d-sine 6.50K 0.75 0.36 0.75 0.67 44.09 58.15 41.36 61.62

Table 2: Statistics for for geometry sampling results in Figure 15 & 16.
See Table 1 for more details.
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[Öztireli et al. 2010] subsampling dart throwing

Figure 15: Blue noise properties of geometry sampling via dart throwing. Shown here are more sampling results of different domains from Figure 5, including
uniform, 1D sinusoidal 0.15 sin(2πfx) with f = 2, 2D sinusoidal 0.15 sin(2πfx) sin(2πfy) with f = 2. Detailed statistics for each case can be found in
Table 2.
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[Öztireli et al. 2010] gradient ascent relaxation

Figure 16: Blue noise properties of geometry sampling via relaxation/gradient-ascent following the results from Figure 15.


