
Efficient, Context-Sensitive Dynamic Analysis via
Calling Context Uptrees

Ohio State CSE technical report #OSU-CISRC-7/12-TR14, July 2012

Jipeng Huang
Ohio State University

huangjip@cse.ohio-state.edu

Michael D. Bond
Ohio State University

mikebond@cse.ohio-state.edu

Abstract
State-of-the-art dynamic bug detectors such as data race and mem-
ory leak detectors report program locations that are likely causes
of bugs. However, static program location is not enough for de-
velopers to understand the behavior of increasingly complex and
concurrent software. Dynamic calling context provides additional
information, but it is expensive to record calling context frequently,
e.g., at every read and write. Context-sensitive dynamic analyses
can build and maintain a calling context tree to track calling con-
text, but in order to reuse existing nodes, CCT-based approaches
require an expensive lookup.

This paper introduces the calling context uptree (CCU), a new
data structure in which each node points “up” to its parent instead
of “down” to its children. A CCU-based approach adds low time
overhead because it can allocate new nodes quickly, but it adds high
space overhead because it cannot reuse existing nodes. However,
tracing-based garbage collection (GC) collects unused CCU nodes
naturally and efficiently. To reduce space used by the remaining
nodes, we present an efficient algorithm that piggybacks on GC to
merge redundant nodes lazily.

We implement our CCU-based approach in a high-performance
Java virtual machine and integrate it with memory leak and data
race detectors so they can report context-sensitive sites that cause
bugs. We show that despite allocating instead of reusing nodes, our
CCU-based approach adds low overhead to these clients and keeps
space overhead low by relying on GC and performing lazy merging.
The CCU can thus provide low-overhead context sensitivity to a
variety of dynamic analyses that report bug causes.

1. Introduction
To provide more functionality and to scale to hardware that pro-
vides more instead of faster cores, software is becoming increas-
ingly complex and concurrent. These trends make it harder for de-
velopers to write correct programs and to reproduce, find, diagnose,
and fix bugs in existing programs.

Dynamic program analysis can help developers make software
more reliable by identifying errors and their causes. For example,
data race detectors track the program locations that last accessed
each variable [12, 20, 22, 36, 43]. When they detect a data race,
they can thus report the two program locations involved in the data
race: the program location that last accessed the variable, as well
as the current program location. Other dynamic analyses such as
memory leak detection [13, 16, 40], dynamic slicing [1, 54], and
atomicity violation detection [23, 35] track program locations in
order to report likely bug causes. To find and diagnose bugs that do

not manifest during testing, dynamic analyses can run in production
systems, where keeping overhead low is a key constraint.

To save time and space, almost all dynamic program analyses
track static program locations, e.g., a method and line number.
However, static locations are often not enough to understand what
the program was doing at that point. Static locations are increas-
ingly inadequate as software becomes more complex and concur-
rent. In complex, object-oriented software with many small, vir-
tual methods, a static program location may be invoked from many
unrelated contexts. Modern software often consists of integrated
components written by many developers, which complicates this
guessing game. In concurrent programs, the operation that causes
a bug may execute on a different thread from the operation that
detects the bug or triggers failure, again making it challenging to
determine program behavior from a static location.

Context sensitivity. Developers need more information than a
static program location to understand what the program was doing:
they need to know the dynamic execution context. Dynamic calling
context is the list of active call sites, similar to an exception stack
trace. (Prior work on static analysis considers other forms of con-
text sensitivity that includes object allocation sites and types [45].)

Developers are already used to getting a stack trace upon fail-
ure or when a bug is detected, to help them understand what the
program was doing when it failed. Obtaining the calling context at
these points is straightforward: the runtime system simply walks
the current thread’s call stack. Overhead is not a concern because
walking the stack occurs only once.

To understand bugs, developers also need to know the calling
context of program locations that are potential bug causes. For ex-
ample, developers need to know the calling context of the first of
two accesses involved in a data race, and they need to know the
calling context of a program location that is leaking memory. Re-
porting these prior program locations’ calling contexts is challeng-
ing. Dynamic analysis needs to record calling context extremely
frequently, e.g., at every program read and write, since it is impos-
sible to predict which accesses’ calling contexts might need to be
reported later.

Context sensitivity can also enhance dynamic analyses that infer
bug causes from observing program behavior that is well correlated
with failure [21, 27, 28, 34, 35]. Prior approaches are context
insensitive: they use static program locations as features. By using
context-sensitive locations, these approaches would become more
precise and be able to detect bugs due to program locations called
from both buggy and correct contexts.

Prior approaches. While most analyses record and report only
static program locations, some prior work captures calling context

1

but either has serious limitations or overhead too high for produc-
tion use. Walking the stack whenever context is needed is expensive
unless it is rare [14, 24, 39, 44, 50]. Recent approaches reconstruct
calling context when needed from limited information that is cheap
to collect, but these techniques are often probabilistic, and none
scale well with program complexity [11, 31, 37, 48].

Dynamic analysis can build and maintain each thread’s current
position in a calling context tree (CCT), in which each node repre-
sents a distinct calling context [4, 46, 55]. Each CCT node main-
tains a mapping from callee sites to callee contexts. This mapping
can be implemented in various ways such as a hash table since the
mapping is sparse, or as a list if the number of callee sites is rel-
atively small. Each program call thus requires a nontrivial lookup
to find or construct the corresponding callee context node, if any,
slowing programs by two or more times.

The calling context uptree. This paper proposes a novel ap-
proach based on a new data structure called the calling context
uptree (CCU). Each CCU node does not have pointers “down”
to its children. Instead, each node points only “up” to its parent.
This simple difference makes a significant impact. Instead of using
an expensive lookup at each program call, a CCU-based approach
simply allocates a new node at each program call, setting the node’s
parent to the caller context’s node. Because CCU nodes do not ref-
erence their children, dynamic analysis at a program call cannot
reuse existing callee context nodes. It adds space overhead by al-
locating, instead of mostly reusing, child nodes at every program
call. However, tracing garbage collection (GC) collects transitively
unreachable nodes efficiently, and we have developed an algorithm
that piggybacks on GC to merge redundant CCU nodes lazily.

We implement our CCU-based approach in a high-performance
research JVM and integrate it into two dynamic bug detection
analyses—a staleness-based memory leak detector and a happens-
before race detector—that track objects’ “last access” sites to report
likely bug causes. We show that the CCU provides dynamic context
sensitivity to the leak detector by adding 33% or 93% overhead
(depending on how leaf sites are stored), and to the race detector
by adding 57% overhead. We show that this performance compares
favorably with a CCT-based implementation. We also show that
the overhead CCU adds to the sampling-based race detector scales
naturally with the sampling rate. Finally, we evaluate two leaky
sites and conclude that context sensitivity helps diagnose one leak
and at least adds significant information to the other site. These
results suggest that the CCU can provide low-overhead context
sensitivity to dynamic bug detection analyses.

2. Background
2.1 Context-Sensitive Dynamic Analysis
Dynamic analyses such as memory leak and data race detectors
keep track of program locations that allocated or last accessed pro-
gram variables. This paper refers to such analyses as client analy-
ses. Client analyses typically maintain references to program loca-
tions, which we call client metadata. Analyses often maintain per-
variable client metadata by adding extra word(s) to object headers
or adding shadow memory [38].

A client analysis that tracks static program locations is context
insensitive. By using calling contexts to represent program loca-
tions, a client analysis becomes context sensitive. Being context
sensitive enables an analysis to report context-sensitive program lo-
cations to programmers, or to detect bugs more precisely by differ-
entiating program locations called from different contexts, or both.

In this paper, dynamic calling context is (1) the static program
location, which we call the client site, plus (2) the set of active call
sites. A (call or client) site consists of a method and a bytecode

1 c l a s s X { boolean f l a g ; }
2 c l a s s A {
3 m(X x) {
4 i f (x . f l a g) {
5 g l o b a l S e t . add (x) ; // x e s c ape s
6 }
7 } }
8 c l a s s B extends A {
9 m(X x) {

10 x . f l a g = t rue ;
11 super .m(x) ;
12 } }
13 main () {
14 A a = new A() ; B b = new B() ;
15 f o r (A tmp : {b , a , b}) {
16 tmp .m(new X()) ;
17 }
18 . . .
19 }

Figure 1: Example program written in Java pseudocode.

index (which uniquely identifies bytecode operations, unlike line
numbers):

c l a s s S i t e {
Method method ;
i n t by t e code I ndex ;

}

In the following example calling context, the first line is the client
site, and the other lines are call sites:1

org.apache.xerces.framework.XMLParser.parse:1111
org.apache.tomcat.util.digester.Digester.parse:1561
org.apache.catalina.startup.TldConfig.tldScanStream:514
org.apache.catalina.startup.TldConfig.tldScanJar:472
...
java.lang.Thread.run:595

2.2 The Calling Context Tree
Ammons et al. introduce the calling context tree (CCT), in which
each node represents a distinct calling context executed by the
program [4, 46, 55]. Each node points to its existing child nodes:

c l a s s CCTNode {
S i t e s i t e ;
Map<S i t e , CCTNode> c h i l d r e n ;

}

Each node maintains a map from child sites to child nodes so that
at each call, dynamic analysis (e.g., instrumentation added to the
compiled program) can reuse the existing child context node, if
any. Reusing existing nodes is important because programs execute
many more dynamic than distinct contexts [14]. Direct mapping is
impractical because a call site may have many statically possible
callee call sites: a call site may call several virtual methods, and
each of these methods may contain many call sites. Furthermore,
the number of statically possible callee call sites grows over time
due to dynamic class loading. Implementations must use a sparse
mapping implementation such as a hash table, or a list if there are
relatively few distinct, executed callee sites. Existing CCT-based
dynamic analyses thus require a nontrivial lookup at essentially
every call, slowing programs by two or more times, making them
unsuitable for production systems [4, 46].

Figure 1 shows an example program written in Java-like pseu-
docode. In the example, main():16 has four statically possible

1 We present calling contexts using line numbers instead of bytecode indices
because line numbers are more helpful when examining source code.

2

Figure 2: Calling context tree (CCT) corresponding to Figure 1.

callee sites since it has two possible callee methods (A.m() and
B.m()) that each contain two sites (the client sites A.m():4 and
B.m():10, and the call sites A.m():5 and B.m():11). Similarly,
B.m():11 has two statically possible callee sites (A.m():4 and
A.m():5). We suppose the program continues executing at line 18
(. . .), so long-term space overhead matters.

Figure 2 shows the CCT that a CCT-based dynamic analysis
would allocate for the example program in Figure 1. Suppose a
client analysis is recording the last access (read or write) to each
object. Ovals represent CCT nodes, and squares represent heap ob-
jects, labeled x1–x3 by allocation order. Down edges point from
CCT nodes to their children, and up edges point from per-object
client metadata (e.g., object headers) to CCT nodes; the client meta-
data records the last access to each object. The edge from A.m():5
to “...” represents extra CCT nodes created by globalSet.add().

The program accesses x1 and x3 first at B.m():10←main():16,
but later accesses each object at A.m():4← B.m():11←main():16.
Nonetheless, the context B.m():10 ← main():16 remains in the
CCT. Similarly, the x2 dies quickly (indicated with dashed lines)
because A.m():5 does not add x2 to globalSet, but the last-access
context A.m():4 ← main():16 survives because it is reachable.
This paper refers to nodes that can no longer be used by client
analyses as irrelevant nodes. Admittedly, the CCT could support
garbage collecting irrelevant nodes using weak references [26],
e.g., by using a weak hash map for child nodes and also maintain-
ing parent pointers.

The more critical problem with the CCT is that nodes can have
many statically possible callee contexts, which can grow over time,
so finding a child context in the child map requires a relatively
expensive indirect lookup at each program call. Our new approach
addresses this problem, as well as how to collect irrelevant nodes
efficiently.

Alternatives to the CCT. Instead of reusing existing context
nodes, a call tree constructs a new node for every dynamic call.
In this way, a call tree is related to our calling context uptree (pre-
sented next), except that each call tree node maintains pointers to
its child nodes, making it expensive to construct nodes and difficult
for GC to collect irrelevant nodes. Analyses can build and maintain
a dynamic call graph, which maintains only one node per call site,
losing the ability to reconstruct client sites’ calling contexts.

3. The Calling Context Uptree
This section describes the calling context uptree (CCU), our new
alternative to the CCT that provides efficient, always-available con-
text sensitivity to dynamic analyses. After introducing the CCU, we
describe how a CCU-based approach works: how dynamic analysis
constructs CCU nodes, and how garbage collection (GC) and lazy
merging of redundant nodes reduce space overhead.

3.1 The Basic Idea
The calling context uptree (CCU) is a new data structure in which
each node points “up” to its parent instead of “down” to its children:

c l a s s CCUNode {
S i t e s i t e ;
CCUNode pa r en t ;

}

Because CCU nodes do not point to their child nodes, it is essen-
tially impossible to reuse existing nodes. Our CCU-based approach
thus allocates a new node at every program call and client site. This
approach adds low time overhead at each site (especially when us-
ing optimizations described in Section 4.1), but space overhead is
a serious concern because existing nodes are not reused, so many
redundant nodes (nodes representing the same calling context) and
irrelevant nodes (nodes no longer used by the client analysis) will
be created. We show how GC naturally collects irrelevant nodes,
and we also present an approach that lazily merges redundant CCU
nodes to balance space and time.

3.2 Constructing the CCU
A CCU-based analysis must allocate, at a minimum, CCU nodes
to represent the context of every client site (e.g., every read and
write).2 An analysis can construct CCU nodes eagerly or lazily.
Eager construction allocates a node at every call site and passes
the node as an extra, implicit call parameter:

c a l l e r (. . . , node) {
. . .
// program c a l l s i t e
c a l l e e (. . . , new CCUNode(c a l l S i t e , node)) ;
. . .

}

At every client site, eager construction allocates a new node from
the client site and parent node, and uses it in an analysis-specific
way such as storing the node in an accessed object’s header:

o . metadata = new CCUNode(c l i e n t S i t e , node) ;
r ead o . f ; // c l i e n t s i t e

In contrast, lazy construction allocates CCU nodes only at client
sites:

o . metadata =
new CCUNode(c l i e n t S i t e , getNode ()) ;

r ead o . f ; // c l i e n t s i t e

The VM-specific function getNode() walks the stack and allocates
CCU nodes recursively until it finds a stack frame for which the
CCU node has already been constructed. Section 4.1 describes how
our implementation stores pointers to CCU nodes on stack frames
and uses method return addresses to represent sites efficiently.

We focus on lazy construction because it scales well with the
client analysis, since it only constructs CCU nodes needed to rep-
resent the contexts of client sites.

Eager and lazy construction are not unique to a CCU-based
approach. A CCT-based approach may also construct CCT nodes

2 The CCU naturally handles recursive call sites because each CCU node
represents one dynamic call site or client site.

3

Figure 3: Calling context uptree (CCU) corresponding to Figure 1,
without merging of redundant nodes. The dashed lines represent
objects that become irrelevant (unreachable) by line 18 of the
example program.

lazily or eagerly [50, 55]. A CCU-based approach and a CCT-
based approach will each look up the same number of nodes; the
key difference is that “looking up” a CCU node always means
allocating a new node, whereas looking up a CCT node often means
reusing an existing node.

3.3 Collecting Irrelevant Nodes
Because CCU nodes point only “up” to their parents, GC naturally
collects irrelevant nodes (nodes that are transitively unreachable
and thus are no longer used by the client analysis). In fact, CCU re-
lies on GC to collect the many nodes that become irrelevant quickly.
Tracing-based GC is well suited to collecting CCU nodes because
tracing is proportional to the dead nodes, not the live nodes [32].
A CCU-based approach should work especially well with genera-
tional GC, which collects newly allocated objects more frequently
than older objects, based on the weak generational hypothesis that
many objects die young [29].

3.4 Example CCU
Figure 3 shows the CCU after executing the code in Figure 1. The
contexts B.m():10 → main():16 and A.m():4 ← main():16 are
irrelevant since x1 and x3’s last access changed, and x2 died. We
represent these nodes with dashed lines to show that GC collects
them automatically since they are unreachable.

3.5 Merging Redundant Nodes
While GC naturally collects irrelevant CCU nodes, redundant
nodes (nodes representing the same calling context) can still add
significant space overhead in a CCU-based approach. In contrast,
the CCT disallows redundant nodes by always reusing existing
nodes. We contend that the CCT’s approach essentially wastes
time reusing nodes because many redundant nodes become irrele-
vant quickly.

To balance space and time, our CCU-based approach periodi-
cally merges redundant nodes so that each relevant context is rep-
resented by just one unique node. Our merging algorithm piggy-
backs on tracing GC, which already traverses all objects. We also
believe our technique could piggyback on a concurrent tracing GC.

1 CCUNode traceAndMerge (CCUNode node) {
2 // f i r s t merge the pa r en t
3 i f (node . pa r en t not y e t p r o c e s s e d) {
4 node . pa r en t = traceAndMerge (node . pa r en t) ;
5 }
6 uniqueNode =
7 node . pa r en t . ch i ldMap . ge t (node . s i t e) ;
8 i f (uniqueNode == n u l l) {
9 // node i s the un ique node

10 node = markL iveAndPoss ib lyCopy (node) ;
11 node . pa r en t . ch i ldMap . put (node . s i t e , node) ;
12 r e t u r n node ;
13 }
14 r e t u r n uniqueNode ;
15 }

Figure 4: GC tracing pseudocode for tracing and merging CCU
nodes. Fine-grained synchronization (not shown) ensures atomicity
of lines 6–11. Nodes without parents are not merged (not shown).

Our algorithm is not suitable for non-tracing GC, although efficient
reference-counting algorithms still trace young objects [9], provid-
ing an opportunity for merging redundant nodes.

The goal of merging is to determine, for each node, its unique
node—which may be the node itself or a different node—and
redirect all incoming pointers to the unique node.

Eager tracing. GC typically traces (marks live and possibly
moves) an object before tracing the object’s children (referenced
objects) [25]. Regular GC tracing is not well suited to merging,
which needs to determine a node’s unique node based on the node’s
unique parent. We modify GC tracing to be eager for nodes only;
GC continues to trace other heap objects normally. Eager tracing
traces a node’s parent pointer recursively before tracing the node.
Eager tracing is reasonable for CCU nodes because each node has
only one outgoing pointer, and node chains are bounded by the
program call depth, since nodes reflect program call chains.

Looking up unique nodes. To merge redundant nodes, our imple-
mentation needs to support looking up existing unique nodes based
on node equality. Two nodes are equal if their sites are the same
and their parent nodes are equal (or both null). One option is to
maintain a global map from each site–parent node pair to the corre-
sponding unique node. But a global, concurrent map would provide
poor locality and require synchronization. Instead, we add to each
unique node a map from its callee call sites to existing child nodes:

c l a s s UniqueCCUNode extends CCUNode {
Map<S i t e , CCUNode> ch i ldMap ;

}

Section 4.2 explains how our implementation uses different spaces
for unmerged and merged (unique) nodes, in order to support using
the childMap field only for unique nodes.

The CCT also maintains a child map—but for every node. In
contrast, the CCU avoids the cost of updating the child map for
the (many) irrelevant nodes that become unreachable between their
allocation and the next GC.

Figure 4 presents pseudocode that extends GC tracing to merge
redundant nodes by identifying a node’s unique node and redi-
recting the node’s incoming pointers to the unique node. GC calls
traceAndMerge, instead of its regular tracing function, when trac-
ing CCU nodes. traceAndMerge first recursively traces and merges
the parent node, which returns the unique parent node. Then it
checks for an existing unique node for node. If no unique node
exists, node is the unique node, so traceAndMerge performs reg-
ular GC tracing on it (marking it live and copying it if applicable)

4

Figure 5: Calling context uptree (CCU) corresponding to Figure 1,
after merging of redundant nodes. Irrelevant nodes have also been
garbage collected.

and adds it to the parent’s child map as the unique child. Section 4.2
describes how this algorithm applies to CCU nodes in both copying
and non-moving spaces.

3.6 Example CCU After Merging
Figure 5 shows the CCU from Figure 3 after merging executes
as part of GC, which also collects irrelevant nodes. Each relevant
context is represented by one unique node.

4. Implementation Details
We implement our CCU-based approach in Jikes RVM 3.1.1, a
high-performance research Java virtual machine [2, 3].3 Jikes RVM
provides performance within 15% of commercial JVMs.4 This sec-
tion describes implementation details of optimizations for con-
structing CCU nodes, merging redundant nodes, and integration
with two bug detection clients.

4.1 Optimizing CCU Nodes
Using return addresses as sites. Each CCU node has two fields:
its site and parent node. One option for representing the site is to
assign each static site (method and bytecode index) a unique iden-
tifier. When compiling each call site and client site, the dynamic
compiler would compute the identifer and insert instrumentation
that constructs a CCU node using the identifer. However, this op-
tion would not work well with lazy node construction (Section 3.2),
because callee methods are responsible for constructing nodes for
caller call sites. For example, when call site B.m():11 in Figure 1
calls method A.m(), instrumentation in A.m() needs to construct
the node for the call site B.m():11. Instrumentation at B.m():11
could potentially pass the site identifier to A.m(), but this would
add overhead and lose much of the benefit of lazy construction.

Our implementation addresses this challenge by representing
sites using the return address of the caller call site. The return
address of the caller call site is already available on the current
stack frame, in order to handle a return instruction. A return address
maps to a specific caller call site, and the VM already provides
methods to decode an instruction pointer to a caller call site, e.g.,
to support exception handling.

3 http://www.jikesrvm.org
4 http://dacapo.anu.edu.au/regression/perf/9.12-bach.html

Decoding return addresses is slow compared with node allo-
cation. However, the implementation only needs to decode return
addresses to call sites when reporting them to programmers, which
is already expensive and infrequent. We modify the VM to prevent
collection of unused compiled methods, so the VM can always de-
code a return address to its unique site.

The VM recompiles methods adaptively [5] and also compiles
static sites multiple times by inlining methods and unrolling loops,
so multiple return addresses may map to the same call site. Our
implementation computes node equality using a node’s return ad-
dress, which may inhibit merging somewhat since two nodes with
the same site and parent cannot be merged theirs sites are repre-
sented by different return addresses.

Whenever our implementation constructs a CCU node repre-
senting a method’s caller context, it stores a pointer to the node on
the method’s stack frame. We add a slot to each stack frame for this
purpose. This enables reusing CCU nodes constructed for existing
stack frames and enables walking the stack until a stack frame is
found that has already constructed its caller context node.

Inlined call sites. To reduce call overhead and increase optimiza-
tion scope, the VM inlines small and hot methods. An inlined call
site effectively represents multiple call sites. Our implementation
constructs just one CCU node for each actual call site in an inlined
method. Return addresses naturally represent inlined call sites, and
the VM provides functionality to decode the call sites that make up
a return address for an inlined call site.

Raw objects. Our implementation supports CCU nodes being
pure Java objects. Java objects have a header for type information,
locking, and garbage collection (GC); the header in Jikes RVM is
two words by default. Since dynamic analyses allocate CCU nodes
frequently, the cost of the header is significant in terms of cache
footprint, space overhead, and header initialization time.

Our implementation thus also supports using “raw” memory
for CCU nodes that do not have headers. We have created custom
memory spaces that support raw CCU nodes: a copying space and a
mark-sweep space. When GC traces nodes in these special spaces,
it calls our custom tracing code. Our evaluation uses raw nodes
since they offer better performance (Section 5).

4.2 Merging Redundant Nodes
Section 3.5 described an algorithm for merging redundant nodes.
Our implementation supports two types of merging. In-place merg-
ing merges nodes that have been previously allocated or copied into
a mark-sweep space. Because nodes are not copied, all nodes in the
space must include the extra childMap field in case they become
unique nodes.

The other type of merging, copy-based merging, merges nodes
that are in a copy space. It only traces and copies nodes that are
chosen as unique nodes. Copy-based merging copies unique nodes
into a mark-sweep space, which necessarily contains only unique
nodes. Copy-based merging has two advantages. First, nodes in the
copy space, which are numerous, do not need the extra childMap
field. Second, copy-based merging limits fragmentation better than
in-place merging, since copy-based merging only copies unique
nodes into the fragmentation-prone mark-sweep space.

Regardless of the type of merging, our implementation always
uses a configuration with one copy node space and one mark-sweep
node space. It allocates nodes into the copy space, which is fast
because it uses bump-pointer allocation [32]. Copied nodes are
copied to the mark-sweep space, which offers better space and time
performance for long-lived nodes. The mark-sweep space is always
a mature space, i.e., it is traced only during full-heap GCs. The copy
space may be a mature space or nursery space, i.e., traced during
nursery GCs.

5

We have found that if the copy node space is a nursery space,
then our implementation adds high overhead due to generational
write barriers, which track new pointers from mature to nursery
objects in order to support high-performance generational GC [8].
For our leak and race detectors, any assignment of a CCU node
into an object header requires a generational write barrier, and this
barrier needs to record the pointer in a remembered set if the node
is old [8]. Thus, all of our experiments use a mature copy space that
is collected only during full-heap GCs.

Implementing the child map. Unique nodes have an extra field
childMap that maps callee sites to child nodes. In our implementa-
tion, the child map is a hash-based map that uses an array of “buck-
ets,” where each bucket is simply a linked lists of nodes. To con-
struct a lightweight linked list, each unique node has an extra field
next that points to the next node in the list.

Our implementation piggybacks on parallel GC to perform
merging when nodes are copied from the copy node space to the
mark-sweep node space. Searching for a child node does not re-
quire synchronization (except for a load fence to ensure a happens-
before edge from insertions). However, if a node is not found, it
must be inserted in the appropriate bucket’s list, which requires
synchronization to ensure atomicity with respect to another thread
adding the same or a different node to the same bucket. The im-
plementation first uses atomic operations to “lock” the bucket to
ensure exclusive access. Then it searches the bucket’s list again to
make sure the node is not already in the list. Finally it inserts the
node and unlocks the bucket.

Child nodes should be allowed to die if they are not referenced
transitively by client metadata via node parent pointers. Otherwise
all merged nodes will be transitively reachable from child maps, so
they will not be collected by GC. The implementation treats each
child map reference like a weak reference [26] by tracing the map
only at the end of regular tracing, and removing any nodes from the
map that have not been marked live.

Implementing the CCT. For comparison purposes, we have also
implemented support for CCT-based analysis. In the CCT, every
node has a child map. To keep the comparison as close as possible,
our CCT nodes are also “raw” nodes and represent their child maps
in the same way as CCU nodes.

4.3 Integration with Client Analyses
Memory leak detector. State-of-the-art leak detectors track the
sites that allocated and/or last accessed each memory location, in
order to report the sites associated with leaked memory to program-
mers [13, 16, 52]. We have implemented a leak detector that detects
leaks by inferring that stale (not recently used) objects are likely
leaks [13, 16, 42, 52].

We have implemented a staleness-based leak detector that tracks
staleness by instrumenting each load of an object reference to mark
the referenced object as not stale [15]; it also updates the last-use
site at each instrumentation site, making it a challenging CCU-
based client. The leak detector supports both context-insensitive
and context-sensitive modes. The context-insensitive detector adds
a word to each object header to store the last-use client site. The
context-sensitive detector supports two options: (1) one word for
the client site and another word to point to a CCU node representing
the caller context, or (2) one header word that points to a CCU node
representing the entire context, i.e., including the client site.

Data race detector. Happens-before race detectors detect data
races by identifying two conflicting accesses that are not ordered
by synchronization [12, 17, 22, 36, 41, 49, 53]. A race detector typ-
ically tracks the sites that last read and wrote each field or array
element. When the detector detects a data race, it reports both the

the prior access(es) stored for the racy variable, and the current pro-
gram location. To report the calling context of the current program
location, the runtime system simply walks the call stack. Reporting
the calling context of the prior access(es) requires recording the
context of each access.

We have integrated CCU with Pacer, a sampling-based happens-
before race detector [12] implemented in Jikes RVM and publicly
available on the Jikes RVM Research Archive. Pacer maintains per-
field metadata in each object’s header. This metadata already stores
the (context-insensitive) site that last wrote and site(s) that last read
each field. These are the client sites. In addition, we modify the im-
plementation to store the CCU node representing the caller context
of each client site. Given the client site and its caller context, Pacer
can report the full calling context.

At a 100% sampling rate, Pacer is functionally equivalent to
FastTrack [22]. We primarily evaluate FastTrack (Pacer at 100%),
which is a challenging client because it instruments essentially
every read and write. Pacer and FastTrack are able to skip race
detection analysis for accesses that occur within the same epoch
(synchronization-free region) as the prior access, and we do not
record the CCU node upon such “same epoch” cases. In addition to
evaluating CCU-enabled FastTrack, we evaluate Pacer at a variety
of sampling rates to evaluate CCU’s ability to scale with the client
analysis.

5. Evaluation
This section evaluates our CCU-based approach by evaluating the
time and space it adds to two client analyses, data race and memory
leak detection. While our primary goal is to show that a CCU-based
approach is viable, we also compare to a CCT-based approach. The
section concludes by qualitatively evaluating leaky calling contexts
reported by our leak detector for two real memory leaks.

5.1 Methodology
Benchmarks. In our experiments, Jikes RVM executes the Da-
Capo Benchmarks [7] (version 2006-10-MR2) and a fixed-workload
version of SPEC JBB2000 called pseudojbb [47]. We evaluate leak
detection on all benchmarks, and race detection on the parallel
benchmarks, except for multithreaded lusearch since we could not
run it correctly with our changes, and single-threaded bloat be-
cause it has erratic performance even without our changes. For race
detection, we execute the medium workload size of the DaCapo
benchmarks because the large size runs out of memory, and we ex-
ecute pseudojbb with four warehouses because eight warehouses
runs out of memory.

Experimental setup. We build a high-performance configuration
of Jikes RVM (FastAdaptive) that optimizes the VM and adap-
tively optimizes the application as it runs. We use Jikes RVM’s
high-performance generational Immix collector [10] (GenImmix).
To account for run-to-run variability due to dynamic optimization
guided by timer-based sampling, we execute 15 trials for each time
measurement and take the median, and our bar graphs show 95%
confidence intervals centered at the mean. We let the VM choose
its own heap size adaptively because the client analyses, especially
race detection, add high space overhead. We evaluate space over-
head by measuring it explicitly in just one trial, since averaging
plots of space versus time is not straightforward and may unrealis-
tically hide peaks in space overhead.

Platform. Our experiments execute on a 4-core Intel i5 3.2-GHz
system with 4 GB memory running Linux 2.6.32.

6

CCU w/merging: CCT
None In-place Copy

antlr 2,952 3,000 2,868 51,712
chart 46,000 41,112 2,536 4,672
eclipse 29,032 31,352 3,708 75,616
fop 4,456 4,564 2,696 4,192
hsqldb 147,140 98,108 3,684 59,456
jython 3,632 3,656 3,076 62,592
luindex 2,828 3,004 2,632 7,520
pmd 55,964 32,516 3,460 186,912
xalan 5,076 42,156 5,376 360,576
pseudojbb 71,216 57,776 3,048 4,384

Table 1: The memory consumed by CCU and CCT nodes, in KB,
for context-sensitive leak detection with client sites stored in nodes.
The CCU uses no merging or one of two merging algorithms.

5.2 Performance
This section evaluates the time and space overhead of CCU-based
analyses. Because our implementation constructs CCU nodes lazily
(Section 3.2), it adds no overhead without a client analysis.

5.2.1 Memory Leak Detection
This section evaluates the performance of our memory leak detec-
tor that tracks the last-use (i.e., last read) sites of all objects (Sec-
tion 4.3).

Time overhead. Figures 6 and 7 show the normalized application
time of various leak detection configurations. All bars are normal-
ized to Base, which is unmodified Jikes RVM. The Leak detection
only configuration records context-insensitive sites and adds about
11% on average to record last-use sites and track object staleness.
The three Leak det + CCU configurations construct CCU nodes to
represent the context of each last-use site and either do not merge
redundant nodes, or use copy or in-place merging.

We experiment with two CCU configurations (Section 4.3). The
first stores a pointer to a CCU node in each object’s header that
represents the last-use site’s calling context, including a node for
its client site (Figure 6). In this configuration, CCU-based context
sensitivity adds 93–96% overhead, depending on the merging con-
figuration. CCT-based context sensitivity adds substantially more
overhead (196% on average) because the cost of looking up or con-
structing each node is substantially higher for the CCT than for the
CCU. The second configuration stores a node representing the last-
use site’s calling context, and it uses a second header word for an
identifier representing the client site (Figure 7). In this configura-
tion, CCU-based context sensitivity adds only 33–35% overhead on
average to leak detection. Using the CCT instead of the CCU adds
on average 57% overhead.

In both configurations, across all benchmarks, the CCU (with
merging) performs about the same as, or significantly better than,
the CCT. The overhead of the first configuration (node for each
client site) may be too high for some clients, in which case they
can use the second configuration to avoid allocating a new node for
each client site.

In both configurations, the CCU adds high overhead to hsqldb,
with much of it due to GC (sub-bars are GC time). Unsurprisingly,
this program benefits the most from merging of redundant nodes.
Next we show that hsqldb allocates significantly more CCU nodes
than the other programs.

Space overhead. Table 1 shows the maximum live memory added
for CCU and CCT nodes by measuring the total memory consumed
by the node space after each full-heap GC and reporting the maxi-
mum across each execution. For these results, client sites are stored

xalan
eclipse

hsqldb

pseudojbb

geomean

0

1

2

3

4

5

6

7

8

9

10

N
o
r
m

a
li

z
e
d

 e
x
e
c
u

ti
o
n

 t
im

e

Base

Race detection only

Race det + CCU w/o merging

Race det + CCU + Copy merging

Race det + CCU + In-place merging

Race det + CCT

Figure 8: Time overhead of race detection with and without CCU-
and CCT-based context sensitivity. Sub-bars bars are GC time. The
(tiny) ranges are 95% confidence intervals.

in nodes (i.e., same as Figure 6). The results indicate that merg-
ing redundant nodes is sometimes critical: In-place merging often
improves memory overhead significantly over None (no merging),
and Copy merging improves memory overhead further. We have de-
termined that both merging algorithms perform similarly in terms
of the number of unique nodes, but In-place merging has higher
space overhead because it fragments the heap significantly. In con-
trast, the CCT avoids redundant nodes but cannot collect irrele-
vant nodes, so its memory overhead is often very high, and always
higher than for the merged CCU.

5.2.2 Data Race Detection
This section evaluates the overhead of the context-sensitive race
detector that records context-sensitive sites at reads and writes
(Section 4.3).

Time overhead. Figure 8 shows the performance overhead that
race detection adds to programs. Context-insensitive race detection
slows programs by about 7X on average, which matches prior re-
sults for the FastTrack algorithm and Pacer implementation [12,
22]. CCU-based context sensitivity with merging adds 57% aver-
age overhead (relative to original program execution time) over
context-insensitive race detection. CCT-based context sensitivity
adds 64% average overhead over context-insensitive race detec-
tion. In theory, the CCU should not add as much overhead to the
race detector as to the leak detector because the race detector skips
analysis (and thus CCU node lookup) at reads and writes that fall
within the same synchronization epoch (Section 4.3). However, the
CCU adds more overhead to the race detector (relative to original
program execution time) because the race detector’s heavyweight
analysis happens inside an inserted method call, requiring more
stack-walking to lookup and construct CCU nodes lazily, whereas
the leak detector’s analysis is inlined into the application method.

We also evaluate the overhead of CCU-based race detection at
different sampling rates, in order to detect how well a CCU-based
approach scales with the client analysis. Sampling-based race de-
tection samples a fraction of reads and writes equal to the sampling
rate, so a lower sampling rate should yield a less-demanding client
analysis. Figure 9 shows how the amount of additional overhead
added by the CCU-based approach scales approximately linearly
with the sampling rate. This behavior is what we expect since our
implementation constructs CCU nodes lazily at client sites (Sec-
tion 3.2). We also measured (but do not show) time overhead across
sampling rates for the CCT, which also scales well because it uses
lazy construction. In contrast, we expect space to scale better with
the sampling rate for CCU than for the CCT, but we have not mea-
sured space overhead across different sampling rates.

7

antlr
chart

eclipse
fop hsqldb

jython
luindex

pmd
xalan

pseudojbb

geomean

0

1

2

3

N
or

m
al

iz
ed

 e
xe

cu
ti

on
 t

im
e

Base
Leak detection only
Leak det + CCU w/o merging
Leak det + CCU + Copy merging
Leak det + CCU + In-place merging
Leak det + CCT

3.1 3.8 4.8 5.3 3.0 4.5 3.0

Figure 6: Normalized application time for leak detection with client site node, with and without CCU-based context sensitivity, and compared
with CCT-based context sensitivity. Bars 3–5 in each group use the CCU without merging and with two merging algorithms. Sub-bars are
GC time. The intervals are 95% confidence intervals.

antlr
chart

eclipse

fop
hsqldb

jython

luindex

pmd
xalan

pseudojbb

geomean

0

1

2

3

N
o

r
m

a
li

z
e
d

 e
x

e
c
u

ti
o

n
 t

im
e

Base

Leak detection only

Leak det + CCU w/o merging

Leak det + CCU + Copy merging

Leak det + CCU + In-place merging

Leak det + CCT

Figure 7: Normalized application time for leak detection with site in header, with and without CCU-based context sensitivity, and compared
with CCT-based context sensitivity. Bars 3–5 in each group use the CCU without merging and with two merging algorithms. Sub-bars are
GC time. The intervals are 95% confidence intervals.

0.0 0.2 0.4 0.6 0.8 1.0

Specified sampling rate

0

2

4

6

8

N
o
rm

.
ex

ec
.
ti

m
e

Race detection only

Race det + CCU + Copy merging

(a) eclipse

0.0 0.2 0.4 0.6 0.8 1.0

Specified sampling rate

0

2

4

6

N
o

rm
.

ex
ec

.
ti

m
e

(b) hsqldb

0.0 0.2 0.4 0.6 0.8 1.0

Specified sampling rate

0

2

4

6

N
o

rm
.

ex
ec

.
ti

m
e

(c) xalan

0.0 0.2 0.4 0.6 0.8 1.0

Specified sampling rate

0

2

4

6

N
o

rm
.

ex
ec

.
ti

m
e

(d) pseudojbb

Figure 9: Normalized execution time of race detection, with and without CCU-based context sensitivity, at various sampling rates (0%, 5%,
10%, 25%, 50%, 100%).

0.2 0.4 0.6 0.8

Time (fraction of run)

0

10000

20000

30000

C
C

U
/C

C
T

 m
em

o
ry

 (
K

B
)

Race det + CCT

Race det + CCU w/o merging

Race det + CCU + Copy merging

(a) eclipse

0.2 0.4 0.6 0.8

Time (fraction of run)

0

10000

20000

30000

40000

50000

(b) hsqldb

0.2 0.4 0.6 0.8

Time (fraction of run)

0

10000

20000

30000

40000

50000

(c) xalan

0.2 0.4 0.6 0.8

Time (fraction of run)

0

10000

20000

30000

40000

50000

(d) pseudojbb

Figure 10: Space used by CCU and CCT nodes for context-sensitive race detection, with and without CCU node merging.

8

Distinct Dynamic
CI CS

eclipse 41 59 667,230
hsqldb 9 22 336
xalan 11 14 138
pseudojbb 21 21 920,462

Table 2: Distinct, prior context-insensitive (CI) accesses and
context-sensitive (CS) accesses. The last column is dynamic data
races reported.

6-10 16-20 26-30 36-40 46-50
1-5 11-15 21-25 31-35 41-45 51-55

eclipse 17 4 2 9 2 3 5 7 4 3 3
hsqldb 10 4 8 0 0 0 0 0 0 0 0
xalan 4 4 0 0 2 4 0 0 0 0 0
pseudojbb 20 1 0 0 0 0 0 0 0 0 0

Table 3: Histogram showing the depth (in call sites) of context-
sensitive sites reported by the race detector.

Space overhead. Figure 10 shows the memory used by CCU
and CCT nodes across an execution. Time is normalized to the
length of each execution. Each point represents the live CCU or
CCT memory at the end of a full-heap GC. Race det + CCU w/o
merging, which constructs CCU nodes for client sites but does not
merge redundant nodes, clearly shows the need for merging. By
merging redundant nodes, the space overhead added by CCU is
reduced substantially. Furthermore, whereas CCU space overhead
grows over time without merging (which is unsurprising since these
programs’ total live memory also grows over time), merging keeps
CCU space overhead fairly constant over time. The CCT sometimes
adds space overhead similar to CCU with merging, and sometimes
adds more space than the CCU without merging. While the CCT
avoids redundant nodes, it cannot collect irrelevant nodes.

Context-sensitive data races. We quantitatively (but not qualita-
tively) evaluate the calling contexts reported by the race detector.
Table 2 shows the number of prior racy accesses reported by the
race detector (reporting a race involves reporting a prior access and
the current access). The first two columns compare the number of
context-insensitive and context-sensitive prior accesses; for three
programs context sensitivity yields more distinct prior accesses.
Dynamic races (last column) varies greatly across the programs.

Table 3 is a histogram showing the depths, in terms of number
of sites, of the distinct context-sensitive prior racy accesses. Many
contexts, especially for eclipse, are dozens of sites long, suggest-
ing the potential for calling contexts to provide significantly more
information to developers than static program locations.

5.3 Qualitative Evaluation of Context-Sensitive Sites
This section evaluates whether context sensitivity provides useful
information to bug reports. We evaluate two real leaks that were
reproduced and evaluated by prior work [13, 33]: one in SPEC
JBB2000 [47] and one in Eclipse.5 Our reported leaky sites do not
exactly match those from the prior staleness-based leak detector
that evaluated the same leaks [13] because our detector updates an
object’s staleness and last-use site when a reference to the object is
loaded [15], instead of when the object itself is modified.

SPEC JBB2000. The SPEC JBB2000 leak occurs because the
program adds but does not correctly remove finished orders from
an order list. Researchers from IBM and Intel discovered the leak

5 http://www.eclipse.org

fix, which involves replacing a call to spec.jbb.District.remove-
OldestOrder() with more complex logic to properly remove fin-
ished orders [13]. Our context-sensitive leak detector reports that
the following context as a last-use site for a growing number of
stale objects:

<4> spec.jbb.infra.Factory.Container.deallocObject():352
<34> spec.jbb.infra.Factory.Factory.deleteEntity():659
<1> spec.jbb.District.removeOldestOrder():285
<1> spec.jbb.DeliveryTransaction.process():201
<1> spec.jbb.DeliveryHandler.handleDelivery():103
<2> spec.jbb.DeliveryTransaction.queue():363
<1> spec.jbb.TransactionManager.go():449
<1> spec.jbb.JBBmain.run():173

The numbers in brackets (e.g., <34>) indicate the number of
static call sites that can potentially call each method (based on
analyzing the source in the Eclipse IDE). This gives a sense of
how “nontrivial” the context is, i.e., how hard it is for developers
to guess the context from a context-insensitive site. In this case,
developers need to find DeliveryTransaction.process():201, which
will likely require a lot of work because Factory.deleteEntity()
has 34 callers. However, in our experiments, the client site actually
consists of the first three call sites due to inlining, from which
it is relatively easy to find the buggy site. As in prior work, our
implementation also reports a few other last-use sites (for both JBB
and Eclipse) for a growing number of stale objects, but these sites
are not directly related to the bug fix, so we do not show their
contexts.

Eclipse. Eclipse bug #115789 leaks memory when a “recursive
difference” is performed between two source trees.6 Repeatedly
comparing the source tree leads to a growing leak. Prior work
shows that the leak occurs in a NavigationHistory component
that enables navigating back to prior editor windows, but does not
properly release old state. Our leak detector reports one last-use
site in NavigationHistory (prior work reports this site and another
in NavigationHistory; we believe the differences are due to the
differing instrumentation strategies described earlier):

[* = org.eclipse]
*.ui.internal.NavigationHistory.createEntry():527
*.ui.internal.NavigationHistory.addEntry():307
*.ui.internal.NavigationHistory.access$9():291
*.ui.internal.NavigationHistory$2.run():160
... 13 call sites ...
*.compare.internal.CompareUIPlugin.compareResultOK():474
*.compare.internal.CompareUIPlugin.openCompareEditor():427
*.compare.CompareUI.openCompareEditorOnPage():138
*.compare.internal.CompareAction.run():36
*.compare.internal.BaseCompareAction.run():26
leakdiff.Harness$1.run():89
... 23 call sites ...
*.core.launcher.Main.main():948

This calling context illustrates how comparing source trees ulti-
mately leads to stale last-use sites in NavigationHistory. The elided
call sites are other Eclipse internal methods. Developers might find
the exact connection between CompareUI.openCompareEditor-
OnPage() and NavigationHistory useful for understanding the
leak. Admittedly, the leak fix is actually in NavigationHistory, so
the context-insensitive site is useful by itself. In any case, this ex-
ample shows that context-sensitive sites can provide significantly
more information to developers for highly object-oriented pro-
grams.

6 https://bugs.eclipse.org/bugs/show_bug.cgi?id=115789

9

6. Related Work
Section 2.2 discussed the most closely related work: the calling
context tree (CCT). This section discusses other alternatives for
providing dynamic context sensitivity, plus other related topics.

6.1 Walking the Stack
Client analyses can simply walk the entire call stack at each client
site, which is expensive unless client sites execute infrequently [14,
24, 39, 44, 50, 55]. Stack-walking approaches typically store nodes
in a CCT for space efficiency. Prior work walks the stack until
it encounters a stack frame that has already looked up its CCT
node [50, 55], which is equivalent to lazy construction of the CCT
(Section 3.2).

6.2 Reconstructing Calling Context
Recent work introduces several approaches that represent calling
contexts as integer values and reconstruct calling contexts from
these values on demand. Ultimately, mapping contexts to values is
challenging because the number of statically possible calling con-
texts easily exceeds 264 for real, complex programs (not counting
recursion, which leads to infinitely many statically possible con-
texts). Thus, none of these approaches scales well to complex pro-
grams, i.e., programs with many distinct calling contexts.

Perfect accuracy. Sumner et al. introduce precise calling context
encoding (PCCE), which represents each calling context with a
unique integer value [48]. Instrumentation at each call site incre-
mentally computes the current calling context’s value. PCCE com-
putes these increments at compile time by applying Ball-Larus in-
traprocedural path profiling algorithm [6] to the call graph. This
algorithm also enables efficient reconstruction of a calling context
from its value. PCCE does not scale well with many distinct call-
ing contexts: if the number of statically possible calling contexts
exceeds the integer size (232 or 264), PCCE uses multiple integers
to represent each calling context, which slows execution and adds
space overhead whenever the client analysis stores a calling con-
text; CCU nodes amortize this cost by sharing parent nodes. Fur-
thermore, PCCE does not handle dynamic class loading and virtual
methods well: computing each context’s value requires knowing
the statically possible call targets in advance, and virtual method
dispatch complicates adding instrumentation at these calls. While
PCCE reports low time overhead, it cannot guarantee it has low
time overhead for Java programs, which have higher call density
than C/C++ programs. Wiedermann also applies Ball-Larus path
profiling to the call graph but does not handle recursion nor the
number of paths exceeding the integer size [51].

Imperfect accuracy. Unlike PCCE, Breadcrumbs handles dy-
namic class loading and virtual method dispatch, and it maps each
calling context to a single integer word [11]. Breadcrumbs com-
putes a probabilistically unique value for each calling context, by
computing an incremental hash function at each call site [14]. Be-
cause the number of statically possible contexts greatly exceeds
both 264 and the number of dynamically executed contexts, Bread-
crumbs also records some dynamic information—the context val-
ues observed at cold call sites—in order to help guide reconstruc-
tion of contexts. Nonetheless, reconstruction of contexts is com-
plex, may take seconds, and may fail to reconstruct the correct con-
text. Breadcrumbs thus provides a time–accuracy tradeoff, since
collecting more dynamic information provides better reconstruc-
tion accuracy.

Mytkowicz et al. and Inoue and Nakatani propose to reconstruct
contexts from existing runtime values such as program counters and
stack depth [31, 37]. These approaches add virtually no overhead,
but the values they use have significantly less entropy than Bread-
crumbs’ probabilistically unique values. To reduce value conflicts

between stack depths, Mytkowicz et al. pad the call stack based on
profiling, which helps somewhat but not enough to scale to com-
plex programs with many distinct calling contexts.

6.3 Sampling and Mining
Prior work uses sampling and data mining to trade accuracy for
lower overhead when collecting calling contexts [19, 30, 55]. This
tradeoff is worthwhile for determining hot program behavior for
performance optimization. However, cold program behavior is crit-
ical for bug detection [16, 36].

6.4 Uptrees
In tree-based data structures, each node typically points “down” to
its children. In contrast, in an uptree each node points “up” to its
parent. Uptrees are useful for implementing efficient disjoint-set
data structures, where the uptrees enable near-constant amortized-
time find and union operations [18]. The CCU’s uptree property en-
ables efficient construction and garbage collection of CCU nodes.

7. Conclusion
Growing complexity and concurrency mean that static program lo-
cation is not enough to help programmers understand dynamic pro-
gram behavior. This paper presents a new approach for providing
context sensitivity to dynamic analyses, especially bug detectors
that report bug causes. Calling context uptree (CCU) nodes can-
not be reused but are fast to build—and tracing garbage collec-
tion and a lazy merging algorithm keep space overhead low. By
using the CCU to add context sensitivity to leak and race detectors,
we demonstrate the potential for the CCU to add low-overhead,
always-available context sensitivity to dynamic bug detection anal-
yses.

Acknowledgments
Thanks to Daniel Frampton, Sam Guyer, Kathryn McKinley, Feng
Qin, and Nasko Rountev for valuable discussions, ideas, and sup-
port. Thanks to Todd Mytkowicz and Nasko Rountev for helpful
feedback on the text.

References
[1] H. Agrawal and J. R. Horgan. Dynamic Program Slicing. In ACM

Conference on Programming Language Design and Implementation,
pages 246–256, 1990.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-
D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. Mergen, T. Ngo, J. R. Russell, V. Sarkar,
M. J. Serrano, J. Shepherd, S. Smith, V. C. Sreedhar, H. Srinivasan,
and J. Whaley. The Jalapeño Virtual Machine. IBM Systems Journal,
39(1):211–238, 2000.

[3] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley,
M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar. The Jikes Research
Virtual Machine Project: Building an Open-Source Research Commu-
nity. IBM Systems Journal, 44:399–417, 2005.

[4] G. Ammons, T. Ball, and J. R. Larus. Exploiting Hardware Perfor-
mance Counters with Flow and Context Sensitive Profiling. In ACM
Conference on Programming Language Design and Implementation,
pages 85–96, 1997.

[5] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive
Optimization in the Jalapeño JVM. In ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages
47–65, 2000.

[6] T. Ball and J. R. Larus. Efficient Path Profiling. In IEEE/ACM
International Symposium on Microarchitecture, pages 46–57, 1996.

10

[7] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wieder-
mann. The DaCapo Benchmarks: Java Benchmarking Development
and Analysis. In ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 169–190, 2006.

[8] S. M. Blackburn and A. L. Hosking. Barriers: Friend or Foe? In ACM
International Symposium on Memory Management, pages 143–151,
2004.

[9] S. M. Blackburn and K. S. McKinley. Ulterior Reference Counting:
Fast Garbage Collection Without a Long Wait. In ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pages 344–358, 2003.

[10] S. M. Blackburn and K. S. McKinley. Immix: A Mark-Region
Garbage Collector with Space Efficiency, Fast Collection, and Mu-
tator Performance. In ACM Conference on Programming Language
Design and Implementation, pages 22–32, 2008.

[11] M. D. Bond, G. Z. Baker, and S. Z. Guyer. Breadcrumbs: Efficient
Context Sensitivity for Dynamic Bug Detection Analyses. In ACM
Conference on Programming Language Design and Implementation,
pages 13–24, 2010.

[12] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: Proportional
Detection of Data Races. In ACM Conference on Programming Lan-
guage Design and Implementation, pages 255–268, 2010.

[13] M. D. Bond and K. S. McKinley. Bell: Bit-Encoding Online Memory
Leak Detection. In ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
61–72, 2006.

[14] M. D. Bond and K. S. McKinley. Probabilistic Calling Context. In
ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 97–112, 2007.

[15] M. D. Bond and K. S. McKinley. Leak Pruning. In ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 277–288, 2009.

[16] T. M. Chilimbi and M. Hauswirth. Low-Overhead Memory Leak
Detection Using Adaptive Statistical Profiling. In ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 156–164, 2004.

[17] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Srid-
haran. Efficient and Precise Datarace Detection for Multithreaded
Object-Oriented Programs. In ACM Conference on Programming Lan-
guage Design and Implementation, pages 258–269, 2002.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduc-
tion to Algorithms, chapter 11. The MIT Press, McGraw-Hill Book
Company, 2nd edition, 2001.

[19] D. C. D’Elia, C. Demetrescu, and I. Finocchi. Mining Hot Calling
Contexts in Small Space. In ACM Conference on Programming Lan-
guage Design and Implementation, pages 516–527, 2011.

[20] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and
Transaction-Aware Java Runtime. In ACM Conference on Program-
ming Language Design and Implementation, pages 245–255, 2007.

[21] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon System for Dynamic Detection of
Likely Invariants. Science of Computer Programming, 69(1–3):35–45,
2007.

[22] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise Dy-
namic Race Detection. In ACM Conference on Programming Lan-
guage Design and Implementation, pages 121–133, 2009.

[23] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A Sound and Com-
plete Dynamic Atomicity Checker for Multithreaded Programs. In
ACM Conference on Programming Language Design and Implemen-
tation, pages 293–303, 2008.

[24] N. Froyd, J. Mellor-Crummey, and R. Fowler. Low-Overhead Call
Path Profiling of Unmodified, Optimized Code. In ACM International
Conference on Supercomputing, pages 81–90, 2005.

[25] R. Garner, S. M. Blackburn, and D. Frampton. Effective Prefetch for
Mark-Sweep Garbage Collection. In ACM International Symposium
on Memory Management, pages 43–54, 2007.

[26] B. Goetz. Plugging memory leaks with weak references,
2005. http://www-128.ibm.com/developerworks/java/
library/j-jtp11225/.

[27] J. Ha, C. J. Rossbach, J. V. Davis, I. Roy, H. E. Ramadan, D. E.
Porter, D. L. Chen, and E. Witchel. Improved Error Reporting for
Software that Uses Black Box Components. In ACM Conference on
Programming Language Design and Implementation, pages 101–111,
2007.

[28] S. Hangal and M. S. Lam. Tracking Down Software Bugs Using
Automatic Anomaly Detection. In ACM International Conference on
Software Engineering, pages 291–301, 2002.

[29] B. Hayes. Using Key Object Opportunism to Collect Old Objects.
In ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 33–46, 1991.

[30] K. Hazelwood and D. Grove. Adaptive Online Context-Sensitive
Inlining. In IEEE/ACM International Symposium on Code Generation
and Optimization, pages 253–264, 2003.

[31] H. Inoue and T. Nakatani. How a Java VM can get more from
a Hardware Performance Monitor. In ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages
137–154, 2009.

[32] R. Jones and R. Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley & Sons, Inc., New York,
NY, USA, 1996.

[33] M. Jump and K. S. McKinley. Cork: Dynamic Memory Leak Detec-
tion for Garbage-Collected Languages. In ACM Symposium on Prin-
ciples of Programming Languages, pages 31–38, 2007.

[34] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scal-
able Statistical Bug Isolation. In ACM Conference on Programming
Language Design and Implementation, pages 15–26, 2005.

[35] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity
Violations via Access-Interleaving Invariants. In ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 37–48, 2006.

[36] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: Effective
Sampling for Lightweight Data-Race Detection. In ACM Conference
on Programming Language Design and Implementation, pages 134–
143, 2009.

[37] T. Mytkowicz, D. Coughlin, and A. Diwan. Inferred Call Path Profil-
ing. In ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 175–190, 2009.

[38] N. Nethercote and J. Seward. How to Shadow Every Byte of Memory
Used by a Program. In ACM/USENIX International Conference on
Virtual Execution Environments, pages 65–74, 2007.

[39] N. Nethercote and J. Seward. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In ACM Conference on
Programming Language Design and Implementation, pages 89–100,
2007.

[40] G. Novark, E. D. Berger, and B. G. Zorn. Efficiently and Precisely
Locating Memory Leaks and Bloat. In ACM Conference on Program-
ming Language Design and Implementation, pages 397–407, 2009.

[41] E. Pozniansky and A. Schuster. MultiRace: Efficient On-the-Fly Data
Race Detection in Multithreaded C++ Programs. Concurrency and
Computation: Practice & Experience, 19(3):327–340, 2007.

[42] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-Memory for
Detecting Memory Leaks and Memory Corruption During Production
Runs. In International Symposium on High-Performance Computer
Architecture, pages 291–302, 2005.

[43] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A Dynamic Data Race Detector for Multi-Threaded Programs.
In ACM Symposium on Operating Systems Principles, pages 27–37,
1997.

11

[44] J. Seward and N. Nethercote. Using Valgrind to Detect Undefined
Value Errors with Bit-Precision. In USENIX Annual Technical Con-
ference, pages 17–30, 2005.

[45] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick Your Contexts
Well: Understanding Object-Sensitivity. In ACM Symposium on Prin-
ciples of Programming Languages, pages 17–30, 2011.

[46] J. M. Spivey. Fast, Accurate Call Graph Profiling. Softw. Pract. Exper.,
34(3):249–264, 2004.

[47] Standard Performance Evaluation Corporation. SPECjbb2000 Docu-
mentation, release 1.01 edition, 2001.

[48] W. N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang. Precise
Calling Context Encoding. In ACM International Conference on
Software Engineering, pages 525–534, 2010.

[49] C. von Praun and T. R. Gross. Object Race Detection. In ACM
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 70–82, 2001.

[50] J. Whaley. A Portable Sampling-Based Profiler for Java Virtual Ma-
chines. In ACM Conference on Java Grande, pages 78–87, 2000.

[51] B. Wiedermann. Know your Place: Selectively Executing Statements
Based on Context. Technical Report TR-07-38, University of Texas at
Austin, 2007.

[52] G. Xu and A. Rountev. Precise Memory Leak Detection for Java
Software Using Container Profiling. In ACM International Conference
on Software Engineering, pages 151–160, 2008.

[53] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient Detection of
Data Race Conditions via Adaptive Tracking. In ACM Symposium on
Operating Systems Principles, pages 221–234, 2005.

[54] X. Zhang, N. Gupta, and R. Gupta. Pruning Dynamic Slices with
Confidence. In ACM Conference on Programming Language Design
and Implementation, pages 169–180, 2006.

[55] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accurate,
Efficient, and Adaptive Calling Context Profiling. In ACM Conference
on Programming Language Design and Implementation, pages 263–
271, 2006.

12

