
OCTET: Practical Concurrency Control for Dynamic Analyses and Systems

Michael D. Bond∗ Milind Kulkarni+ Meisam Fathi Salmi∗ Minjia Zhang∗

Swarnendu Biswas∗ Jipeng Huang∗ Aritra Sengupta∗
∗ Ohio State University

+ Purdue University
{mikebond,fathi,zhanminj,biswass,huangjip,sengupta}@cse.ohio-state.edu

milind@purdue.edu

Ohio State CSE technical report #OSU-CISRC-7/12-TR13, July 2012

Abstract
Parallel programming is essential for reaping the benefits of par-
allel hardware, but it is notoriously difficult to develop and de-
bug reliable, scalable software systems. One key challenge is that
modern languages and systems provide poor support for ensuring
concurrency correctness properties—such as atomicity, sequential
consistency, and multithreaded determinism—because all existing
approaches are impractical. Dynamic, software-based approaches
slow programs by up to an order of magnitude because capturing
cross-thread dependences (i.e., conflicting accesses) requires syn-
chronization at every access to potentially shared memory.

This paper introduces a new software-based concurrency con-
trol mechanism called OCTET that captures cross-thread depen-
dences soundly but avoids synchronization at non-conflicting ac-
cesses. OCTET tracks the locality state of each potentially shared
object. Non-conflicting accesses conform to the locality state and
require no synchronization, but conflicting accesses require a state
change with heavyweight synchronization. This optimistic tradeoff
performs well for real-world concurrent programs, which by design
execute relatively few conflicting accesses.

We have implemented a prototype of OCTET in a high-perfor-
mance Java virtual machine. Our evaluation demonstrates OCTET’s
potential for capturing cross-thread dependences with overhead low
enough for production systems. OCTET is an appealing and prac-
tical concurrency control mechanism for designing low-overhead,
sound and precise analyses and systems that check and enforce con-
currency correctness properties.

1. Introduction
Software must become more concurrent to reap the benefits of hard-
ware that provides more, instead of faster, cores with successive
generations. However, parallel programming is notoriously diffi-
cult. A key challenge is that programmers must balance two com-
peting concerns: concurrency correctness—atomicity, sequential
consistency (SC), and determinism—and performance—single-
thread overhead and multithreaded scalability.

Languages and systems can help by providing good support for
guaranteeing concurrency correctness through sound enforcement
or sound and precise checking, e.g., enforcing determinism through
record & replay (e.g., DoublePlay [63]) and deterministic execu-
tion (e.g., CoreDet [7]); enforcing atomicity (transactional mem-
ory [26]); checking atomicity (e.g., Velodrome [24]); and checking
SC and data race freedom (e.g., DRFx [45]).

This paper calls these approaches dynamic analyses and sys-
tems for concurrency correctness (DASCC; singular or plural).
DASCC in production systems can provide concurrency correct-
ness by enforcing properties, which improves programmability, re-

liability, and scalability by eliminating whole classes of errors; or
by checking properties, which enables terminating executions that
violate correctness, as well as detecting and diagnosing hard-to-
reproduce errors that occur rarely and only in production.

Despite these benefits, modern languages and systems do not
provide adequate support for concurrency correctness because all
existing approaches are impractical: they either require custom
hardware support, slow programs by about an order of magnitude,
or have other serious limitations. We focus on the high overhead of
software-based solutions. Across a variety of DASCC, the key cost
is capturing cross-thread dependences (i.e., detecting conflicting
accesses to shared memory). Software-based DASCC must con-
servatively assume that unless it can be proven otherwise, any ac-
cess to potentially shared memory is involved in a data race. Thus,
software-based DASCC require synchronized instrumentation in
order to capture dependences soundly, often slowing programs by
up to an order of magnitude.

Contributions
In this paper, we present OCTET, a novel dynamic concurrency
control mechanism that captures cross-thread dependences by in-
troducing instrumentation at all potentially shared reads and writes.
However, unlike existing schemes, OCTET exploits thread locality:
the notion that most accesses to memory—even shared memory—
do not involve cross-thread dependences. OCTET’s design allows it
to detect efficiently (without synchronization) at run time when an
access is not involved in a cross-thread dependence. As a result,
expensive synchronization is only necessary when dependences
might occur. This approach leads to overhead primarily determined
by the number of dependences, rather than the number of accesses.
Section 3 describes the design of OCTET, while Section 4 proves
the soundness and liveness of the scheme.

We have implemented OCTET in a high-performance JVM
(Section 5). To verify that OCTET is a suitable platform for
DASCC, Section 6 evaluates the performance and behavior of our
OCTET implementation on five large, multithreaded Java bench-
mark applications. We present statistics that confirm our hypothe-
ses about the typical behavior of multithreaded programs, justify-
ing the design principles of OCTET, and we demonstrate that our
implementation of OCTET introduces relatively low overhead—
significantly better than the overheads of prior mechanisms, and
potentially low enough for production systems.

Because a variety of DASCC rely on taking action upon the
detection of cross-thread dependences, OCTET can serve as a foun-
dation for designing new, efficient DASCC. While this paper does
not introduce new DASCC based on OCTET, Section 7 discusses
potential opportunities and challenges for implementing efficient
DASCC on top of OCTET.

1

2. Background and Motivation
Language and system support for concurrency correctness offers
significant reliability, scalability, and productivity benefits. Re-
searchers have proposed many approaches that leverage static anal-
ysis, sampling, custom hardware, and language support. Unfortu-
nately, these techniques are unpractical for contemporary systems
for a variety of reasons. Among others, sufficiently precise static
analyses do not scale to large-scale systems; sampling approaches
can miss concurrency bugs; hardware support does not exist in cur-
rent architectures; and language-based approaches do not suffice
for existing code bases. Section 8.2 discusses these approaches in
more detail.

As a result of these drawbacks, there has been substantial in-
terest in dynamic, sound,1 software-only approaches guaranteeing
concurrency correctness. Section 2.1 covers dynamic analyses and
systems for concurrency correctness (DASCC) and explains why
software-based DASCC suffer from impractically high overhead.
Section 2.2 illuminates the key issue: the high overhead of captur-
ing cross-thread dependences.

2.1 Dynamic Analyses and Systems for Concurrency
Correctness (DASCC)

This section motivates and describes DASCC that guarantee con-
currency correctness of three key properties—determinism, se-
quential consistency, and atomicity—by either (1) enforcing them
soundly or (2) checking them soundly and precisely. More gener-
ally, researchers have recently stressed the importance of DASCC
for providing programmability and reliability guarantees and sim-
plifying overly-complex semantics [1, 15].

Multithreaded record & replay. Record & replay of multi-
threaded programs provides debugging and systems benefits. Of-
fline replay allows programmers to reproduce production failures
that occur rarely and only in production environments due to multi-
threaded nondeterminism. Online replay allows multiple machines
to execute the same interleavings at the same time, enabling sys-
tems benefits such as replication-based fault tolerance.

Record & replay for uniprocessors is relatively straightforward:
it is sufficient to record context switches and nondeterministic sys-
tem events such as I/O and reading the system clock. Record &
replay on multiprocessors is harder due to the frequency of poten-
tially racy shared memory accesses, which require synchronized
instrumentation to capture soundly [35]. Chimera rules out non-
racy accesses using whole-program static analysis, which reports
many false positives [36]. To achieve low overhead, Chimera relies
on profiling runs to identify mostly non-overlapping accesses and
expand synchronization regions.

Most high-performance multithreaded record & replay ap-
proaches sidestep the problem of capturing cross-thread depen-
dences explicitly. Several support only online or offline replay but
not both [37, 54, 68]. DoublePlay supports both online and offline
replay but requires twice as many cores as the original program to
provide low overhead, and it relies on data races mostly not causing
nondeterminism, to avoid frequent rollbacks [63].

Deterministic execution. An alternative to record & replay is
executing multithreaded programs deterministically [7, 18, 19, 40,
50]. As with record & replay, prior approaches avoid capturing
cross-thread dependences explicitly in software because of the high
cost. Existing approaches all have serious limitations: they either do
not handle racy programs [50], add high overhead [7, 18], require
custom hardware [19], or provide per-thread address spaces and

1 Following prior work, a dynamic analysis or system is sound if it guaran-
tees no false negatives for the current execution.

merge changes at synchronization points, which may not scale well
to programs with fine-grained synchronization [40].

Guaranteeing sequential consistency. Sequential consistency
(SC) is a strong memory model that is easy for programmers to
reason about. An execution is SC if it is equivalent to some execu-
tion in which all operations are totally ordered and each thread’s
operations appear in program order [34]. A data race occurs if
two conflicting accesses (at least one write) are not ordered by the
happens-before relationship [33], i.e., they are not ordered by syn-
chronization. Language memory models typically guarantee SC for
data race–free (DRF) executions [1, 43],

Sound and precise checking of SC or DRF is expensive, even
with recent innovations for happens-before race detectors [23, 25].
An attractive alternative to checking SC or DRF is the following
relaxed constraints: DRF executions must report no violation, SC-
violating executions must report a violation, and SC executions that
have a data race may or may not report a violation [25]. Recent
work applies this insight by checking for conflicts between over-
lapping, synchronization-free regions [42, 45, 61], but it relies on
custom hardware support to detect conflicting accesses efficiently.

Checking atomicity. An operation is atomic if it appears to hap-
pen all at once or not at all. Dynamic analysis can check that ex-
isting lock-based programs conform to an atomicity specification
[22, 24, 67]. Notably, Velodrome soundly and precisely checks
conflict serializability (CS), a sufficient condition for atomicity,
by constructing a region dependence graph that requires capturing
cross-thread dependences and searching for cycles [24]. However,
Velodrome cannot be used to check for atomicity violations in pro-
duction software because it slows programs by about an order of
magnitude.

Enforcing atomicity. Transactional memory (TM) systems en-
force programmer-specified atomicity annotations by speculatively
executing atomic regions as transactions, which are rolled back if a
region conflict occurs [26]. Custom hardware-based approaches of-
fer low overhead [46], but any real hardware support will likely be
very limited [6],2 making efficient software TM (STM) an impor-
tant long-term goal. Existing STMs suffer from two major, related
problems—poor performance and weak semantics—that have led
researchers to question STM’s real-world potential [14, 70]. Exist-
ing STM systems slow transactions significantly in order to detect
conflicting accesses soundly. Furthermore, these systems typically
provide only weak atomicity semantics because strong atomicity
(detecting conflicts between transactions and non-transactional in-
structions) slows all program code substantially in order to detect
conflicts between transactional and non-transactional code, not just
between transactions [60]. Achieving STM with high performance
and strong semantics is a challenge because of the cost of capturing
cross-thread dependences throughout program execution.

2.2 Capturing Cross-Thread Dependences
Despite its benefits, efficient software support for checking and en-
forcing concurrency correctness properties has remained elusive:
existing sofware-based DASCC slow programs significantly, often
by up to an order of magnitude. What makes this diverse collection
of analyses and systems so slow? To capture concurrent behavior
accurately, these DASCC must capture cross-thread dependences:
two accesses executed by different threads that have any kind of
data dependence: a true, anti, or output dependence. Figure 1 shows
a potential cross-thread anti-dependence. Note that since this de-
pendence only arises when obj1 and obj2 reference the same object,

2 http://software.intel.com/en-us/blogs/2012/02/07/
transactional-synchronization-in-haswell/

2

// T1:
... = obj1.f ;

// T2:

obj2. f = ...;

Figure 1. Potential cross-thread dependence.

do {
last = obj.md; // load per−object metadata

} while (last == LOCKED ||
!CAS(&obj.md, last, LOCKED}));

if (last != curr) {
handlePotentialDependence (...) ;
}
obj . f = ...; // program write
memfence;
obj .md = curr; // unlock and update metadata

Figure 2. Barrier that captures cross-thread dependences.

and when the threads interleave in a particular manner, it is hard to
accurately predict this dependence statically (Section 8.2).

Capturing cross-thread dependences typically involves adding
barriers3 that access and update shared metadata at each program
read and write. Because program accesses may not be well syn-
chronized (i.e., a data race), the barriers themselves must use syn-
chronization to avoid data races on the metadata accesses. Figure 2
shows how a barrier enforces atomic metadata accesses. It uses per-
object metadata, obj.md, to track the last thread to access the meta-
data. If the last thread changes, the barrier handles the potential
cross-thread dependence in a DASCC-specific way. It creates an
atomic region by locking the per-object metadata using an atomic
compare-and-swap (CAS) instruction4 while handling the potential
dependence and then performing the program memory access.

We evaluate the overhead of such instrumentation, and find
that adding a barrier to all potentially shared memory accesses
slows programs by 4.0X on average, even without performing any
DASCC-specific operations (i.e., handlePotentialDependence() is
a no-op). Further, using a simpler barrier that performs a single
CAS (but no fence) at each shared access still slows execution by
2.2X slower on average. These overheads are unsurprising because
atomic instructions and memory fences serialize in-flight instruc-
tions, and atomic instructions invalidate cache lines. Section 6.4
describes these experiments in more detail.

We now sketch how two DASCC described in Section 2.1—
record & replay and atomicity checking—rely on capturing cross-
thread dependences.

Record & replay. A recorded execution must capture cross-
thread dependences soundly so that a replayed execution can re-
play them faithfully. A recorded execution can use the barrier in
Figure 2 at all accesses to potentially shared memory to ensure
that the order of all dependent accesses, including racy accesses, is
captured. It can record the dynamic dependences between threads
using a notion of dynamic access location (e.g., static location plus
a dynamic counter) and some kind of clocks such as Lamport or
vector clocks [33]. A replayed execution re-executes these depen-
dences by ensuring that any sink waits for the corresponding source
to execute first.

3 A read (or write) barrier is instrumentation that executes at every read
(write) [9].
4 The atomic instruction CAS(addr, oldVal, newVal) attempts to update addr

from oldVal to newVal, returning true on success.

Checking atomicity. A sound and precise atomicity-checking
analysis such as Velodrome checks conflict serializability (CS) by
constructing the dynamic dependence graph and detecting cycles
in it [24]. Each node in the graph is a dynamic atomic region or a
unary (non-atomic) access. The analysis adds edges between con-
secutive nodes executed by the same thread, and between nodes
that have a cross-thread dependence. A cycle in the graph soundly
and precisely identifies a CS violation. To capture cross-thread
dependences, this analysis adds significant overhead that is diffi-
cult to avoid. While other components add significant overhead,
such as maintaining last-access information and performing cycle
detection, these sources of overhead are amenable to significant op-
timizations that would be more worthwhile if the cost of capturing
cross-thread dependences could be reduced significantly.

3. Capturing Cross-Thread Dependences
Efficiently

This section describes our approach for efficiently and accurately
detecting cross-thread dependences on shared objects: data depen-
dences involving accesses to the same variable by different threads.
In prior work, capturing cross-thread dependences in software has
proven difficult. Because any potentially shared memory might be
involved in a cross-thread dependence, prior approaches have used
synchronization at essentially every read and write (Section 2).

Our approach to detecting cross-thread dependences with low
overhead is based on a key insight: the vast majority of accesses,
even to shared objects, are not involved in a cross-thread depen-
dence. If we can detect efficiently whether an access cannot create
a cross-thread dependence, we can perform synchronization only
when conflicting accesses occur, and dramatically lower the over-
head of detecting cross-thread dependences.

To achieve this goal, we associate a thread-locality state with
each potentially shared object, that describes which accesses will
definitely not cause cross-thread dependences. These accesses pro-
ceed without synchronization, while accesses that imply a potential
cross-thread dependence trigger a coordination protocol (involving
synchronization) to change the object’s state so that the access is
permitted. Hence, our technique’s synchronization costs are pro-
portional to the number of conflicting shared memory accesses in a
program, rather than all accesses or even shared accesses.

We have designed a framework implementing this approach
called OCTET (optimistic cross-thread explicit tracking). OCTET
is “optimistic” because it assumes that most accesses do not cre-
ate dependences and supports them at low overhead, at the cost
of more expensive coordination when accesses conflict. OCTET’s
primary function is to detect potential cross-thread dependences in
parallel execution and ensure that a happens-before relationship ex-
ists between the dependent accesses (even if the original program
performs the accesses racily).

3.1 OCTET States
A thread-locality state for an object tracked by OCTET captures
access permissions for an object: it specifies which accesses can
be made to that object that definitely do not create any new cross-
thread dependences. The possible OCTET states for an object are:
WrExT: Write exclusive for thread T. T may read or write the

object without synchronization. Newly allocated objects start
in the WrExT state, where T is the allocating thread.

RdExT: Read exclusive for thread T. T may read (but not write) the
object without synchronization.

RdShc: Read shared. Any thread T may read the object without
synchronization, subject to an up-to-date thread-local counter:
T.rdShCount ≥ c (described shortly).

3

Fast/slow Transition Old New Synchronization Cross-thread
path type state Access state needed dependence?

Fast Same state
WrExT R or W by T Same

None NoRdExT R by T Same
RdShc R by T if T.rdShCount ≥ c Same

Slow

Upgrading
RdExT W by T WrExT CAS

No
RdExT1 R by T2 RdShgRdShCount Potentially yes

Fence RdShc R by T if T.rdShCount < c (T.rdShCount = c) Memory fence Potentially yes

Conflicting

WrExT1 W by T2 WrExT2

Roundtrip comm. Potentially yes
WrExT1 R by T2 RdExT2

RdExT1 W by T2 WrExT2

RdShc W by T WrExT

Table 1. OCTET state transitions fall into four categories that require different levels of synchronization.

Note the similarity of the thread-locality states to coherence states
in the standard MESI cache-coherence protocol [53] (Section 8.1).
Modified and corresponds to WrExT, Exclusive corresponds to
RdExT, and Shared corresponds to RdShc. Invalid corresponds to
how threads other than T may access WrExT or RdExT objects.

3.2 High-Level Overview of State Transitions
OCTET inserts read and write barriers before every access of a po-
tentially shared object, as shown in Figure 3. When a thread at-
tempts to access an object, OCTET checks the state of that object.
If the state permits the access, it proceeds without synchronization,
and the overhead is merely the cost of the state check (the fast path).
If the access is not permitted, OCTET initiates a coordination pro-
tocol to changes the object’s state so that the access can be permit-
ted (the slow path). Note that the object’s state cannot be changed
without synchronization, as other threads may simultaneously be
trying to access the object. OCTET’s protocols ensure that all other
threads will see the state change before their next attempt to ac-
cess the object. A state change without coordination might result in
some cross-thread dependences being missed. (Imagine a cache co-
herence protocol that allowed a processor to upgrade a cache line
from Shared to Exclusive without waiting for other processors to
invalidate the line in their caches!)

Table 1 gives a high-level overview of OCTET’s behavior when
a thread attempts to perform an access to an object in various states.
As described above, when an object is already in a state that permits
an access, no state change is necessary, while in other situations, an
object’s state needs to be changed. Note that the type of coordina-
tion required to safely perform a state change differs based on the
type of transition needed. Some transitions are conflicting transi-
tions, as they require coordination (in particular, roundtrip commu-
nication) with other threads to resolve, as described in Section 3.3,
while others are upgrading or fence transitions, as they do not re-
quire explicit coordination with other threads, but instead merely
require synchronization (Section 3.4).

OCTET’s coordination protocols ensure that a happens-before
edge is inserted each time an object’s state changes. While a par-
ticular state change may not directly imply a cross-thread depen-
dence, the combined set of happens-before edges inserted by OC-
TET ensures that every cross-thread dependence is ordered by these
happens-before relationships. A proof of OCTET’s soundness is in
Section 4, and Section 7 describes how DASCC can build on OC-
TET’s happens-before edges in order to capture all cross-thread de-
pendences soundly.

3.3 Handling Conflicting Transitions
When an OCTET barrier detects a conflict, the state of the object
must be changed so that the conflicting thread may access it. How-

ever, the object state cannot simply be changed at will. If thread T2
changes the state of an object while another thread, T1, that has ac-
cess to the object is between its state check and its access, then T1
and T2 may perform conflicting accesses without being detected,
even if T2 uses synchronization.

At a high level, a thread—called the requesting thread—that
wants to perform a state change requests access by sending a mes-
sage to the thread—called the responding thread—that currently
has access. (RdSh→WrEx transitions involve multiple responding
threads, but for simplicity we first consider only one responding
thread.) When the responding thread is at a safe point, a point in
the program that is definitely not between an OCTET barrier and its
corresponding access, it responds to the requesting thread. Upon re-
ceiving the response, the requesting thread can change the object’s
state and proceed with its access. This roundtrip communication
between threads results in a happens-before relationship being es-
tablished between the responding thread’s last access to the object
and the requesting thread’s access to the object, capturing the pos-
sible cross-thread dependence.

Safe points. OCTET distinguishes between two types of safe
points: non-blocking and blocking. Non-blocking safe points oc-
cur during normal program execution (e.g., at loop back edges); at
these safe points, the responding thread checks for and responds
to any requests explicitly. Blocking safe points occur when the re-
sponding thread is blocked (e.g., while waiting to acquire a lock,
or during file I/O). In this scenario, the responding thread cannot
execute code, and so instead implicitly responds to any requests
by setting a flag that the requesting thread can inspect. Safe points
(both blocking and non-blocking) must occur frequently enough
to ensure that threads will never find themselves unable to reach a
safe point. Placing non-blocking safe points at loop back edges and
method entries, and treating all blocking operations as blocking
safe points, suffices.

Request queues. Conceptually, every thread maintains a request
queue, which serves as a shared structure for coordinating interac-
tions between threads. The request queue for a (responding) thread
T1 allows other (requesting) threads to signal that they desire ac-
cess to objects “owned” by T1 (i.e., objects in WrExT1, RdExT1,
or RdSh states). The queue is also used by T1 to indicate to any
requesting threads that T1 is at a blocking safe point, implicitly
relinquishing ownership of any requested objects.

The request queue interface provides several methods. The first
four are called by the responding thread T1:

requestsSeen() Returns true if there are any pending requests for
objects owned by T1.

handleRequests() Handles and responds to pending requests.

4

if (obj . state != WrExT) {
/∗ Slow path: change obj. state ∗/
}
obj . f = ...; // program write

if (obj . state != WrExT && obj.state != RdExT &&
!(obj . state == RdShc && T.rdShCount >= c)) {

/∗ Slow path: change obj. state ∗/
}
... = obj.f ; // program read

Figure 3. OCTET instrumentation at a program write and read. T
is the current thread.

At non-blocking safe points:

1 if (requestsSeen()) {
2 memfence;
3 handleRequests();
4 }

At blocking safe points:

5 handleRequestsAndBlock();
6 /∗ blocking actions ∗/
7 resumeRequests();

(a) Responding thread (thread T1)

To move obj from WrExT1 or RdExT1 to WrExT2:

1 currState = obj. state ; // WrExT1or RdExT1expected
2 while (currState == any intermediate state ||
3 !CAS(&obj.state, currState , WrExInt

T2)) {
4 // obj . state ← WrExInt

T2 failed
5 /∗ safe point : check for and respond to requests ∗/
6 currState = obj. state ;
7 }
8 response = request(getOwner(currState));
9 while (! response) {

10 /∗ safe point : check for and respond to requests ∗/
11 response = status(getOwner(currState));
12 }
13 memfence; // ensure happens−before
14 obj . state = WrExT2;
15 /∗ proceed with access ∗/

(b) Requesting thread (thread T2)

Figure 4. Protocol for conflicting state changes.

handleRequestsAndBlock() Handles requests as above, and atomi-
cally places the request queue into a “blocked” state indicating
that the responding thread is at a blocking safe point.

resumeRequests() Atomically unblocks the queue.

The next two methods are called by the requesting thread T2 and
act on the queue of the responding thread T1:

request(T1) Makes a request to T1. Returns true if queue is
blocked.

status(T1) Returns true if T2’s request has been seen and handled
by T1.

The protocol for handling conflicting accesses is shown in Fig-
ure 4.5 Figure 5 shows how both the explicit and implicit protocols
establish happens-before relationships between threads. To see how
the request queue is used to coordinate access to shared objects,
consider two threads, responding thread T1 and requesting thread
T2, where T1 has access to object obj in WrExT1 or RdExT1 state,
and T2 wants to write it (reads work similarly).

Requesting thread. T2 first uses a compare-and-swap (CAS) to
place obj into the desired final state with an intermediate flag set
(line 3 in Figure 4(b)). This intermediate flag indicates to all threads
that this object is in the midst of a state transition, preventing other
attempts to access the object or change its state until the coordina-
tion process completes. For brevity, we will henceforth refer to any
state with the intermediate flag set as an “intermediate state.” The
use of intermediate states prevents races in the state transition pro-
tocol (obviating the need for numerous transient states, as exist in
cache coherence protocols). Note that T2’s CAS may fail, if a third
thread simultaneously attempts to access obj. Before T2 retries its
CAS (lines 2–7 in Figure 4(b)), it responds to any pending requests
on its request queue, to avoid deadlock (line 5 in Figure 4(b)). Af-
ter placing obj into an intermediate state, T2 adds a request to T1’s
request queue by invoking request(T1) (line 8 in Figure 4 (b)).

Responding thread. To respond to a request, T1 uses either the
explicit response protocol or the implicit response protocol. When-
ever T1 is at a non-blocking safe point, it can safely relinquish
control of objects using the explicit protocol. T1 simply checks if
there are any pending requests on its request queue and calls han-
dleRequests to deal with them (lines 1–3 in Figure 4(a)). Because
the protocol performs a fence before handleRequests, the explicit re-
sponse protocol establishes two happens-before relationships: one
between T2’s initial request for access to obj and any subsequent at-
tempt by T1 to access obj (at which point T1 will find obj in WrExInt

T2
state), and another between T1’s response to T2 and T2’s access to
obj.

The implicit response protocol is used if respT is at a blocking
safe point. Intuitively, if T2 knows that T1 is at a blocking safe
point, it can proceed assuming T1 has responded. This is accom-
plished by having T1 atomically “block” its request queue, letting
T2 see that T1 is at a blocking safe point (line 5 in Figure 4(a)).
This protocol establishes a happens-before relationship from T2 to
T1 as in the explicit protocol. Further, it establishes a relationship
between T1’s entering the blocked state and T2’s access to obj.

The conflicting-access coordination protocol establishes happens-
before relationships between two threads. Before a thread writes to
a RdSh object, it performs the explicit or implicit coordination
protocol with every other active thread.

3.4 Handling Upgrading and Fence Transitions
A write by T1 to a RdExT1 object triggers an upgrading transition
to WrExT1, which requires an atomic instruction to avoid races with
other threads changing the object’s state. This transition does not
need to establish any happens-before edges, since any cross-thread
dependences will be implied by the happens-before edges added by
other transitions.

A read by T3 to a RdExT2 object, as in Figure 6, triggers
an upgrading transition to RdSh state. Note that the coordination
protocol is not needed here because it is okay for T2 to continue
reading the object after its state changes.

In order to support fence transitions (RdSh→RdSh transitions,
described next), OCTET globally orders all transitions to RdSh

5 Note that our pseudocode mixes Java code with memory fences (mem-

fence) and atomic operations (CAS). The JVM compiler must treat these
operations like other synchronization operations (e.g., lock acquire and
release) by not moving loads and stores past these operations.

5

❷

❸

❹

❺

❶

❻

❼

fence

fence

CAS

request

response
hb2

hb1

T1 T2

❸
❷

❺

❶

❻
fence

hb2 hb1

T1 T2

CAS

❹
CAS

CAS

(a) Explicit protocol: (1) T1

writes to obj; (2) T2 places obj in
WrExInt

T2 with CAS (fence seman-
tics); (3) T2 issues request to T1;
(4) T1 receives request and issues
fence; (5) T1 issues response, es-
tablishing hb1; (6) T2 sees re-
sponse and issues fence; (7) T2

places obj in WrExT2 and performs
write, establishing hb2.

(b) Implicit protocol: (1) T1

writes to obj; (2) T1 blocks with
CAS (fence semantics); (3) T2

places obj in WrExInt
T2 with CAS;

(4) T2 observes T1 as blocked and
issues a fence; (5) T1 unblocks
with CAS, establishing hb1; (6)
T2 places obj in WrExT2 and per-
forms write, establishing hb2.

Figure 5. Operation of (a) explicit and (b) implicit coordination
protocols for conflicting accesses to an object.

wr o
(WrExT1)

rd o
(RdExT2)

rd o
(RdShc)

rd p
(RdShc')

rd p
(fence)

rd o
(fence)

 rd o
(none)

tim
e

ConflictingUpgrading or fenceOrdered by gRdShCounter

T1 T2 T3 T6T4 T5

Figure 6. Example execution illustrating upgrading and fence
transitions. After T1 writes o, it is in the WrExT1 state. Then T2
reads o, triggering a conflicting transition to RdExT2. Next, T3 reads
o, triggering an upgrading transition to RdShc. T4 then reads o, trig-
gering a fence transition, assuming it has not already read an object
with state RdSh

c′ such that c’>c. T5 also reads o, but the read does
not trigger a fence transition because T5 read an object p that we
suppose transitioned to RdSh

c′ (by T6) more recently than o, i.e.,
c’>c.

states. To do so, it maintains a global counter gRdShCount that it
increments atomically and uses the incremented value c in the new
state RdShc.6

In Figure 6, T4 reads o in the RdShc state. To capture the
write–read dependence, T4 checks if its thread-local counter
T4.rdShCount ≥ c. If not, T4 triggers a fence transition because
it has not yet read o in the RdShc state. This transition issues a load
fence to ensure a happens-before relationship with o’s transition to
RdShc by T3, and updates T4.rdShCount = c.

T5’s read of o does not trigger a fence transition because T5
previously read p in the RdSh

c′ state and c’ > c. However, the
write–read dependence is still captured transitively by the happens-
before edge on gRdShCount from T3 to T6 and the fence transition-
based happens-before edge from T6 to T5. DASCC need all of
these happens-before edges to capture all cross-thread dependences
transitively (Section 7).

These mechanisms are required, ultimately, to ensure that in
all cases OCTET enforces a happens-before relationship between
the source and sink of all cross-thread dependences. The follow-
ing section proves that OCTET’s conflicting, upgrading, and fence
transitions accomplish this goal, as well as proving that OCTET’s
transitions do not introduce deadlock or livelock.

4. Correctness of OCTET
This section demonstrates two critical correctness properties of
OCTET. First, that OCTET is sound: it correctly creates happens-
before relationships between all cross-thread dependences, and al-
lows actions to be taken whenever such cross-thread dependences
are detected. This behavior is the foundation of the various DASCC
that might be built on top of OCTET, as described in Section 7.
Second, that OCTET preserves liveness: despite the additional syn-
chronization and control flow introduced by OCTET, no deadlock
or livelock is introduced.

4.1 OCTET Soundness
We now show that OCTET creates happens-before relationships be-
tween all cross-thread dependences. Note that OCTET does not con-
cern itself with non-cross-thread dependences as they are enforced
by the hardware and compiler.

We will assume, without loss of generality, that there is only one
shared object, obj, and all cross-thread dependences arise through
accesses to obj (interactions between multiple shared objects must
happen within a single thread, and dependences between them will
be preserved by the compiler’s and hardware’s reordering con-
straints). We also assume that OCTET’s instrumentation behaves
as expected, and hence OCTET ensures that an object is in a valid
state before a thread performs its access (e.g., for thread T to write
obj, the object must be in state WrExT).

Notation. We denote a read by thread T as rT , and a write by
T as wT . A dependence between two accesses is denoted with
→. Hence, flow (true) dependences are written w → r, anti-
dependences, r → w, and output dependences, w → w. A cross-
thread dependence is a dependence whose source access is on one
thread and whose dependent access is on another.

We will also use special notation for certain actions performed
by threads when interacting with OCTET. S ↓T means that thread T
put an object into OCTET state S. recvT means T received a request
on its request queue, and respT means it responded; blockT means
T has blocked its request queue; and unblockT means T unblocked
its request queue.

6 Though in our experience a single global counter has sufficed to order
accesses, potential scalability issues could be mitigated by using a global
array of counters instead, with objects mapped to particular elements.

6

Theorem 1. OCTET creates a happens-before relationship to es-
tablish the order of every cross-thread dependence.

Proof. We need only concern ourselves with cross-thread depen-
dences that are not transitively implied by other dependences
(cross-thread or otherwise). We thus break the proof into several
cases:

wT1 → wT2: OCTET’s barriers enforce that when T1 writes obj,
the object must be in WrExT1 state. When T2 attempts to per-
form its write, it will still find obj in WrExT1 (because the de-
pendence is not transitively implied, no other conflicting access
to obj could have happened in the interim). T2 will put obj into
WrExInt

T2 and make a request to T1.

In the case of the explicit response protocol, when T1 receives
the request, it establishes WrExInt

T2 ↓T2→hb respT1 (edge hb1

in Figure 5(a)) and ensures that T1 will now see obj in state
WrExInt

T2 (preventing future reads and writes by T1 to obj). When
T2 sees the update of T1’s response, it issues a fence, moves
obj to state WrExT2 and proceeds with its write, establishing
recvT1 →hb wT2 (edge hb2 in Figure 5(a)) and hence wT1 →hb

wT2.

In the implicit response protocol, T2 moves obj to WrExT2 only
after observing that T1 is blocked. We thus have WrExInt

T2↓T2→hb

unblockT1 (edge hb1 in Figure 5(b)), ensuring that subse-
quent accesses by T1 happen after obj is moved to WrExInt

T2,
and blockT1 →hb wT2 (edge hb2 in Figure 5(b)). Since
wT1 →hb blockT1, wT1 →hb wT2 holds transitively.

rT1 → wT2: There are two cases to deal with for this dependence.
Case 1: T2 finds the object in an exclusive state (either RdExT1
or WrExT1). rT1 →hb wT2 is established by the same roundtrip
mechanism as in the prior scenario.
Case 2: T2 finds the object in RdSh state. In this case, the pro-
tocol for dealing with RdSh objects, described in Section 3.3,
requires that T2 perform roundtrip communication with all
threads, establishing rT1 →hb wT2.

wT1 → rT2: For thread T1 to write to obj, the object must be
in WrExT1 state. There are then three scenarios by which this
dependence could occur.
Case 1: T2 is the first thread to read obj after the write by
T1, so it will find obj in WrExT1 state. This triggers roundtrip
communication and establishes wT1 →hb rT2.
Case 2: T2 is the second thread to read obj after the write
by T1. This means that there was some thread T3 that left
the object in state RdExT3. By the previous case, we know
wT1 →hb RdExT3↓T3, with a fence between respT1 (or blockT1 in
the case of the implicit protocol) and RdExT3↓T3. Hence, when
T2 uses a CAS to move the object to state RdSh, it establishes
respT1 →hb RdSh ↓T2 (or blockT1 →hb RdSh ↓T2 in the case of
the implicit protocol), enforcing wT1 →hb rT2 transitively.
Case 3: T2 finds obj in RdShc state upon reading it. Note that
by the previous case, there must be some thread T3 that placed
obj in RdShc (establishing wT1 →hb RdShc↓T3). To access obj
in RdShc state, T2 checks T2.rdShCount ≥ c and, if the check
fails, updates T2.rdShCount with a fence to ensure that T2 last
saw the value of gRdShCount no earlier than when T3 put obj
in RdShc. Hence, we have RdShc ↓T3→hb rT2, establishing
wT1 →hb rT2 transitively.

Thus, OCTET establishes a happens-before relationship between
the accesses of every cross-thread dependence.

Note that by synchronizing on all conflicting shared-memory ac-
cesses, OCTET provides sequential consistency with respect to the
compiled program, even on weak hardware memory models.

4.2 OCTET Liveness
This section argues that, under realistic assumptions, the OCTET
protocol is both deadlock- and livelock-free. In other words, there
will never be a scenario where all threads are stuck at OCTET
barriers and are unable to continue; at least one thread will be
able to complete its access. Hence, if the target application is
deadlock- and livelock-free, adding OCTET instrumentation will
not introduce either pathology.

The two assumptions we make are: (i) the thread scheduler is
fair, and no thread can be descheduled indefinitely; and (ii) at-
tempts to add requests to the request queue will eventually succeed.
The first assumption is true for most systems, and the second is true
in practice for most concurrent queue implementations, given the
first assumption.7 Under these assumptions, we can show:

Theorem 2. The OCTET protocol is deadlock- and livelock-free.

Proof. The proof of Theorem 2 is in Appendix A.

We note that with some modifications, OCTET is not only deadlock-
and livelock-free, but also starvation-free; not only will at least
one thread make progress at all times, but no thread will never
make progress. In the baseline design of OCTET, if multiple threads
contend to place an object into an intermediate state, a given thread
may never successfully do so, and hence starve. We can associate
queues with objects that allow threads to queue up to place an
object into an intermediate state, with only the object at the head of
the queue allowed to change the state of an object. This means that
all threads that want to place an object into an intermediate state
will eventually be able to do so. From this fact, it is straightforward
to show that all threads can make progress.

5. Implementation
We have implemented a prototype of OCTET in Jikes RVM 3.1.1,
a high-performance Java virtual machine [2, 3].8 Although Jikes
RVM was originally developed as a research platform, developers
have improved its robustness and performance significantly in re-
cent years, and Jikes RVM now provides performance within 15%
of commercial JVMs.9

OCTET’s instrumentation. Jikes RVM uses two dynamic com-
pilers to transform bytecode into native code. The baseline com-
piler compiles each method when it first executes, converting byte-
code directly to native code. The optimizing compiler recompiles
hot (frequently executed) methods at increasing levels of optimiza-
tion [4]. We modify both compilers in order to add barriers (cf. Fig-
ure 3) at every operation that reads or writes an object field, array
element, or static field.

The implementation adds barriers to application methods and
Java library methods (e.g., java.*). A significant fraction of OC-
TET’s overhead comes from barriers in the libraries, which must
be instrumented in order to capture cross-thread dependences that
occur within them.

OCTET’s metadata. To track OCTET states, the implementation
adds one metadata word per (scalar or array) object by adding a
word to the header, and one word per static field by inserting an
extra word per field into the global table of statics. Words are 32
bits because our implementation targets the IA-32 platform. The
implementation represents WrExT and RdExT as the address of a
thread object T, using the lowest bit (which is available due to

7 The second assumption can be enforced trivially by using wait-free
queues, but such implementations have high overheads in practice.
8 http://www.jikesrvm.org
9 http://dacapo.anu.edu.au/regression/perf/9.12-bach.html

7

objects being word aligned) to distinguish WrExT from RdExT. To
represent RdShc, the implementation simply uses c, using a number
range that cannot overlap with thread addresses:

• WrExT: &T (&T < 0xc0000000)
• RdExT: &T | 0x1

• RdShc: c (c > 0xc0000000)

Jikes RVM already reserves a register that always points to the cur-
rent thread object (thrReg), so checking whether a state is WrEx or
RdEx is extremely fast. To check whether an object’s state is RdShc

and T.rdShCount is up-to-date with c, the barrier simply compares
the state with c. Our implementation actually decrements the gRd-
ShCount and T.rdShCount values so that a single comparison can
check that T.rdShCount is up-to-date with respect to c (without
needing to check that the state is also RdSh). The implementation
thus adds the following check before writes:

if (o. state != thrReg) { /∗ slow path ∗/ }

And it adds the follow check before reads:

if ((o. state & ∼0x1) != thrReg &&
o. state <unsigned thrReg.rdShCount) { /∗ slow path ∗/ }

The implementation initializes the OCTET state of newly allocated
objects and newly resolved static fields to the WrExT state, where
T is the allocating/resolving thread. Since the Java Memory Model
does not provide a happens-before edge between object allocation
and another thread’s use of the object [43], a fast path might see an
uninitialized metadata word (guaranteed to be zero), triggering the
slow path, which simply waits for the value to be initialized.

Static optimizations. To some extent, OCTET obviates the need
for static optimizations that identify accesses that cannot conflict,
because it adds low overhead at non-conflicting accesses. However,
adding even lightweight barriers at every access adds nontrivial
overhead, which we can reduce by identifying accesses that do not
require barriers.

Some barriers are “redundant” because a prior barrier for the
same object guarantees that the object will have an OCTET state
that does not need to change. We have implemented a static analysis
that identifies and removes redundant barriers at compile time.
Appendix B describes this analysis in more detail, and evaluates
the performance impact of applying the analysis.

In addition to eliminating redundant barriers, our implementa-
tion also does not instrument accesses to final (immutable) fields
and to known immutable classes such as String. Besides these
cases, OCTET adds instrumentation at every object and static ac-
cess in the application and libraries.

Conflicting transition protocol. We have implemented the ab-
stract protocol from Section 3.3 as follows. For its request queue,
each thread maintains a linked list of requesting threads represented
with a single word called req. This word combines three values us-
ing bitfields so that a single CAS can update them atomically:

counter: The number of requests made to this thread.

head: The head of a linked list of requesting threads.

isBlocked: Whether this thread is at a blocking safe point.

The linked list is connected via next pointers in the requesting
threads. Because a requesting thread may be on multiple queues
(if it is requesting access to a RdSh object), it has an array of next
pointers: one for each responding thread.

Each thread also maintains a counter resp that is the number of
requests to which it has responded. A responding thread responds to

requestsSeen() { return this . req .counter > this . resp ; }

handleRequests() {
handleRequestsHelper(false) ;
}

handleRequestsAndBlock() {
handleRequestsHelper(true) ;
}

handleRequestsHelper(isBlocked) { // helper method
do {

newReq = oldReq = this.req;
newReq.isBlocked = isBlocked;
newReq.head = null;
} while (!CAS(&this.req, oldReq, newReq));
processList (oldReq.head);
this . resp = oldReq.counter;

}

resumeRequests() {
do {

newReq = oldReq = this.req;
newReq.isBlocked = false;
} while (!CAS(&this.req, oldReq, newReq));
}

(a) Methods called by responding thread T1, i.e., “this” is T1.

request(T1) {
do {

newReq = oldReq = T1.req;
if (!oldReq.isBlocked) {

this .next[T1] = oldReq.head;
newReq.head = this;
}
newReq.counter = oldReq.counter + 1;
if (CAS(&T1.req, oldReq, newReq))

return oldReq.isBlocked ;
} while (true) ;
}

status(T1) { return T1. responses >= newReq.counter; }

(b) Methods called by requesting thread T2, i.e., “this” is T2. Note that
status() uses the value of newReq from request().

Figure 7. Concrete implementation of abstract request queues.

requests simply by incrementing its response counter; in this way,
it can respond to multiple requests simultaneously.

Figure 7 shows our concrete implementation of the abstract
request queue using the req word and resp counter. Each request
increments req.counter; it adds the requesting thread to the linked
list if using the explicit protocol. Responding threads process each
requesting thread in the linked list in a DASCC-specific way—in
reverse order if FIFO behavior is desired—and they respond by
updating resp, which requesting threads observe.10

The linked list allows responding threads to know which re-
questing thread(s) are making requests, which allows the respond-
ing thread to perform conflict detection based on a requesting
thread’s access, for example. On the other hand, DASCC that only
need to establish a happens-before relationship can elide all of the
linked list behavior and use only the counters.

10 Note that if a DASCC requires that the list of requesting threads be
processed, the responding thread may need to issue a fence before updating
resp, to ensure proper ordering.

8

6. Evaluation
6.1 Methodology
Benchmarks. In our experiments, our modified Jikes RVM exe-
cutes the parallel DaCapo Benchmarks [8] (version 2006-MR2) and
a fixed-workload version of SPEC JBB2000 called pseudojbb [62].
The following table shows the number of application threads that
each program executes: total threads executed (Column 1) and
maximum threads running at any time (Column 2). Some values
are ranges due to run-to-run nondeterminism.

Total threads Max live threads
eclipse 16–17 11
hsqldb 402 73–101
lusearch 65 65
xalan 9 9
pseudojbb 37 9

Platform. Our experiments execute on a 4-core Intel i5 3.2-GHz
system with 4 GB memory running Linux 2.6.32.

Measuring performance. To account for run-to-run variability
due to dynamic optimization guided by timer-based sampling, we
execute 50 trials for each performance result and take the me-
dian (to reduce the impact of performance outliers due to system
noise) and verify that 95% confidence intervals are small (within
1% of total execution time). We build a high-performance configu-
ration of Jikes RVM (FastAdaptive) that optimizes the VM ahead-
of-time and adaptively optimizes the application at run time. Our
performance results naturally include the cost of dynamic compi-
lation, including OCTET’s additional compilation costs (identify-
ing redundant barriers and inserting barriers). We use Jikes RVM’s
high-performance generational Immix collector [10] and let the GC
choose heap sizes adaptively.

6.2 State Transitions
Table 2 shows the number of OCTET transitions for our bench-
marks, including accesses that do not change the state (i.e., fast
path only). We execute a profiling configuration of OCTET that
adds instrumentation to count these transitions. The three groups of
columns show increasing levels of synchronization that correspond
to the transitions in Table 1. The table shows that the vast major-
ity of accesses do not require synchronization. Lightweight fast-
path instrumentation handles these transitions (Figure 3). Upgrad-
ing and fence transitions occur roughly as often as Conflicting tran-
sitions; the conflicting transitions are more of a concern because
we expect them to be more expensive. Conflicting transitions range
from fewer than 0.001% (eclipse) to about 0.1% (hsqldb and xalan)
of all transitions. The relative infrequency of conflicting transitions
provides supporting evidence for OCTET’s optimistic approach.

6.3 Performance
Figure 8 presents the run-time overhead OCTET adds to program
execution. The overheads are normalized to unmodified Jikes RVM
running the application. Each bar represents the run-time overhead
added by OCTET, with sub-bars representing subsets of function-
ality. Metadata only is the overhead (including GC overhead) of
adding a word to each object’s header and for each static field, and
initializing it to WrEx upon allocation, and is about 2% on average.

The configuration No comm adds OCTET barriers, but does not
perform the conflicting transition protocol, measuring only OC-
TET’s fast-path overhead. (We still allow state transitions to occur
in this configuration; disabling them actually slows execution, as
many fast-path checks fail since objects are often in a conflicting
state.) OCTET’s fast path adds 17% overhead on average, and about
27% to xalan, which has a high density of reads and writes.

eclipse
hsqldb

lusearch

xalan
pseudojbb

geomean

0

10

20

30

40

50

R
un

-t
im

e
ov

er
he

ad
 (

%
)

Octet
No comm
Metadata only

Figure 8. Components of OCTET run-time overhead.

Octet performs the conflicting transition protocol and adds 6%
overhead on average. Overall OCTET overhead is 25% on average.
Unsurprisingly, hsqldb and xalan, which perform a higher fraction
of conflicting transitions (Table 2), add more communication over-
head. This overhead is lower for hsqldb because many more of its
conflicting transitions use the implicit protocol.

6.4 Comparison to Pessimistic Barriers
We have implemented and evaluated the “pessimistic” barrier in
Figure 2 (Section 2.2) using the same implementation framework
and experimental setup as for OCTET. The figure tracks only the
last thread, but the implemented barriers use WrEx and RdSh states
to handle read-shared access patterns. For simplicity of imple-
mentation, our barriers execute the program’s write outside of the
atomic region, an optimization that is acceptable for DASCC that
capture only unordered conflicting accesses. We find that adding
the barrier to all potentially shared memory accesses slows pro-
grams by 4.0X on average. We also evaluate a barrier that uses a
single CAS but no additional memory fence, since some DASCC
may be able to provide atomicity with such a barrier. This lower-
bound configuration slows execution by 2.2X on average.

7. Discussion: Developing New DASCC
A key feature of OCTET’s behavior is that its state transitions es-
tablish happens-before edges that transitively imply the execution’s
cross-thread dependences. DASCC can thus “piggyback” on these
state transitions to capture all cross-thread dependences soundly.
However, OCTET’s happens-before edges over-approximate depen-
dences, presenting challenges for DASCC that require precision.

7.1 Capturing Cross-Thread Dependences Soundly
Some DASCC, such as multithreaded record & replay, only need to
capture cross-thread dependences soundly but not precisely. These
DASCC can piggyback on each state transition to get the happens-
before edge(s) for that transition. The transitive closure of these
happens-before relationships over-approximates the execution’s
cross-thread dependences.

To handle happens-before edges, each DASCC has some notion
of what we call “dynamic access location” (DAL). A DAL could
be defined as a static program location plus per-thread dynamic
counter in the case of record & replay; it could be a dynamically
executed region or transaction in the case of an atomicity checker
or STM. For any state transition, each happens-before edge’s sink is
the DAL of the memory access triggering the transition. The source
depends on the type of state transition:

Conflicting transitions. Each conflicting transition naturally
identifies happens-before edge(s) where each source is the DAL
of a responding safe point. For example, in Figure 5(a) (page 6),
source DAL is point #4; in Figure 5(b), it is point #2.

9

Alloc or same state Upgrading or fence Conflicting
Alloc WrEx RdEx RdSh RdEx→WrEx RdEx→RdSh RdSh→RdSh WrEx→WrEx WrEx→RdEx RdEx→WrEx RdSh→WrEx

eclipse
17,401,356,359 (99.9987%) 80,581 (0.00046%) 154,192 (0.00089%)
1.9% 89% 2.5% 6.7% 0.000086% 0.00038% 0.0000010% 0.0000073% 0.00071% 0.000012% 0.00016%

hsqldb
762,914,193 (99.81%) 567,794 (0.074%) 902,533 (0.12%)

3.3% 91.9% 0.44% 4.1% 0.048% 0.017% 0.0088% 0.038% 0.068% 0.00054% 0.011%

lusearch
3,101,841,194 (99.99957%) 5,383 (0.00017 %) 7,926 (0.00026%)
1.8% 92.5% 4.25% 1.4% 0.00011% 0.000010% 0.000049% 0.0000068% 0.00024% 0% 0.0000056%

xalan
12,311,443,825 (99.84%) 7,992,383 (0.065 %) 12,143,657 (0.098%)

0.94% 86% 0.13% 12% 0.065% 0.000021% 0.000035% 0.034% 0.065% 0.0000000081% 0.0000051%

pseudojbb
2,141,003,817 (99.91%) 910,542 (0.042%) 952,750 (0.044%)

2.8% 81% 1.4% 14% 0.038% 0.0047% 0.000079% 0.00026% 0.044% 0.0000021% 0.000071%

Table 2. OCTET state transitions, including fast-path executions that do not change the state. The first row for each benchmark is transitions
for the column group, and the second row shows transitions of each type as a percentage of all transitions. We round percentages x as much
as possible such that x and 100%− x each have at least two significant digits.

Upgrading transitions. In Figure 6 (page 6), an upgrading tran-
sition from RdExT2 to RdShc on T3 establishes a happens-before
edge whose source is the DAL on T2 that transitioned o to RdExT2.
This DAL probably cannot be obtained efficiently, but it is suffi-
cient to capture the DAL from T2’s most recent transition of any
object to RdExT2, in order to establish a transitive happens-before
relationship from the DAL that transitioned o to RdExT2.

Each upgrading transition to RdSh also establishes a happens-
before edge from the last DAL to transition an object to RdSh
(i.e., to RdShc−1). A DASCC can get this DAL by having every
upgrading transition to RdSh assign its DAL to a global variable
that is the most recent DAL to transition to RdSh.

Fence transitions. A fence transition establishes a happens-
before edge whose source is the DAL that transitioned the object
to RdSh, which is stored in a global variable as described above. A
DASCC can thus handle this happens-before edge.

7.2 Developing Precise DASCC
While OCTET’s happens-before edges capture cross-thread depen-
dences soundly, it over-approximates the dependences, presenting
challenges for developing precise DASCC.

Precise prior accesses. Many DASCC need to know precisely
when the source of a cross-thread dependence occurred. For exam-
ple, an atomicity checker needs to know which region last accessed
an object. Even DASCC such as STM that do not require perfect
precision, still need precise prior accesses to avoid detecting too
many false conflicts.

DASCC can provide this precision by storing thread-local read
and write sets [46]. For example, atomicity checking would main-
tain read and write sets for each executed region. Updates to read
and write sets are thread local, so they can be relatively inexpensive,
especially with lightweight static analysis and low-level optimiza-
tions such as non-temporal stores.

Imprecise transitions. It is nontrivial to determine the precise
dependences from the happens-before edges that are based on
OCTET’s state transitions. In Figure 6, identifying the potential
write–read dependences from T1 to T3 and T4 requires travers-
ing happens-before edges transitively. T5’s read of o does not even
trigger a transition to indicate the write–read dependence T1 to
T5, but rather it is transitively implied by happens-before edges
that involve accesses to p and updates to gRdShCount. Further-
more, all happens-before edges imply potentially imprecise de-
pendences because of granularity mismatch: OCTET tracks state
at object granularity for performance reasons, but precise DASCC
typically require field and array element granularity.

We believe that precise DASCC can harness OCTET’s impre-
cise happens-before edges as a sound, effective “first-pass filter.”

Transitions that indicate a potential dependence require a second,
precise pass that uses precise prior-access information such as the
aforementioned thread-local read and write sets. If these DASCC
can avoid invoking the second pass frequently, they can achieve
high performance.

8. Related Work
8.1 Concurrency Control Mechanisms
This section compares OCTET’s concurrency control mechanism
with prior work. While prior work employs optimistic synchroniza-
tion for tracking ownership of shared memory, OCTET’s purpose
and design differ from prior approaches.

Biased locking. Prior work proposes biased locking as an opti-
mistic mechanism for performing lock acquires without atomic op-
erations [30, 52, 56], now implemented in major commercial Java
virtual machines. Each lock is “biased” toward a particular thread
that can acquire the lock without synchronization; other threads
must communicate with the biasing thread before acquiring the
lock. In contrast, OCTET applies an optimistic approach to all pro-
gram accesses, not just locks, and it introduces WrEx, RdEx, and
RdSh states in order to support different sharing patterns efficiently.
OCTET’s conflicting transition protocol is lightweight compared to
biased locking’s communication mechanisms, which is important
since regular memory accesses occur more frequently than syn-
chronization operations. Hindman and Grossman present an ap-
proach similar to biased locking for tracking reads and writes in
STM [27]. As with biased locking, their approach does not handle
read-shared access patterns efficiently.

Cache coherence. OCTET’s states correspond to cache coherence
protocol states; its conflicting state transitions correspond to remote
invalidations (Section 3.1). Thus, program behavior that leads to
expensive OCTET behavior may already have poor performance
due to remote cache misses.

Cache coherence has been implemented in software in dis-
tributed shared memory (DSM) systems to reduce coherence traf-
fic [5, 31, 32, 39, 57, 58]. Shasta and Blizzard-S both tag shared
memory blocks with coherence states, which instrumentation at
each access checks [57, 58]. A coherence miss triggers a software
coherence request; processors periodically poll for such requests.

While each unit of shared memory can have different states in
different caches, each unit of shared memory has one OCTET state
at a time. While cache coherence provides data consistency, OC-
TET provides concurrency control for DASCC that need to capture
cross-thread dependences.

Identifying shared memory accesses. Olszewski et al. propose
an approach called Aikido that avoids instrumenting accesses to

10

non-shared memory [51]. Aikido uses OS paging to identify shared
memory and binary rewriting to add instrumentation only at reads
and writes that might access shared memory. It still adds signif-
icant overhead to shared memory accesses, even if the accesses
are mostly thread local; and page-level tracking identifies some un-
shared memory as shared.

Von Praun and Gross describe an approach for detecting races
based on tracking thread ownership of objects [65]. Their own-
ership system dynamically identifies shared objects, allowing the
race detector to restrict its attention to those shared objects. Like
OCTET, their approach uses unsynchronized checks, with requests
and polling for state changes. Their ownership model allows ob-
jects in an exclusive state to avoid synchronization, but objects in
a shared–modified or shared–read state require synchronization on
every access; objects that enter shared states cannot return to an
exclusive state. In contrast, OCTET supports transitioning back to
exclusive states, and object accesses require synchronization only
on state changes. OCTET’s more precise tracking of ownership thus
requires less synchronization.

8.2 Alternatives to Software-Based DASCC
This section discusses alternatives to dynamic, sound, software-
based approaches.

Static approaches. Static program analysis (e.g., [48]), type
checking (e.g., [13, 21]) model checking (e.g., [47]), and verifi-
cation (e.g., [38]) can check concurrency correctness properties.
These approaches are ahead-of-time and typically sound, so they
can ensure a program is correct before running it. For example,
conservative static analysis can determine that two object refer-
ences cannot alias (point to the same object) or cannot execute at
the same time when they alias [48]. However, static approaches
do not currently scale well to large, complex programs, nor to dy-
namic language features such as dynamic class loading. Faced with
uncertainty and complexity, static analysis reports false positives,
which frustrate developers and make the analysis unusable if it re-
ports many false positives; type checking similarly rejects correct
programs; and full verification and model checking are unable to
scale to large programs.

Static approaches can aid dynamic approaches by ruling out
definitely non-shared objects or non-racy accesses. Prior work that
uses static race detection to improve the performance of dynamic
race detection shows that the fraction of accesses ruled out by static
analysis varies significantly from program to program [17, 20, 66].
The resulting dynamic race detectors are still too expensive for
production systems. Chimera uses static race detection to lower the
cost of tracking cross-thread dependences, but it relies on profiling
runs to be efficient [36].

Custom hardware support. Custom hardware support can cap-
ture cross-thread dependences efficiently by piggybacking on cache
coherence protocols [6, 28, 41, 42, 46, 49, 61, 64, 69]. However,
manufacturers have been slow to adopt such hardware support,
which would add significant complexity to already-complex coher-
ence protocols. If and when hardware supports capturing conflict-
ing dependences, it is likely to be very limited, resulting in hybrid
hardware–software approaches [6], so efficient software-based sup-
port is still required.

We believe that manufacturers will add such hardware support
if programmer demand for it increases. Our work has the potential
to make software-based DASCC fast enough for widespread use
in production systems, ultimately leading programmers to demand
even faster support in hardware.

Unsound approaches. Sampling-based analyses can find bugs
probabilistically with low overhead [12, 29, 44]. However, sam-

pling is (dynamically) unsound and cannot provide all-the-time
checking and enforcement of concurrency correctness properties.

Prior work infers concurrency bugs by identifying concurrent
program behavior that is well correlated with failure [29, 41, 59].
These approaches are neither sound nor precise but can be use-
ful, especially for errors that violate unspecified properties such as
atomicity. Existing approaches must capture cross-thread depen-
dences, so they could benefit from our work.

Other programming models. Languages such as X10 help pro-
grammers specify parallelism better [16], although concurrency
correctness remains an issue. Languages such as Deterministic Par-
allel Java (DPJ) and Jade provide determinism at the language level
and thus avoid many concurrency bugs [11, 55], but programmers
must rewrite their programs in these languages. Functional and
declarative languages and domain-specific languages such as SQL
and MATLAB avoid most or all concurrency bugs, but they do not
seem to be able to solve many problems efficiently.

9. Summary
OCTET is a novel, optimistic concurrency control mechanism that
captures cross-thread dependences, without requiring synchroniza-
tion at non-conflicting accesses. We have designed a state-based
protocol and proven soundness and liveness guarantees. An evalua-
tion of our prototype implementation shows that real programs ben-
efit from OCTET’s optimistic tradeoff, and OCTET achieves over-
heads substantially lower than prior approaches that need cross-
thread dependences. We have described a general framework for
designing sound and precise DASCC that will potentially have low
enough overhead for all-the-time use in production systems.

Acknowledgments
Thanks to Luis Ceze, Brian Demsky, and Michael Scott for helpful
discussions and feedback.

References
[1] S. V. Adve and H.-J. Boehm. Memory Models: A Case for Rethinking Parallel

Languages and Hardware. Communications of the ACM, 53:90–101, 2010.
[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi,

A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov,
M. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. Shepherd, S. Smith,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño Virtual Machine. IBM
Systems Journal, 39(1):211–238, 2000.

[3] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng, J. Dolby,
S. Fink, D. Grove, M. Hind, K. S. McKinley, M. Mergen, J. E. B. Moss, T. Ngo,
and V. Sarkar. The Jikes Research Virtual Machine Project: Building an Open-
Source Research Community. IBM Systems Journal, 44:399–417, 2005.

[4] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive Optimiza-
tion in the Jalapeño JVM. In ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 47–65, 2000.

[5] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: A Language For
Parallel Programming of Distributed Systems. IEEE Transactions on Software
Engineering, 18:190–205, 1992.

[6] L. Baugh, N. Neelakantam, and C. Zilles. Using Hardware Memory Protection to
Build a High-Performance, Strongly-Atomic Hybrid Transactional Memory. In
ACM/IEEE International Symposium on Computer Architecture, pages 115–126,
2008.

[7] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. CoreDet:
A Compiler and Runtime System for Deterministic Multithreaded Execution.
In ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 53–64, 2010.

[8] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo Bench-
marks: Java Benchmarking Development and Analysis. In ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications, pages
169–190, 2006.

11

[9] S. M. Blackburn and A. L. Hosking. Barriers: Friend or Foe? In ACM Interna-
tional Symposium on Memory Management, pages 143–151, 2004.

[10] S. M. Blackburn and K. S. McKinley. Immix: A Mark-Region Garbage Collector
with Space Efficiency, Fast Collection, and Mutator Performance. In ACM
Conference on Programming Language Design and Implementation, pages 22–
32, 2008.

[11] R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir. Parallel Programming
Must Be Deterministic by Default. In USENIX Conference on Hot Topics in
Parallelism, pages 4–9, 2009.

[12] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: Proportional Detection
of Data Races. In ACM Conference on Programming Language Design and
Implementation, pages 255–268, 2010.

[13] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for Safe Programming:
Preventing Data Races and Deadlocks. In ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 211–230, 2002.

[14] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chat-
terjee. Software Transactional Memory: Why Is It Only a Research Toy? Com-
munications of the ACM, 51(11):40–46, 2008.

[15] L. Ceze, J. Devietti, B. Lucia, and S. Qadeer. A Case for System Support for
Concurrency Exceptions. In USENIX Conference on Hot Topics in Parallelism,
2009.

[16] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar. X10: An Object-Oriented Approach to Non-Uniform
Cluster Computing. In ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 519–538, 2005.

[17] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan.
Efficient and Precise Datarace Detection for Multithreaded Object-Oriented Pro-
grams. In ACM Conference on Programming Language Design and Implemen-
tation, pages 258–269, 2002.

[18] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang. Efficient Deterministic
Multithreading through Schedule Relaxation. In ACM Symposium on Operating
Systems Principles, pages 337–351, 2011.

[19] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deterministic Shared
Memory Multiprocessing. In ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 85–96,
2009.

[20] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and Transaction-Aware
Java Runtime. In ACM Conference on Programming Language Design and
Implementation, pages 245–255, 2007.

[21] C. Flanagan and S. N. Freund. Type Inference Against Races. Science of
Computer Programming, 64(1):140–165, 2007.

[22] C. Flanagan and S. N. Freund. Atomizer: A Dynamic Atomicity Checker for
Multithreaded Programs. Science of Computer Programming, 71(2):89–109,
2008.

[23] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise Dynamic Race
Detection. In ACM Conference on Programming Language Design and Imple-
mentation, pages 121–133, 2009.

[24] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A Sound and Complete
Dynamic Atomicity Checker for Multithreaded Programs. In ACM Conference
on Programming Language Design and Implementation, pages 293–303, 2008.

[25] K. Gharachorloo and P. B. Gibbons. Detecting Violations of Sequential Consis-
tency. In ACM Symposium on Parallelism in Algorithms and Architectures, pages
316–326, 1991.

[26] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for
Lock-Free Data Structures. In ACM/IEEE International Symposium on Computer
Architecture, pages 289–300, 1993.

[27] B. Hindman and D. Grossman. Atomicity via Source-to-Source Translation.
In ACM SIGPLAN Workshop on Memory System Performance and Correctness,
pages 82–91, 2006.

[28] D. R. Hower, P. Montesinos, L. Ceze, M. D. Hill, and J. Torrellas. Two Hardware-
Based Approaches for Deterministic Multiprocessor Replay. Communications of
the ACM, 52:93–100, 2009.

[29] G. Jin, A. Thakur, B. Liblit, and S. Lu. Instrumentation and Sampling Strategies
for Cooperative Concurrency Bug Isolation. In ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 241–255,
2010.

[30] K. Kawachiya, A. Koseki, and T. Onodera. Lock Reservation: Java Locks Can
Mostly Do Without Atomic Operations. In ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 130–141, 2002.

[31] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. TreadMarks: Dis-
tributed Shared Memory on Standard Workstations and Operating Systems. In
USENIX Technical Conference, pages 115–132, 1994.

[32] L. I. Kontothanassis and M. L. Scott. Software Cache Coherence for Large Scale
Multiprocessors. In International Symposium on High-Performance Computer
Architecture, pages 286–295, 1995.

[33] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed system.
Communications of the ACM, 21(7):558–565, 1978.

[34] L. Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Computer, 28:690–691, 1979.

[35] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging Parallel Programs with
Instant Replay. IEEE Transactions on Computers, 36:471–482, 1987.

[36] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy. Chimera: Hybrid Program
Analysis for Determinism. In ACM Conference on Programming Language
Design and Implementation, pages 463–474, 2012.

[37] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen, and J. Flinn.
Respec: Efficient Online Multiprocessor Replay via Speculation and External
Determinism. In ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 77–90, 2010.

[38] K. R. Leino and P. Müller. A Basis for Verifying Multi-threaded Programs. In
European Symposium on Programming Languages and Systems, pages 378–393,
2009.

[39] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. S. Lam. The Stanford Dash Multiprocessor. IEEE
Computer, 25:63–79, 1992.

[40] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Efficient Deterministic
Multithreading. In ACM Symposium on Operating Systems Principles, pages
327–336, 2011.

[41] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity Violations via
Access-Interleaving Invariants. In ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages 37–48,
2006.

[42] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm. Conflict Exceptions:
Simplifying Concurrent Language Semantics with Precise Hardware Exceptions
for Data-Races. In ACM/IEEE International Symposium on Computer Architec-
ture, pages 210–221, 2010.

[43] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In ACM
Symposium on Principles of Programming Languages, pages 378–391, 2005.

[44] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: Effective Sampling
for Lightweight Data-Race Detection. In ACM Conference on Programming
Language Design and Implementation, pages 134–143, 2009.

[45] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and S. Narayanasamy. DRFx:
A Simple and Efficient Memory Model for Concurrent Programming Languages.
In ACM Conference on Programming Language Design and Implementation,
pages 351–362, 2010.

[46] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM:
Log-based Transactional Memory. In International Symposium on High-
Performance Computer Architecture, pages 254–265, 2006.

[47] M. Musuvathi and S. Qadeer. Iterative Context Bounding for Systematic Testing
of Multithreaded Programs. In ACM Conference on Programming Language
Design and Implementation, pages 446–455, 2007.

[48] M. Naik and A. Aiken. Conditional Must Not Aliasing for Static Race Detection.
In ACM Symposium on Principles of Programming Languages, pages 327–338,
2007.

[49] S. Narayanasamy, C. Pereira, and B. Calder. Recording Shared Memory Depen-
dencies Using Strata. In ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 229–240, 2006.

[50] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient Deterministic
Multithreading in Software. In ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 97–108,
2009.

[51] M. Olszewski, Q. Zhao, D. Koh, J. Ansel, and S. Amarasinghe. Aikido: Ac-
celerating Shared Data Dynamic Analyses. In ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 173–184, 2012.

[52] T. Onodera, K. Kawachiya, and A. Koseki. Lock Reservation for Java Recon-
sidered. In European Conference on Object-Oriented Programming, pages 559–
583, 2004.

[53] M. S. Papamarcos and J. H. Patel. A Low-Overhead Coherence Solution for
Multiprocessors with Private Cache Memories. In ACM/IEEE International
Symposium on Computer Architecture, pages 348–354, 1984.

[54] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu. PRES:
Probabilistic Replay with Execution Sketching on Multiprocessors. In ACM
Symposium on Operating Systems Principles, pages 177–192, 2009.

[55] M. C. Rinard and M. S. Lam. The Design, Implementation, and Evaluation of
Jade. ACM Transactions on Programming Languages and Systems, 20:483–545,
1998.

[56] K. Russell and D. Detlefs. Eliminating Synchronization-Related Atomic Opera-
tions with Biased Locking and Bulk Rebiasing. In ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 263–272,
2006.

12

[57] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A Low Overhead,
Software-Only Approach for Supporting Fine-Grain Shared Memory. In ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 174–185, 1996.

[58] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus, and D. A.
Wood. Fine-Grain Access Control for Distributed Shared Memory. In ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 297–306, 1994.

[59] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and W. Zheng. Do I Use
the Wrong Definition?: DefUse: Definition-Use Invariants for Detecting Concur-
rency and Sequential Bugs. In ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 160–174, 2010.

[60] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer, D. Grossman,
R. L. Hudson, K. F. Moore, and B. Saha. Enforcing Isolation and Ordering in
STM. In ACM Conference on Programming Language Design and Implementa-
tion, pages 78–88, 2007.

[61] A. Singh, D. Marino, S. Narayanasamy, T. Millstein, and M. Musuvathi. Efficient
Processor Support for DRFx, a Memory Model with Exceptions. In ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 53–66, 2011.

[62] Standard Performance Evaluation Corporation. SPECjbb2000 Documentation,
release 1.01 edition, 2001.

[63] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn, and
S. Narayanasamy. DoublePlay: Parallelizing Sequential Logging and Replay.
In ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 15–26, 2011.

[64] E. Vlachos, M. L. Goodstein, M. A. Kozuch, S. Chen, B. Falsafi, P. B. Gibbons,
and T. C. Mowry. ParaLog: Enabling and Accelerating Online Parallel Moni-
toring of Multithreaded Applications. In ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pages
271–284, 2010.

[65] C. von Praun and T. R. Gross. Object Race Detection. In ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications, pages
70–82, 2001.

[66] C. von Praun and T. R. Gross. Static Conflict Analysis for Multi-Threaded
Object-Oriented Programs. In ACM Conference on Programming Language
Design and Implementation, pages 115–128, 2003.

[67] L. Wang and S. D. Stoller. Runtime Analysis of Atomicity for Multithreaded
Programs. IEEE Transactions on Software Engineering, 32:93–110, 2006.

[68] D. Weeratunge, X. Zhang, and S. Jagannathan. Analyzing Multicore Dumps to
Facilitate Concurrency Bug Reproduction. In ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 155–166, 2010.

[69] M. Xu, R. Bodik, and M. D. Hill. A “Flight Data Recorder” for Enabling
Full-system Multiprocessor Deterministic Replay. In ACM/IEEE International
Symposium on Computer Architecture, pages 122–135, 2003.

[70] R. M. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai, and H.-H. S. Lee.
Kicking the Tires of Software Transactional Memory: Why the Going Gets
Tough. In ACM Symposium on Parallelism in Algorithms and Architectures,
pages 265–274, 2008.

A. Proof of Theorem 2
Recall that we assume both fair thread scheduling and that all oper-
ations on queues will succeed. We begin by showing the following:

Lemma 1. A thread will always eventually respond to OCTET
requests from other threads.

Proof. A thread has two means of responding to OCTET requests.
A thread can explicitly respond to requests at safe points, and it
will implicitly respond to requests as described in Section 3.3 if
it is blocked. Hence, as long as non-blocked threads eventually
block or reach a safe point, all requests will be responded to. Fair
scheduling means that non-blocked threads make forward progress.
Hence, it suffices to ensure that safe points are placed so that a
thread cannot execute indefinitely without encountering one. As
discussed previously, safe points occur at least at loop back edges
and method entries, and within all loops of the OCTET protocol
outlined in Figure 4, ensuring that a non-blocked thread will always
either block or reach a safe point.

The preceding Lemma readily yields the following:

Lemma 2. A thread that changes the OCTET state of an object o
will eventually be able to access o.

Proof. If T changes o’s state to any other state that does not re-
quire roundtrip communication (i.e., T performs a RdEx

T′ → RdSh
or RdExT → WrExT transition), then the access can proceed im-
mediately. If a thread T places an object in an intermediate state,
then T cannot proceed until it receives responses from the neces-
sary threads (a single thread in the case of a transition from WrEx or
RdEx, or all threads in the case of a transition from RdSh). Lemma 1
says that all necessary responses will eventually arrive, and hence
T can remove the intermediate flag and proceed with its access.

We can now prove the following:

Theorem 2. The OCTET protocol is deadlock- and livelock-free.

Proof. We note that showing deadlock- and livelock-freedom re-
quires that at least one thread make progress when encountering an
OCTET barrier. We can thus show that a thread at an OCTET barrier
will either (a) successfully pass the barrier and complete its access;
or (b) retry the barrier because a second thread has completed or
will complete its access.

We thus consider a thread T attempting to access an object o,
and consider each possibility under which the thread may attempt
its access. These cases are labeled using tuples of the form (S, a),
where S is the state o is in when T arrives at the OCTET barrier,
and a denotes whether T wants to perform a read (r), a write (w),
or either (r/w).

(WrExT, r/w), (RdExT, r): These are the simple cases. The OC-
TET barrier takes the fast path and T immediately proceeds to
its access.

(Any intermediate state, r/w): If T finds o in an intermediate
state, the OCTET protocol causes T to loop. However, in this
situation, a second thread, T’, has put o into an intermediate
state, and, by Lemma 2, will eventually complete its access.

(WrEx
T′ , r/w), (RdEx

T′ , w), (RdShc, w): In each of these cases,
the conflicting transition protocol causes T to attempt to CAS o
to the appropriate intermediate state. If the CAS fails, then some
other thread T’ put o into a different state, and, by Lemma 2,
will make forward progress. If the CAS succeeds, then T makes
forward progress, instead.

(RdShc, r): If necessary, T can update T.rdShCount without block-
ing. T then proceeds to its access.

(RdEx
T′ , r): T attempts to atomically increment gRdShCount. If

the increment succeeds, T then attempts to CAS o’s state to
RdShc. If the CAS succeeds, T proceeds with its access, and if it
fails, then some other thread T’ performed a state change and is
making forward progress by Lemma 2. If the atomic increment
fails, then some thread T’ is attempting the same transition,
but in the “successful increment” case, and thus some thread
is making forward progress.

(RdExT, w): T attempts to upgrade o’s state with a CAS. If the
CAS succeeds, T proceeds with its access. If it fails, then some
other thread changed o’s state, and by Lemma 2 will complete
its access.

Hence, in all cases, either T will eventually be able to proceed past
the OCTET barrier and perform its access, or some other thread
will successfully complete its access, and no deadlock or livelock
is possible.

13

o. f = ...

/∗ ... no loads or stores ; no safe points ; no defs of o ... ∗/

// barrier unnecessary
... = o.f ;

// read barrier may execute slow path
... = p.g;

// barrier required by safe variant (not by unsafe variant)
... = o.f ;

Figure 9. Example of redundant barriers.

B. Eliminating Redundant Barriers
Not all OCTET barriers are necessary. A particular barrier may be
“redundant” because a prior barrier for the same object guaran-
tees that the object will have an OCTET state that does not need
to change. The key insight in eliminating redundant barriers is that
a thread can only “lose” access to an object when it reaches a
safe point. Thus, an access does not need a barrier if it is always
preceded by an access that guarantees it will have the right state,
without any intervening operations that might allow the state to
change. The following sections describe a redundant barrier anal-
ysis (RBA) and evaluate its effects on OCTET performance.

B.1 Redundant Barrier Analysis (RBA)
A barrier at an access A to object o is redundant if the following two
conditions are satisfied along every control-flow path to the access:

• The path contains a prior access P to o that is at least as “strong”
as A. Writes are stronger than reads, but reads are weaker than
writes, so A’s barrier is not redundant if A is a write and P is a
read.
• The path must not execute a safe point between A and any last

prior access P that is at least as strong as A.

We have designed a sound, flow-sensitive, intraprocedural data-
flow analysis that propagates facts about accesses to all objects
and statics, and merges facts conservatively at control-flow merges.
The analysis is conservative about aliasing of object references,
assuming they do not alias except when they definitely do. A
potential safe point kills all facts, except for facts about newly
allocated objects that have definitely not escaped.

Handling slow paths. Responding threads respond to requests
explicitly or implicitly at safe points, allowing other threads to
perform conflicting state changes on any object. Potential safe
points include every object access because a thread may “lose”
access to any object except the accessed object if it takes a slow
path, which is a safe point. Thus, at an access to o, the safe form of
our analysis kills all data-flow facts for all objects except o.

We have also explored an unsafe variant of our analysis that
does not kill data-flow facts at object accesses. This variant is in-
teresting because we could make it safe by modifying each barrier
slow path so that it performs a read or write barrier on each ob-
ject in the data-flow facts at that point. These additional barriers
would need to complete without executing a slow path—otherwise
an object’s state might change—which could be accomplished by
retrying them until none executed a slow path. We have not imple-
mented this optimization in the slow path, but we do implement and
evaluate the unsafe data-flow analysis in order to establish an upper
bound on the potential performance benefit.

Example. Figure 9 shows an example of a redundant barrier and
a barrier that is redundant for the unsafe but not the safe variant.

No RBA Safe RBA (default) Unsafe RBA
eclipse 123,892 101,484 (82%) 100,188 (81%)
hsqldb 20,420 16,714 (82%) 15,933 (78%)
lusearch 22,526 17,640 (78%) 16,323 (72%)
xalan 36,875 30,111 (82%) 29,667 (80%)
pseudojbb 21,247 17,276 (81%) 16,431 (77%)

Table 3. Static barriers inserted under three RBA configurations:
no analysis, safe analysis, and unsafe analysis.

eclipse
hsqldb

lusearch

xalan
pseudojbb

geomean

0.95

1.05

1.15

1.25

1.35

N
or

m
al

iz
ed

 r
un

 t
im

e

Base
Safe RBA
No RBA
Unsafe RBA

Figure 10. Run-time overhead of the OCTET fast path without and
with redundant barrier analysis, and with the unsafe variant. The
ranges are 95% confidence intervals, centered at the mean.

The first read barrier for o is unnecessary because o’s state will
definitely be WrExT. The second read barrier for o is necessary for
the safe variant because the barrier for p may execute the slow path,
which is a safe point.

B.2 Performance Impact of Redundant Barrier Analysis
All of the OCTET results presented in Section 6 eliminate redundant
barriers based on the safe variant of RBA. This section evaluates
the benefit of the analysis by comparing to a configuration without
RBA. We also evaluate the potential for the slow path optimization
described in Section B.1, by evaluating the unsafe variant of RBA.

Table 3 shows the number of (static) barriers inserted by the
compiler without and with RBA. No RBA is barriers inserted with-
out RBA; Safe RBA (default) and and Unsafe RBA are the barriers
inserted after using RBA’s safe and unsafe variants, respectively.
We see that the safe variant of RBA is effective in reducing the
number of barriers inserted by OCTET, and the unsafe variant re-
moves a modest amount of additional barriers.

Figure 10 compares the performance of three RBA configura-
tions. For simplicity we evaluate only the overhead of the fast path
using the No comm configuration; Safe RBA is thus the same re-
sult as No comm in Figure 8. No RBA does not use RBA, slowing
execution by 1–2% of base program execution time or 8% of Safe
RBA’s overhead. The number of static barriers removed (18–22%)
does not translate into a larger performance win. Unsafe RBA uses
the unsafe variant of RBA analysis in order to evaluate the potential
for the slow path optimization described in Section B.1. The unsafe
variant indicates that the slow path optimization could improve per-
formance by less than 1% of execution time or 3% of Safe RBA’s
overhead.

While we focus here on objects that were previously accessed,
other analyses could potentially identify objects that definitely can-
not be shared and thus do not need barriers. Ultimately, these opti-
mizations may be beneficial, but, as with RBA, we expect them to
have a muted effect on overall overhead, as non-shared objects will
always take fast paths at OCTET barriers, and OCTET’s fast-path
overheads are low.

14

