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Abstract

Access to relative location of nearby vehicles on the local roads or on the
freeways is useful for providing critical alerts to the drivers, thereby enhanc-
ing their driving experience as well as reducing the chances of accidents.
The problem of determining the relative location of two vehicles can be bro-
ken into two smaller subproblems: (i) Relative lane localization, where a
vehicle determines if the other vehicle is in left lane, same lane or right lane
with respect to it, and (ii) Relative front-rear localization where it needs to
be determined which of the two vehicles is ahead of the other on the road. In
this paper, we propose a novel antenna diversity based solution, MARVEL,
that solves the two problems of determining the relative location of two vehi-
cles. MARVEL has two components: (i) a smartphone; and (ii) four wireless
radios. Unlike exisiting technologies, MARVEL can also determine relative
location of vehicles that are not in the immediate neighborhood, thereby pro-
viding the driver with more time to react. Further, due to minimal hardware
requirements, the deployment cost of MARVEL is low and it can be eas-
ily installed on newer as well as existing vehicles. Using results from our
real driving tests, we show that MARVEL is able to determine the relative
lane location of two vehicles with 96.8% accuracy. Through trace-driven
simulations, we also show that by aggregating information across different
vehicles, MARVEL is able to increase the localization accuracy to 98%.
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Figure 1: Vehicle V1 can be in six different relative positions with respect to V2:
Front-Left, Front-Same, Front-Right, Rear-Left, Rear-Same and Rear-Right. Ve-
hicle V1 is said to be in front of V2 if front of V1 is ahead of that of V2 along the
direction of travel.

1 Introduction
The use of GPS equipped smartphones has been increasing rapidly. But the GPS
devices on the phones do not have sufficient accuracy to localize the vehicles up
to the lane-level. Availability of traffic information at the micro-level or lane-level
granularity is useful for multiple applications that not only reduces the chances
of accidents but also enhances the driving experience. Some applications are as
follows: (i) Alerting the drivers of upcoming obstacles or potholes that are in the
same lane as the vehicle, and further guiding the driver to move to the appropriate
lane to avoid them; (ii) Alerting the drivers if there is a vehicle in the blind zone
or if this vehicle is tailgating another vehicle, thereby reducing the chances of
collision; (iii) Alerting the driver that the vehicle ahead is slowing down if the
two vehicles are in the same lane; (iv) Detecting the lane-level location of slow
moving vulnerable vehicles; and, (v) Determining the differences in speeds of
different lanes, to assist in traffic planning.

The problem of Vehicular Localization has two variants: (i) Relative Localiza-
tion, where for two vehicles, the objective is to determine the location of a vehicle
with respect to the other vehicle; and, (ii) Absolute Localization, where for a single
vehicle, the objective is to determine its absolute location. In this paper we de-
velop a novel solution called MARVEL (Multiple Antenna based Relative Vehicle
Localizer) that provides relative localization of on-road vehicles. Specifically, for
two given vehicles, V1 and V2, MARVEL uses antenna diversity to enable both of
them to determine the relative position of the other vehicle among the six different
possible regions.

Although, GPS technology is widely used for vehicular localization, various
factors such as signal multipath, unknown delays due to ionosphere and tropo-
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Figure 2: Comparison of GPS trace of two smartphones located in the same car:
Cumulative distribution function of GPS error (in meters).

sphere, error in the clocks of GPS devices, and inaccuracies in the locations of
satellites [12] reduce its accuracy. Device manufacturers such as Garmin report
the average GPS accuracy to be 3 meters [12] even for devices equipped with
newer WAAS (Wide Area Augmentation System) and DGPS (Differential GPS)
technology. The GPS trace collected by us for two phones (Motorola Atrix and
iPhone 4) mounted next to each other (horizontal distance ≤ 1cm) on the wind-
shield of the same car showed similar inaccuracies. Figure 2 shows the cumulative
probability distribution of distance between the locations of the vehicle along the
width of the road as reported by the two smartphones. The width of the lanes as
recommended by AASHTO [3] on local and arterial roads is 3.60 meters. So, if
the error is more than 1.80 meters across the direction of travel, GPS will mis-
compute the relative lane location (left, right or same lane) of the other vehicle,
which happens in 54% of the cases. Similarly, GPS may also incorrectly compute
the relative front vs. rear location of the other vehicle if the two vehicles are close
to each other. In urban canyons, due to multipath effects, the accuracy of GPS
is expected to decrease even further. In this paper, we propose an antenna diver-
sity based novel solution for both relative lane localization and relative front-rear
localization.

Various vehicle manufacturers are beginning to roll out new car models with
vehicular technologies such as doppler radar and cameras for relative localization.
These technologies work even when the hardware is deployed on only one vehi-
cle (and not the other vehicles in the vicinity), but they have several limitations:
(i) Both the doppler radar and camera can accurately detect only those vehicles
that are in the immediate neighborhood; (ii) Nearby obstacles such as parked ve-
hicles, store fronts and crash barriers reduce the accuracy of the radars [13] as
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well as cameras [13]; (iii) These technologies cannot be easily retrofitted to exist-
ing vehicles, resulting in lower market penetration; and, (iv) There is generally a
tradeoff between accuracy and number of radars used [18]. More radars can cover
more regions while providing high localization accuracy, however this increases
the deployment cost.

MARVEL is minimal in design and consists of two components: (i) A smart-
phone that could be the same as one carried by the driver; and, (ii) Four off-the-
shelf wireless radios mounted on the sides of the vehicle. The smartphone runs
our localization algorithm and displays relevant alerts to the driver. The wire-
less radios on different vehicles send lane discovery beacons to each other and
report the RSSI (Received Signal Strength Indicator) of the received beacons to
the smartphone. MARVEL determines the relative lane location of vehicles by
leveraging the differences in RSSI measurements due to spatial antenna diversity.
MARVEL is based on the observation that path loss of the links between radios
is asymmetrical when the vehicles are in different lanes, and it is symmetrical
when the vehicles are in the same lane. MARVEL satisifes the following desired
requirements:

• Useful information (such as presence of potholes, applying hard brakes or
presence of slow moving vulnerable traffic) from vehicles that are in the
same lane as this vehicle, can provide the driver with more time to react.
Our system is able to detect relative location of even those vehicles that
are not in the immediate neighborhood (thus invisible to camera and radar),
thereby providing the driver with more information to reduce the incidence
of collisions. This information can also be used for improving the design of
autonomous cruise control mechanisms.

• It works in a wide variety of environmental conditions such as bad weather
(rain, snow etc.), various light conditions (dark, sun glare etc.), as well as in
presence of urban noise (e.g. parked cars and store fronts on roadside, crash
barriers, sound walls etc.)

• It is low cost due to ubiquity of smartphones and the low cost of wireless
radios.

• It can be easily deployed on older as well as newer vehicles.

• Our driving results performed using different vehicles and under varying
speed and traffic conditions show that MARVEL computes the relative lo-
cation with an average accuracy of 96%. By aggregating information across
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multiple vehicles, MARVEL is able to increase the localization accuracy to
98%.

This paper is organized as follows: In Section 2, we discuss related work in
this area. Section 3 describes MARVEL in detail. In the next two sections, we
describe the results from our real driving experiments. In Section 6, we describe
two algorithms that further improve the localization accuracy by aggregating in-
formation across different vehicles. In Section 7, we describe the results from our
ns-3 and SUMO based simulations. In Section 8, we discuss different methods
that can make MARVEL more realistic and useful. Finally, in the last section we
conclude the paper.

2 Related Work
The topics of vehicle detection and lane recognition have been studied in the litera-
ture of autonomous vehicles for decades. Radar [2,20], laser [22], and acoustic [7]
based sensors and cameras are common devices in such studies. Radar, laser and
acoustic sensors detect the distance of objects by measuring the round trip time of
signals. Those sensors are commonly used for vehicle detection and blind spot de-
tection. For instance, [2] embeds 24-Ghz radar sensors into the back side bumper
to monitor the blind spots of the host vehicle, and triggers a vision warning sig-
nal if some vehicles are detected. However, those sensors are usually limited in
range to line of sight, difficult to install especially on existing vehicles and ex-
hibit a tradeoff between accuracy and cost. Cameras have broader application in
vehicle detection [14] and lane recognition [8, 23] due to their low costs. The
existing solutions have used camera for recognizing vehicles, obstacles and lane
marks through image recognition techniques. However, using camera for vehicle
detection and lane recognition is highly susceptible to errors due to various factors
such as: (i) Bad light conditions (e.g., night time, sun glare, headlight glare, shad-
ows from nearby buildings); (ii) Improper weather conditions (e.g. snow, rain);
and, (iii) Surrounding noise (e.g., faded lane marks, vehicles parked on roadside,
roadside crash barriers, trees, store fronts etc.).

On the other hand, the computational power of smartphones is being utilized
in various applications such as assisted driving and road infrastructure monitoring
[17]. For example, [24] has recently proposed ways to determine if the user of
the smartphone is the driver or a passenger in the vehicle which could be used to
adjust the behavior of the phone based on the owner’s type. The idea of using
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wireless sensors to detect and track vehicles has been studied in [19, 21]. These
works mainly focus on detecting and tracking the movements of vehicles in a
wireless sensor network deployed in a given area. In contrast, the objective of
this paper is to determine relative vehicle locations using multiple wireless radios
installed on vehicles.

3 System Design
In this section, we will first describe the objectives of our solution. Then, we give
an overview of our system design followed by a list of challenges. Finally, we
describe MARVEL in detail.

3.1 Problem Statement
The objective of our system is to determine the relative position of two vehicles.
Specifically, given two vehicles (see Figure 1) V1 and V2, we seek to determine:
(i) Relative lane localization: If V1 is in left lane, same lane or in right lane with
respect to V2’s lane; and, (ii) Relative front-rear localization: If V1 is in front or
rear with respect to V2. We call the combined problem of “Relative Lane Lo-
calization” and “Relative front-rear localization” as Relative Vehicle Localization.
Vehicle V1 is said to be in front of V2 if the front of V1 is ahead of that of V2 along
the direction of travel. This definition also takes into account the case when one
vehicle is in the blindzone of the other.

3.2 Overview and Challenges
MARVEL comprises of two components for every vehicle. The first component
is a smartphone that could also be the personal smartphone of the vehicle’s driver.
The second component comprises of four wireless radios located at various posi-
tions on the lateral sides of the vehicle. We assume that each vehicle has a unique
vehicle id which could possibly be derived from its license plate number. The ID
of the vehicle (Vi) is known to the smartphone inside the vehicle as well as the
four wireless radios located on the vehicle.

We assume that the smartphone is equipped with an accelerometer and is Wifi
capable. The smartphone (or the MARVEL application running on it) is used to
communicate with other smartphones in other vehicles as well as to display alert
messages. A vehicle may have multiple smartphones present inside, however, we
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assume that in each vehicle, only one smartphone is running the relative local-
ization algorithm. So, we assume that the unique phone ID of the smartphone in
vehicle Vi is Pi. If the smartphone has GPS capability, then the velocity of the
vehicle can be obtained from the GPS. This information along with the relative
lane information can be used to develop various other applications (see Section
1).

Our algorithm running on the smartphone keeps track of relative locations of
all nearby vehicles with whom the smartphone can communicate. For each ve-
hicle, it tracks: (i) The unique vehicle ID of the other vehicle; and (ii) Relative
location of the other vehicle, among the 6 possible regions (see Figure 1). It is also
possible to extend this information to 2-hop neighbors by using multihop commu-
nication. This would provide extra information to the driver and the smartphone
at the cost of higher message overhead. However, in this paper, we assume that
the smartphone maintains information of vehicles that are only within one hop.

The second component of our system, comprises of four wireless radios lo-
cated on the lateral sides of the vehicle. In Section 5.2, we will show that placing
the radios close to each wheel of the vehicle maximizes the accuracy of localiza-
tion. The four wireless radios communicate with radios located on other vehicles
as well as with the smartphone located in the same vehicle. The radios may use
Wifi or Zigbee to communicate with each other, while to communicate with the
phone, they can use Wifi, Bluetooth or Zigbee depending on the capability of the
radios and the smartphone. We also assume that the wireless radios are aware of
the position where they are mounted on the vehicle.

In our vehicle localization algorithm, one of the two phones directs its four
wireless radios to send beacons, while the radios on the other vehicle listen for the
beacons, thereby estimating the path loss between the 16 pairs of wireless radios.
Figure 3 shows a simpler case where only two wireless radios are mounted on the
vehicle, one on each side. Our vehicle localization algorithm is based on the ob-
servation that when the two vehicles are in same lane, the two links AD and BC
are symmetrical (see Figure 3). However, when the vehicles are in different lanes,
the links AD and BC are assymmetrical (discussed in Section 3.3.3 in more de-
tail). However, desigining a vehicle localization system based on RSSI readings
of the links involves multiple challenges: (i) The best location to deploy the wire-
less radios that maximize the localization accuracy needs to be determined; (ii)
If a vehicle changes its lane, the relative lane location of other vehicles should
be updated with minimum latency while limiting the number of packets transmit-
ted by radios so as to minimize congestion and energy consumption; (iii) Packets
transmitted may be lost due to collision with other transmissions; and, (iv) Multi-
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Figure 3: RSSI based Relative Lane Localization with two radios: A,B,C, and
D are radios mounted on vehicles V1 and V2. The expected RSSI for two links
AD and BC are shown for three different cases with thicker lines respresenting
links with higher RSSI values. (a) When V1 and V2 are in the same lane, then the
path losses for links AD and BC are almost symmetrical. (b) When V1 is to the
left of V2, then BC is a direct line of sight link while AD passes through bodies
of 2 vehicles (total of 4 walls and 1 vehicle’s heavy machinery compartment). (c)
When V1 is right of V2, link AD is stronger but BC is weaker. Nearby vehicles
may affect the signal strengths slightly due to multipath.

path propagation may affect the accuracy of relative localization especially if the
sender and the receiver are separated by a large distance.

3.3 Lane Localization Algorithm
In our vehicle localization algorithm, the smartphone transitions between three
different phases (see Figure 4). We will now describe the three phases of the
smartphone and the localization algorithm in more detail.

3.3.1 Monitor Phase

One naive way to trigger the lane localization algorithm is to invoke it at periodic
intervals. However, this would involve considerable packet transmissions from
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Figure 4: Transitions made by the smartphone among the three phases.

the wireless radios themselves, thereby affecting their battery lifetime. Further,
it reduces the probability that a beacon transmitted is received correctly by a re-
ceiving radio. Since, lane changes or turns are not very frequent events, therefore,
in the first phase, the smartphone itself monitors conditions that indicate the fol-
lowing: (i) A possible change in relative location of the vehicle with respect to
other vehicles; and, (ii) Arrival of a new vehicle in the vicinity. Under both con-
ditions, the smartphone will inform its neighbors of a possible lane change event
and move to the beacon phase. A change in relative location of a vehicle with
respect to another vehicle may happen due to two factors: (i) If the vehicle itself
changes lanes or turns to a new street; or, (ii) It overtakes another vehicle. We will
now discuss how the smartphone detects all such possible events.

Detecting Possible Lane Change: To take into account the first condition,
the smartphone (i.e., our application running on the smartphone) continuously
monitors the readings from the accelerometer of the phone to detect possible lane
changes or turns. If the smartphone observes that the accelerometer reading is
beyond a certain threshold, the phone moves to the second phase. However, as we
will show in Section 4, the accelerometer readings are not completely reliable due
to factors such as potholes, bumps and slopes in the road surfaces and curvature
of roads. Therefore, as discussed later in Section 4, MARVEL computes the dif-
ference between maximum and minimum accelerometer readings over a window
of duration 4 seconds and uses that to detect a lane change event.

Detecting Possible Overtaking: Due to differences in speeds of different ve-
hicles, it is possible that a vehicle V1 that was initially in one of the three rear
regions of V2, later overtakes V2, thereby changing its relative position to one of
the three front regions of V2. In such a case, the relative localization algorithm
needs to be triggered by either V1 or V2 to update the relative locations. One way
to do this would be to trigger the relative localization algorithm at periodic inter-
vals. However, this would substantially reduce the lifetime of the radios. Another
method that could be explored is where the phones themselves send beacons to
each other at regular intervals and also monitor the RSSI of the corresponding
received beacons. A change in the RSSI reading of the beacon indicates changes
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in the distance between the two vehicles. A pattern in the received RSSI where it
changes from low to high and then back to low indicates that the other vehicle is
getting closer and then again getting farther away. If the phone observes such a
pattern, it moves to Phase 2 and triggers the localization algorithm.

Discovering New Vehicles in Vicinity: To establish connections with new
smartphones that enter its vicinity and to determine the relative location of those
vehicles, the smartphone broadcasts periodic discovery beacons using UDP. The
phone also listens for discovery beacons broadcast by other phones. If the phone
hears a discovery beacon from a previously unknown phone, the algorithm moves
to Phase 2. Reducing this discovery time enables phones to determine the relative
lane location of neighboring vehicles faster. In order to reduce this discovery
time while managing the smartphone’s battery consumption, MARVEL can work
in conjunction with any of the neighbor discovery algorithms [10, 15] that are
already available in the literature.

3.3.2 Beacon Phase

In the beacon phase, the wireless radios on the vehicle transmit or receive beacons.
Let V1 be the vehicle (with phone P1) computing its relative position and V2 (with
phone P2) be any vehicle among its set of neighbors. Then P1 will instruct its
four wireless radios to send localization beacons while P2 instructs its radios to
listen to these beacons. Each wireless radio hears multiple localization beacons,
and reports the RSSI of the received beacons to its associated phone, P2.

The lane localization beacon broadcast by radios on V1 contains three fields:
(i) V1; (ii) Location of the radio (among the four possible locations) on V1; and
(iii) Transmission power level of the beacon. The packets transmitted by radios
on V2 to the smartphone P2 contains five fields: (i) V1; (ii) V2; (iii) Location of the
radio sending this packet on V2; (iv) Transmission power levels of the four lane
localization beacons received; and, (iv) RSSI values of the four beacons received.
By including the vehicle IDs in the messages, MARVEL is able to ensure that the
radios and the smartphone only process messages that are either directed at them
or the broadcast messages. Further, the radio on V2 may not be able to receive
beacons from all the four radios of V1. In that case, the corresponding values in
the packet are left empty.

In our experiments, we observed that due to collisions, packet losses may hap-
pen. In order to make the algorithm more robust, we require each radio to send
multiple lane localization beacons that are randomly separated. The receiving ra-
dio computes an average RSSI value for each link, while ignoring outliers, before
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reporting it to the phone. This provides a good tradeoff between accuracy and
overhead.

3.3.3 Analyze Phase

In the third phase, smartphone P2 proceeds to compute the relative location on
the basis of path loss of 16 links. P2 can compute the path loss for the 16 links
(four values from each radio) based on the information received from the wireless
radios. Figure 3 shows how using two radios it is possible to distinguish the three
possible cases of two cars in the same lane or in different lanes. Observe that when
the two cars are in the same lane, then links AD and BC are roughly symmetrical.
Thus, the path loss values of these two links would be similar. However, when the
cars are in different lanes, the links are not symmetrical. Specifically, when V1 is
in the left lane of V2, link BC has low path loss compared to path loss on link
AD since BC is a direct line of sight path with no obstacles while AD passes
through bodies of 2 vehicles (or 4 walls and the engine compartment of one of the
vehicles).

So it is possible that the relative signal strength of these two links can be used
to distinguish the three scenarios, thereby solving the relative lane localization
problem. In the same setup, adding two more radios to each vehicle, similarly
provides us with more information that can be utilized to solve relative front-rear
localization problem. Later in Section 5, we show how the 16 averaged RSSI val-
ues are used as input to a Support Vector Machine (SVM) [6] based discriminator
to identify the six relative locations (see Figure 1). After P2 computes the relative
location of V1 with respect to V2, it informs P1 to update accordingly.

The next two sections describe the results from our real driving experiments
where we evaluate how MARVEL performs in presence of multiple vehicles. In
Section 7, we describe results from our ns-3 and SUMO based simulations, where
we evaluate the performance of MARVEL with multiple vehicles under multihop
communication scenarios.

4 Lane Change And Turn Detection
To reduce power consumption due to periodic beacon transmissions (see Section
3.3.1), we propose putting the radios into a sleep mode, and engaging them (for
transmitting or receiving of beacons) by the phone only when either a lane-change
or a turn event is detected, or when a neighbor requests for localization. This also
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reduces the number of packets transmitted, thereby increasing the chances that the
transmitted beacons are received correctly by the receiving radios. Lane-change
events can be detected by accelerometers within the phone. Toward this, we de-
sign a threshold based algorithm for accelerometers to detect the lane-change
events. Using data collected from our experiments, we show that it is possible
to detect lane-change events with high accuracy.

In this experiment, we used a Motorola Atrix smartphone with Android 2.3
to collect the accelerometer data. The phone has a built-in 3-Axis accelerometer,
and was placed on the dashboard of the car. To simplify the procedure of data
analysis, the phone was oriented in a way so that only readings along the X-axis
will be affected within the duration of lane-change. If the phone is placed in an
arbitrary orientation, then virtual reorientation [17] can be used to compute the
acceleration along the width of the vehicle. On average, the accelerometer in the
phone gives 100 readings every second, which are susceptible to noise. To cancel
out the noise and inaccuracy of the accelerometer, we compute the reading at any
point by taking an average of readings received in the previous 0.5 second. Figure
5 shows an example raw data set and the corresponding smoothed data.

Our algorithm is based on the observation that when a lane-change event hap-
pens, the force computed by the accelerometer along the width of the vehicle has
a specific pattern. Assuming that the vehicle is changing its lane towards the di-
rection of the accelerometer’s positive X-axis, then the accelerometer reading first
increases to a high value and then decreases back to a lower value.

To capture this pattern, our algorithm works as follows. The phone maintains
the maximum and minimum readings of the accelerometer (along the width of the
vehicle) within a window of last 4 seconds. This duration of the window is half
of the maximum duration taken by drivers to perform a lane change1. Whenever
a new reading is available, it updates both the maximum and minimum values, and
checks their difference. If the difference is larger than a specified threshold (τ ), the
phone reports a lane-change event, communicates with neighboring phones asking
them to engage their radios, and then moves to the Beacon Phase and triggers the
lane localization algorithm.

As shown next, we found 1.08m/s2 to be an appropriate threshold to detect
lane-changes and turns on both local roads and highways. Based on a total of 148
lane-change events performed in our experiments, we found (see Figure 6) that a
tradeoff exists between the recall (= TruePositive

GroundTruth
) and precision ( = TruePositive

TotalPredictions
)

1In our experiments, we observed that with > 98% probability, all the lane changes are com-
pleted within 8 seconds.

12



-1

 0

 1

 2

 3

 0  10  20  30  40  50  60  70  80
-1

 0

 1

 2

 3

 0  10  20  30  40  50  60  70  80

Max Min Differences

-3

-2

-1

 0

 1

 2

 3

 4

 0  10  20  30  40  50  60  70  80

A
cc

el
er

om
et

er
 R

ea
di

ng
s 

(m
/s

2 )

Time (second)

Turn-R Change-L Change-R Change-L Change-R Change-L Noise

Raw Data
Smoothed Data

-3

-2

-1

 0

 1

 2

 3

 4

 0  10  20  30  40  50  60  70  80

A
cc

el
er

om
et

er
 R

ea
di

ng
s 

(m
/s

2 )

Time (second)

Turn-R Change-L Change-R Change-L Change-R Change-L Noise
-3

-2

-1

 0

 1

 2

 3

 4

 0  10  20  30  40  50  60  70  80

A
cc

el
er

om
et

er
 R

ea
di

ng
s 

(m
/s

2 )

Time (second)

Turn-R Change-L Change-R Change-L Change-R Change-L Noise
-3

-2

-1

 0

 1

 2

 3

 4

 0  10  20  30  40  50  60  70  80

A
cc

el
er

om
et

er
 R

ea
di

ng
s 

(m
/s

2 )

Time (second)

Turn-R Change-L Change-R Change-L Change-R Change-L Noise
-3

-2

-1

 0

 1

 2

 3

 4

 0  10  20  30  40  50  60  70  80

A
cc

el
er

om
et

er
 R

ea
di

ng
s 

(m
/s

2 )

Time (second)

Turn-R Change-L Change-R Change-L Change-R Change-L Noise
-3

-2

-1

 0

 1

 2

 3

 4

 0  10  20  30  40  50  60  70  80

A
cc

el
er

om
et

er
 R

ea
di

ng
s 

(m
/s

2 )

Time (second)

Turn-R Change-L Change-R Change-L Change-R Change-L Noise
-3

-2

-1

 0

 1

 2

 3

 4

 0  10  20  30  40  50  60  70  80

A
cc

el
er

om
et

er
 R

ea
di

ng
s 

(m
/s

2 )

Time (second)

Turn-R Change-L Change-R Change-L Change-R Change-L Noise
-3

-2

-1

 0

 1

 2

 3

 4

 0  10  20  30  40  50  60  70  80

A
cc

el
er

om
et

er
 R

ea
di

ng
s 

(m
/s

2 )

Time (second)

Turn-R Change-L Change-R Change-L Change-R Change-L Noise

Figure 5: Bottom graph shows the raw and smoothed accelerometer readings
along the X-axis. Left and right lane Change events are shown by “Change-L”
and “Change-R”, respectively while left and right turn events bu “Turn-L” and
‘Turn-R”, respectively. Top graph shows the variation in the difference of values
of maximum and minimum smoothed accelerometer readings within the window
of last 4 seconds.

of the prediction. To make sure that the detection algorithm does not miss any
lane-change events, a higher recall rate is desired. From Figure 6, it is clear that
with a threshold 1.08m/s2, 100% recall is possible with roughly 80% precision
for local and 60% precision for freeway. This ensures that whenever a lane-change
event happens, the smartphone is able to detect it. At the same time, it may also
generate some false positive events (roughly 1− 2 for every 5 predictions). How-
ever, since a more accurate relative localization is performed in Phase 2 and Phase
3, such false positives would not affect the accuracy of our solution. In practice,
we do not expect too frequent lane changes, thus we believe that the precision is
acceptable.

5 Real Driving Experiments
In this section, we will describe the results from our real driving experiments per-
formed with different vehicles under varying traffic and road types. The purpose
of the experiments was: (i) To determine the best mounting position of wireless
radios; (ii) To evaluate the correctness and generalizability of MARVEL under
different road types as well as traffic conditions; and, (iii) Determine if MAR-
VEL’s accuracy depends on the type of vehicle used. The conclusions from the
experiments are described in Section 5.8.
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5.1 Experiment Setup and Data Processing
For our driving experiments, we used four different vehicles: (i) Car 1: 2006 Toy-
ota Solara Coupe; (ii) Car 2: 2003 Mazda M6 Sedan; (iii) Car 3: 1999 Nissan
Sentra Sedan; and, (iv) SUV 1: 2011 Hyundai Santa Fe. To evaluate the accuracy
of MARVEL on roads with different speed limits, we also chose two different
kinds of roads: (i) A 5 lane local (speed limit 35 mph) roadway in an urban envi-
ronment with parked vehicles and storefronts on both the sides; and (ii) Freeway
(speed limit 65 mph), with sound walls and crash barriers on the sides of the road
at few places. Traffic was observed to be moderate in all the experiments, except
Section 5.4 where we evaluated the generalizability of our solution with varying
traffic conditions. Since, the experiments were performed under uncontrolled set-
tings, sometimes other vehicles may intervene between our two test vehicles.

We used the commercially available TelosB motes as the wireless radios mounted
on the sides of the vehicles. The body of the mote (along with batteries) was ob-
served to be around 1.5cm thick with a 3cm antenna. Since these dimensions are
very small compared to the width of the vehicle, we do not anticipate any signifi-
cant reduction in efficiency of the car due to the additional wind drag. The range
of the TelosB to TelosB communication was observed to be 60 meters (when there
are no obstacles in between) in parking lots. However, we could not measure the
range during driving due to unavailability of appropriate equipment. For the pur-
pose of experiments, instead of the smartphone, we used another TelosB mote
connected with a laptop, inside the vehicles, to collect RSSI readings from the
TelosB motes mounted outside. To handle possible packet losses due to colli-
sions, TelosB motes send 5 localization beacons at a random spacing of 25-50ms.
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The path loss value for a link is then computed by taking an average of the 5
values.

We identify the problem of finding another vehicle’s position, among the six
possible positions (see Figure 1), as a supervised classification problem and ad-
dress it using machine learning algorithms. For this, we used the RapidMiner
software (version 5.1.104) [16] for training and testing. In RapidMiner, we chose
the SVM’s implementation libSVM with the SVM type set as C-SVC and kernel
type as linear. The values of C, cache size and epsilon were set to 0.0, 80 and
0.001, respectively. We define the Classification accuracy as the percentage of
the testing data for which the relative location is correctly predicted by the clas-
sification model. For different experiments, we use different training and testing
techniques to evaluate the accuracy of MARVEL. In some cases, we divide the
collected data set into two parts, train on the first and test on the second. How-
ever, in some other cases, we use independent test sets, i.e., we train the system
on one kind of data (e.g., for local roads) and test it on another kind of data (e.g.,
freeways).

Errors in classification accuracy may arise due to a variety of factors: (i) Pres-
ence of nearby driving vehicles on the roadway and urban obstacles (store fronts,
crash barriers, parked cars, sound walls etc.) may affect the value of the signal
strength; (ii) Transmissions from the roadside Wifi access points may affect the
packet drop rate of the transmitted beacons; (iii) Sometimes a car may straddle
two lanes; and, (iv) Different vehicles may have different physical profile (width,
organization of machinery under the car hood etc.) which may affect the path loss
values.

The results shown in this paper are based on our 500 miles of driving. Dur-
ing the driving experiments, one of the passengers recorded the ground truth by
manually recording the time and the relative vehicle positions while the drivers
changed lanes at regular intervals. We randomly split the finally collected data
set into testing data set and training data set. It was ensured that each of the 6
classes (corresponding to six different relative positions from Figure 1) have equal
amount of data in both the training sets and the testing sets.

5.2 Determining the best configuration
In this experiment, we varied the number and positions of radios on the vehicle
to determine the configuration that maximizes the localization accuracy. In our
experiment, we explored 21 candidate configurations on the exterior of a car to
mount the TelosB motes. Figure 7 shows four such possible configurations along
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with their labels and accuracies. In each driving test, we mounted the specified
number of radios on the two cars. The total duration of driving for each test
was around 60 minutes with about 30 minutes of local driving and 30 minutes of
freeway driving. In this subsection, we used four types of driving data for each
radio position combination: (i) Data between two sedans on local roads; (ii) Data
between two sedans on freeway; (iii) Data between the coupe and SUV on local
roads; and, (iv) Data between the coupe and SUV on freeway. The data was then
divided into equal-sized training set and a testing set.

We observed that when four radios are placed vertically above the four wheels
on the vehicle’s body, we get the maximum accuracy of 99.78%. In the later eval-
uations, we only use configuration A, unless mentioned otherwise. Also, from
Figure 7, we can observe that using more radios increases the classification ac-
curacy since more radios capture more information about the relative locations of
vehicles. The results of the experiment also indicate that the position of the radios
affect the accuracy of the classifier. For example, C and H both have three radios
but their accuracy is significantly different.

5.3 Evaluation with varying road types
The purpose of this experiment was to evaluate the generalizability of MARVEL
with varying road types: (i) Local roads; and, (ii) Freeways. The speed limit on
local roads and freeway were 35 MPH and 65 MPH, respectively. The traffic was
observed to be moderate when collecting the two data sets. We used the coupe and
the SUV’s driving data as well as the two sedan’s driving data in this experiment.
After the experiment, we created a local driving data set Local and a freeway
driving data set Freeway.

We first used data from Local to train an SVM classifier. When tested on data
from Freeway, the classifier’s accuracy was found to be 97.33%. In the next test,
we trained another SVM classifier using Freeway data and tested it on Local
data. This time, the classifier gave an accuracy of 99.39%. This high classifica-
tion accuracy indicates that the path loss patterns on local roads and freeways are
similar and that training is independent of road type and speed.

5.4 Evaluation under varying traffic conditions
In this experiment, we want to determine whether MARVEL is robust to variations
in traffic conditions, and then decide whether we need to include the driving data
of different traffic conditions to train the classifier. For this, we created a heavy
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Figure 7: The different combinations of placement of the wireless radios and the
corresponding relative lane localization accuracy. The classifier from configura-
tion A has the highest prediction accuracy.

traffic data set called Heavy and a light traffic data set called Light. Heavy con-
tains the data between the coupe and SUV on a mix of busy local roads and busy
freeways. The same two vehicles were also driven under light traffic conditions to
create the dataset Light.

We used Heavy to train an SVM classifier, and then on testing it with Light,
the classification accuracy was found to be 38.68%. In the next test, we used
Light as the training set. When tested by Heavy, the new classifier had accuracy
of 25.22%. In both cases, the accuracy is quite low. This indicates that the radio’s
path loss pattern in light and heavy traffic conditions are different. This is because
in heavy traffic, frequently there are multiple other vehicles between the two test-
ing vehicles. This result is consistent with our observation that the body of a car
can affect the path loss of the wireless radio signal.
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However, we find that splitting Heavy into two equal sized sets Heavy1 and
Heavy2, training the classifier on Heavy1 and testing it on Heavy2, increases
the classification accuracy to 96.91%. Similarly, if Light is split into two sets
Light1 and Light2, with training performed on one and testing on the other, it
also increases the classification accuracy to 99.84%. This result indicates that
both heavy traffic data and light traffic data have clear and consistent patterns.
Therefore, to estimate the relative position in different traffic conditions, one way
is to include the traffic condition as an input to the classifier.

We created a mixed traffic data set Mix by combining equal amounts of data
from both Heavy and Light. Then we split Mix into two equal sized data sets
Mix1 and Mix2, trained the SVM classifier on Mix1 and tested it separately
on Mix2, Light2 and Heavy2. This classifier’s accuracy was observed to be
97.21%, 95.73% and 99.11%, respectively. The mixed traffic condition classifier
has high accuracy indicating that for high accuracy classification in various traffic
conditions, it is useful to train it under both light and heavy traffic conditions. This
removes the requirement to provide the traffic condition information as an input.

5.5 Evaluation with variation in vehicle types
In this experiment, we tested how the body of a car affects the performance of
the classifier. We call the data collected by using the coupe and the SUV on both
local roads and freeways as SUV Data, and the data collected using two sedans
on same roads as SedanData. For both types of roads, the traffic was observed
to be moderate.

We first use SedanData to train an SVM classifier, and upon testing it with
SUV Data, we observed an accuracy of 88.32%. Similarly, in the next test, we
trained the SVM classifier with SUV Data and tested it using SedanData and
observed the accuracy to be 93.50%. Compared with the results in Section 5.2,
the results here are around 10% lower. This indicates that different types of ve-
hicle bodies create different signal strength patterns; however, the variation in the
patterns is much smaller than the variation due to different traffic conditions. We
can see from the result in Section 5.2 that when we include different types of ve-
hicles into the training set, the accuracy was very high (99.78%). This indicates
that the classification model does not have a bias problem with respect to vehicle
type, therefore, it is not required to provide vehicle body as an input to the model.
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5.6 Evaluation with variation in wireless radio position
As discussed in Section 5.2, the best position for mounting the wireless radios is
above the wheels. However, sometimes due to human-error, the radios may not
be mounted at exactly the right place. In this experiment, we studied the varia-
tion in accuracy of MARVEL with random errors in mounting the wireless radios.
This time, for collecting data, we drove two sedans on local as well as freeway and
collected three data sets: (i) Correct: Radios mounted at correct position with cor-
rect orientation; (ii) Incorrect10: Radios mounted anywhere within 10 cm of the
correct position with random orientation; and, (iii) Incorrect20: Radios mounted
anywhere within 20 cm of the correct position with random orientation. We then
divided Correct in two equal parts, Correct1 and Correct2. By training the SVM
classifier on Correct1, and testing on Correct2, Incorrect10 and Incorrect20 we
obtained accuracies of 99.2%, 98.0% and 96.5%, respectively. Next, we mixed all
the three data sets to get Mix and used it for training. When tested on Correct,
Incorrect10 and Incorrect20, the SVM classifier gave an accuracy of and 99.1%,
98.4% and 97.3%, respectively.

5.7 Mix all types of driving data together
In this section, we trained the classifier on a data set combined from all driving
tests and evaluated its accuracy on different types of driving data. In the combined
training set, we include: (i) the two sedan’s local and freeway driving data in mod-
erate traffic; and, (ii) the coupe and SUV’s local and freeway driving data under
both moderate and heavy traffic conditions. The testing was done on different sets
of driving data separately as well as on another data set from a drive on a curved
freeway. Due to unavailability of a local long enough road with multiple lanes and
curves, we skipped testing the classifier on curved local roads. From Table 1, we
can see that for all the cases, the mixed mode’s accuracy is at least 92.8%. When
testing on curved freeways, the accuracy is slightly lower, as the classifier predicts
some of the same lane cases as left lane or right lane. The overall accuracy was
observed to be 96.8%. This result confirms that MARVEL is robust to most of the
variations in driving cases.

5.8 Conclusion from the experiments
From the experiment results (Section 5.2), we can make the following conclu-
sions: (i) The best configuration among all the configurations we tested is A (Fig-

19



Table 1: Test results of the classifier trained by mixing all the driving data.

Testing data set Accuracy
Mixed data 96.8%
Two sedans, Local, Moderate traffic 98.5%
Two sedans, Freeway, Moderate traffic 97.9%
Coupe and SUV, Local, Moderate traffic 97.7%
Coupe and SUV, Freeway, Moderate Traffic 99.4%
Coupe and SUV, Local, Heavy Traffic 92.8%
Coupe and SUV, Freeway, Heavy Traffic 95.7%
Two sedans on a freeway with curves 94.0%

ure 7), where the four radios are placed above the four wheels of the vehicle; (ii)
Driving speed does not affect the accuracy significantly; (iii) Heavy traffic con-
ditions and light traffic conditions have different path loss patterns, but their own
patterns are consistent which allows us to train the model with mixed traffic data
and still get high classification accuracy; (iv) The classifier’s prediction accuracy
varies with variation in vehicle’s body but after combining the training data of
different car bodies, it is possible to achieve high prediction accuracy; and, (v)
Our design is robust to placement errors of the radios. Finally, after mixing all
the training data and testing it individually on each of the testing data sets, we
observed that the classifier has 96.8% pediction accuracy when tested under mod-
erate traffic conditions. In heavy traffic condition and curved drive, the accuracy
will decrease, but the overall accuracy remains above 92.8%.

6 Increasing Robustness through Aggregation
In Section 3, we discussed how the radios on the vehicle can be used to determine
the relative location of two vehicles. However, sometimes it may lead to incorrect
results. In this section, we explain how the accuracy of localization can be further
increased through aggregation, e.g., if V1 is left of V2 and V2 is left of V3, then it is
possible to infer that V1 is also left of V3. Similar kind of aggregation can be used
for front and rear relationships. Accuracy of relative localization can be improved
by applying aggregation rules separately to left-same-right and front-rear rela-
tionships between neighboring vehicles. Consequently, in this section, we discuss
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two algorithms. The first one improves the accuracy of lane localization while the
second improves front and rear localization accuracy. Both the algorithms are dis-
tributed in nature and are executed by every vehicle in the network. Whenever the
phone (or the corresponding vehicle) determines its relative position with respect
to some neighboring vehicle, it executes both the algorithms to further improve
the robustness. However, desinging an aggregation algorithm that improves local-
ization accuracy involves the following challenges: (i) To avoid dependence on
a centralized server, it is preferable to use a distributed algorithm; (ii) The set of
neighbors of a vehicle may change with time, making it hard to find a fixed set
of aggregating vehicles; and, (iii) The relative location determined by the SVM
classifier may be incorrect in some cases.

6.1 Aggregating relative lane localization information
To improve the accuracy of left-same-right relationship, we assign every vehicle
a coordinate system and a virtual lane number corresponding to that coordinate
system. Virtual lane numbers are comparable among vehicles that belong to the
same coordinate system, i.e., any two vehicles that belong to the same coordinate
system have the same virtual lane numbers iff they are in the same physical lane
of the roadway. Similarly, a vehicle on the left side has higher virtual lane number
than a vehicle on the right side if both of them belong to same coordinate system.
The virtual lane location is computed using the relative locations with respect to
multiple neighbors. Thus, it can fix errors that may arise in relative localization.

A coordinate system Ca is denoted by the tuple (Ta, Ia) where Ta is the times-
tamp when the coordinate system was created and Ia is the ID of the vehicle that
created the coordinate system. A coordinate system Ca is said to be smaller than
coordinate system Cb if one of the following conditions is true: (i) Ta < Tb; or,
(ii) Ta = Tb and Ia < Ib. A vehicle may create a new coordinate system if any
of the following conditions is true: (i) When the app on the phone is started; (ii)
When the app detects that the vehicle is in motion after a stop that lasted more
than Tstop time; or (iii) If the accelerometer triggers a possible lane change event
or a turn event. Upon creation of a new coordinate system with the current times-
tamp and its own ID, the vehicle (say Vi) initializes its lane number (Li) in the
new coordinate system to be 1 and the corresponding probability (αi) also as 1.

After initializing its coordinate system, Vi may seek to join the coordinate sys-
tem of another vehicle. For this, it communicates with all its neighbors, to obtain
the information of their current coordinate systems and their lane numbers; it then
joins the smallest coordinate system among all its neighbors (Lines 1-2 of Al-
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gorithm 1). This ensures that eventually all neighboring vehicles will belong to
the same coordinate system, thereby increasing the chances that their virtual lane
numbers are comparable. When joining the new coordinate system, Vi also deter-
mines its lane number with the help of its neighbors (denoted by Slow) that are in
the smallest coordinate system (Lines 3-19). Then, Vi determines its relative loca-
tion with respect to all vehicles in Slow using the algorithm discussed in Section 3
(Line 6). Then, it proceeds to compute its lowest possible lane (min) and highest
possible lane (max) numbers (Line 7) which are one lower and one higher than
the lowest and highest lane number of all vehicles in Slow, respectively.

Then, for every lane among the possible lanes from min to max, it computes
the confidence that the vehicle is located in that lane (Lines 8-17). To compute the
confidence of being in a particular lane (say l), it computes the relative location of
l with the lane number of vehicle Vj (Lines 11-16). This confidence is computed
over all vehicles and their sum (confil) reflects the confidence that Vi is in l based
on information of all vehicles in Slow (Line 17). Here c is the output of the SVM
based classifier (see Section 3) and its value lies between 0 and 1. Finally, the lane
that maximizes the confil is designated as the lane number of Vi and its proba-
bility value (αi) is also updated by normalizing it across all possible lanes (Lines
18-19). For increased robustness, each vehicle in our algorithm, also invokes Al-
gorithm 1 periodically to update its virtual lane number. Since each vehicle now
has a virtual lane number, two vehicles can now arrive at a more accurate result
for their relative localization by just comparing their virtual lane numbers.

6.2 Aggregating front-back localization information
Similarly, in order to improve the accuracy of the front-back localization, each ve-
hicle obtains relationship information with its neighbors. Using that information
and its own relative position with respect to its neighbors, it constructs a relation-
ship graph G = (W,E) where W is the set of vehicles (See Algorithm 2). Further,
there is an edge from vehicle Va to Vb iff Va believes that Vb is in its front2. Pres-
ence of a directed cycle in G implies that relative location for at least one pair of
vehicles is incorrect (See lemma A.1 for proof). Therefore, by removing cycles
from G, Algorithm 2 increases the accuracy of relative localization.

Since counting the number of cycles in a graph is an NP-Hard problem (See
theorem A.1 for proof), therefore, we define a heurisitcal metric β(G) that cap-

2Equivalent to saying that Vb believes that Va is in rear since the vehicle that computes relative
location passes on the result to the other vehicle (Section 3.3.3)
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Algorithm 1: For a given vehicle (Vi), distributed algorithm for updating
coordinate system (Ci), lane number (Li) and corresponding probability (αi)
for Vi

1 For every neighbor Vj , obtain Vj’s coordinate system (Cj), Vj’s most probable
virtual lane number (Lj) and probability that Vj is in Lj (αj)

2 Clow ← arg min
j:Vj is a neighbor of Vi

Cj

3 Slow ← Set of neighboring vehicles that are in Clow

4 if Clow ≤ Ci then
5 Ci ← Clow, Li ← φ
6 Determine relative lane location with respect to each vehicle in Slow.
7 min← min

j:Vj∈Slow

Lj − 1,max← max
j:Vj∈Slow

Lj + 1

8 for l = min to max do
9 confil ← 0

10 for all Vehicle Vj ∈ Slow do
11 if Lj − l > 0 then
12 c←Confidence that relative location of Vj with respect to Vi is left
13 if Lj − l = 0 then
14 c←Confidence that relative location of Vj with respect to Vi is

same lane
15 if Lj − l < 0 then
16 c←Confidence that relative location of Vj with respect to Vi is

right
17 confil ← confil + αj × c

18 maxLane← argmax
i

confii

19 Li ← maxLane, αi ← confimaxLane∑max
l=min confil
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tures the number of cycles in G. To determine if a directed edge (Vi, Vj) is a part
of some cycle, we only need to check if Vi is reachable from Vj .

β(G) = {|e : e ∈ E and e is part of some directed cycle|}

To remove cycles from G without losing any relative location information, Al-
gorithm 2 reverses edges in G until G becomes acyclic. For this, at each step, it
iteratively reverses the edge that reduces the number of cycles in G by the largest
amount. Reversing an edge (Va, Vb) indicates that based on information of neigh-
boring vehicles, it is more likely that Va is actually in front of Vb. To minimize
the number of edges reversed, Algorithm 2 first tries to find a single edge that can
be reversed to reduce the number of cycles (Lines 5-11). However, it is possible
that it is not able to find any such edge even though the graph is cyclic. In that
case, it picks a vertex and reverses all the incoming edges (Lines 15-19) or all the
outgoing edges (Lines 20-24). Algorithm 2 performs this search over all vertices
and performs the operation on the vertex that maximizes the number of cycles re-
duced (Lines 13-25). It can be shown that Algorithm 2 eventually terminates and
has a polynomial time complexity (For proof, see theorem A.2).

7 Simulations
In Section 5, we described the experiment results obtained on a variety of vehicles.
However, evaluating the behavior and performance of our algorithm for a larger
set of vehicles was labor intensive as every vehicle requires one driver and one
passenger to record the ground truth. So, we performed trace-driven simulations
using ns-3 [1] and SUMO [5]. SUMO is a simulator for VANETs which given a
road network, generates a pre-determined number of trips for vehicles. For each
trip, it chooses a random starting point, a random ending point and generates a
route for the vehicle completing that trip. SUMO is a microscopic-level road traf-
fic simulator which implies that SUMO models multiple lanes in the roadways and
vehicles in SUMO perform automatic lane-changes and overtaking of vehicles as
they move from their starting point to their ending point in the map. The objec-
tives of the simulations were as follows: (i) To determine the increase in accuracy
achieved by using aggregation algorithms; and, (ii) To determine the packet loss
rate and its affect on accuracy when multiple vehicles are running MARVEL.

For our simulations, we chose a 3 miles × 3 miles area around downtown of
Austin3. Further, we used SUMO to generate 1000 trips (or vehicles) and their

3Randomly chosen city
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Algorithm 2: For a given vehicle (Vi), distributed algorithm for updating
front-back relationship of Vi with respect to its neighbors
1 G = (W,E)← Front-back graph based on neighborhood info where
2 W ← {Vi}∪ Neighbors of Vi

3 E ← {(Va, Vb) : Va believes that Vb is in its front }
4 while β(G) > 0 do
5 maxdiff ← 0, edgeToReverse← φ
6 for all e ∈ E do
7 E′ ← E\{e} ∪ {e}, G′ ← (W,E′)
8 if β(G)− β(G′) > maxdiff and e is not a part of some directed cycle in

G′ then
9 maxdiff ← β(G)− β(G′), edgeToReverse← e

10 if maxdiff > 0 then
11 E ← E\{edgeToReverse} ∪ {edgeToReverse}
12 else
13 edgesToReverse← φ
14 for all Vi ∈W do
15 F ← {(Vj , Vi) for some Vj ∈W}
16 F ←Obtained after reversing all edges in F

17 E′ ← E\F ∪ F , G′ ← (W,E′)
18 if β(G)− β(G′) > maxdiff then
19 maxdiff ← β(G)− β(G′), edgesToReverse← F
20 F ← {(Vi, Vj) for some Vj ∈W}
21 F ←Obtained after reversing all edges in F

22 E′ ← E\F ∪ F , G′ ← (W,E′)
23 if β(G)− β(G′) > maxdiff then
24 maxdiff ← β(G)− β(G′), edgesToReverse← F

25 E ← E\{edgesToReverse} ∪ {edgesToReverse}
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Figure 8: Simulation results with varying number of neighbors.

corresponding routes. The simulation was executed for 900 seconds which was
enough for every vehicle to reach its destination. The output of SUMO (position
of every vehicle at each instant of time) was used for generating the locations of
corresponding nodes in ns-3.

In ns-3, every vehicle consisted of 5 nodes: a smartphone and the 4 wireless
radios. The mobility of the 5 nodes is generated from the SUMO’s output. The
smartphones send UDP discovery beacons every 10 seconds that are heard by
neighboring smartphones. The range of radio to radio communication was set to
65 meters while the range of smartphone to smartphone communication was set
to 100 meters.

The wireless radios transmitted localization beacons when directed by the
smartphone. To simulate the effect of vehicle’s body and the neighboring ur-
ban structures (parked cars, other vehicles and store fronts) on the signal strength,
we took the signal strength values at the receiving wireless radios from the data
obtained through experiments corresponding to the ground truth location of the 2
vehicles. However, the packets from one wireless radio (or smartphone) to another
were still dropped by ns-3 if some other neighboring node was also observed to
be transmitting at the same time. Similar to experiments, here also every wireless
node transmitted 5 localization beacons at random spacings of 25-50 ms. The
smartphone computed the relative location of its vehicle with respect to neighbor-
ing vehicles by passing the 16 averaged RSSI values to the SVM classifier. For
the simulations, we assumed that the smartphone triggers lane change events with
100% recall and 60% precision (See Section 4).

Simulation Results: Figure 8a shows that packet loss rate increases with in-
crease in number of neighbors. The average packet loss rate across all nodes was
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observed to be 2.3%. Since, in MARVEL, radio nodes broadcast lane discovery
beacons multiple times, it is expected that this low loss rate would not decrease
the accuracy. However, with increase in number of neighbors, it is possible for
MARVEL to increase accuracy by making use of aggregation. Figure 8b shows
the variation in localization accuracy before and after we performed aggregation
using the two algorithms. With aggregation, MARVEL is able to improve the
localization accuracy to 99% when the number of neighbors is very high. When
number of neighbors is low, aggregating information across vehicles provides lim-
ited benefit. Over all vehicles in the simulation, we observed that aggregation
improved accuracy to 98%.

8 Discussion and Future Work
In this section, we discuss some mechanisms that can make MARVEL more ac-
curate and practical.

8.1 Increasing lifetime of wireless radios
By using the accelerometer of the phone to trigger the relative localization algo-
rithm, we have been able to avoid periodic triggering of wireless radios, thereby
increasing their lifetime. Results from our experiments and simulations show that
the standard TelosB motes exhibit a battery lifetime of at least 6 months for an
average of 2 hours daily driving and a maximum reaction time of 1 second after
the lane change event is triggered (See Section B for details). To remove the de-
pendence on batteries, the possibility of connecting the wireless radios directly to
the vehicle’s power supply can also be explored.

8.2 Incremental Deployment
MARVEL can determine relative location only if both vehicles are equipped with
wireless radios. It cannot determine the relative location if only one of the vehi-
cles is equipped with radios. However, MARVEL can provide incremental benefit
to vehicles that are equipped with 4 radios. In USA, FCC has already reserved
75 MHz of spectrum for Dedicated Short Range inter-vehicle Communication
(DSRC). It is expected that in the future, all vehicles will be equipped with at
least one antenna for DSRC. Our experiments show that if one of the vehicles is
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equipped with only one antenna (located on the vehicle’s body near the front pas-
senger side wheel) and the other with 4 antenna, MARVEL correctly predicts the
relative location with 64% accuracy. Therefore, as DSRC becomes more common,
vehicles with 4 antennas would be able to use MARVEL with 64% and 96.8% ac-
curacy when they encounter other vehicles with a single antenna and with four
antennas, respectively. Using simulations, we also observed that if 50% of the
vehicles have 1 antenna while the other 50% have 4 antennas, then average local-
ization accuracy was 87% for one antenna-four antenna vehicle pairs and 96% for
four antenna-four antenna vehicle pairs. Thus, with aggregation, it is possible to
achieve higher localization accuracy even when all vehicles are not equipped with
four radios.

8.3 Training Cost
To achieve higher localization accuracy, it is beneficial to train MARVEL for the
specific vehicle. As we saw in Section 5.5, it still provides an accuracy of 90%
when trained on a vehicle with different physical profile. Also, in our experiments
we saw that testing a classifier on sedan-sedan pair that is trained with sedan-
coupe pair still gives 96% accuracy. This implies that it is not necessary to train
MARVEL separately for vehicles that have similar physical profiles, although to
get higher accuracy it is beneficial to train MARVEL on only those vehicles that
have significantly different profiles.

9 Conclusion
In this paper, we proposed a novel antenna diversity based solution called MAR-
VEL, for determining the relative location of two vehicles on roadways. Relative
location information has the potential to not only enhance the driving experience
by providing relevant alerts but also reduce the chance of collisions. MARVEL
has low cost and is easy to install on newer as well as exisiting vehicles. Re-
sults from our driving experiments performed under varying conditions show that
MARVEL predicts relative location of two vehicles with an average accuracy of
96.8%. MARVEL is able to determine the relative position of vehicles that are
not in the immediate neighborhood, thereby giving the vehicle driver more time
to react. To reduce energy consumption of wireless radios and to reduce the num-
ber of packets transmitted, we also proposed using the phone’s accelerometer to
trigger the localization algorithm. We presented two algorithms that increase the
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localization accuracy by aggregating information across multiple vehicles. Our
trace-driven simulations show that by aggregating information, MARVEL is able
to increase the localization accuracy to 98%.
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A Proofs
Lemma A.1. Presence of a directed cycle in G implies that relative location for
at least one pair of vehicles is incorrect.

Proof. If the vehicles (or vertices) (say V0, V1, . . . , Vk ) form a directed cycle, then
a directed edge from Vi to Vi+1 implies that Vi+1 is in front of Vi for i ∈ {0, k−1}.
On the basis of this information, it can be inferred that Vk is in front of V0 . Also,
the edge from Vk to V0 implies that Vk is in the rear of V0 which contradicts our
previous conclusion. Hence, relative location for at least one pair of vehicles must
be incorrect.

Theorem A.1. Counting the number of directed cycles in a graph is an NP-Hard
problem.

Proof. See [4] for the proof.

Lemma A.2.

No edge is reversed by algorithm 2 more than once. Also, algorithm 2 does
not create new cycles in the graph G.

Proof. Algorithm 2 may either reverse a single edge or a subset of edges incident
to the same vertex. When it reverses only one edge, then it is ensured that the
incident edge is not part of any cycle. Similarly, when it reverses multiple edges
incident to the same vertex, then none of those edges, after reversal, can be part of
any cycle (Since after reversal all edges incident on the vertex are either outgoing
or all are incoming). Therefore, once algorithm 2, reverses an edge, then reversed
edge is not part of any cycle. This implies that after an edge is reversed, it is not
a part of any cycle and it will never become part of any new cycle. Hence, it will
never be reversed again. Further, since the reversed edge is not part of any cycle,
therefore during its execution, algorithm 2 does not create any new cycles.

Lemma A.3. If there is at least one cycle in G, then Algorithm 2 will find some
edge that can be reversed such that number of cycles is reduced and β(G) is
reduced.

Proof. If G has a cycle, then β(G) will be positive since some of the edges in
G are part of directed cycle. Therefore, Algorithm 2 will stay in the while loop.
Observe that if there is a cycle in G, then all vertices that are part of some directed
cycle have at least one incoming edge and one outgoing edge. By reversing the
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direction of these edges (for some vertex) such that either all of them are incoming
or outgoing, it is possible for algorithm 2 to break the cycle. This would also lead
to reduction in the value of β(G) since the reversal reduces the number of cycles
without creating any new cycles (From lemma A.2). Since, the algorithm explores
all the vertices of G, therefore, it would find at least one vertex for which reversing
the edges incident to it would break at least one cycle and hence reduce the value
of β(G).

Theorem A.2. Algorithm 2 eventually terminates and has a polynomial time com-
plexity.

Proof. We first show that when Algorithm 2 terminates, then there are no cycles
in W : From Lemma A.3, we know that as long as there are cycles in G, algorithm
2 will be able to reduce β(G) for every iteration of while loop. A zero value of
β(G) is possible iff G is acyclic. Therefore, in algorithm 2 eventually β(G) will
become 0, thereby terminating the algorithm.

Since, a graph has O(|V |2) edges, each edge is reversed at most once (See
Lemma A.2), and finding an edge (or edges) to reverse takes polynomial time,
therefore, algorithm 2 has a polynomial time complexity.

It is possible to compute shortest path between all pair of vertices using Floyd-
Warshall algorithm (O(|V |3) complexity). This can in turn be used to compute
β(G) (O(|V |3) complexity). Since in every iteration of while loop, algorithm
2 will find at least one edge to reverse and each edge is reversed at most once,
therefore, algorithm 2 will execute while loop O(|E|) times. Within the while
loop, β(G) is computed at most O(|E| + |V |) times, therefore it is possible to
implement Algorithm 2 with O(|E|2|V |3) complexity. In our simulation results,
we observed that Algorithm 2 terminates within 10 milliseconds with very high
probability since the graph generally consists of 1-hop neighbors of the vehicle
and is small in size.

B Battery Life
In this section, we investigate the battery lifetime of the wireless radios deployed
on the vehicle. For this, we assume that off the shelf TelosB motes with AA
batteries are being used as wireless radios. We further assume that the vehicle
is driven an average of 2 hours everyday (See Table 2). A single AA battery
generally provides 2100 mAh of energy before its voltage drops below 1.05 V
[11]. We used 1.05 V as the cutoff as the Telosb motes require a minimum of 2.1
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Table 2: Parameters for computing battery lifetime

Parameter Value
Average driving time 2 hours
AA battery capacity 2100 mAh [11]
Batteries per Telosb mote 2
Telosb wake up interval (Driving mode) 0.5 seconds
Telosb wake up interval (Vehicle parked mode) 120 seconds
Telosb current consumption with radio and MCU on 21.8 mA [9]
Telosb current consumption in deep sleep mode 5.1 µA [9]
Percentage of wake ups that are long 50% (Section 7)
Long wake up duration 0.4 seconds
Short wake up duration 0.1 seconds

V to operate [9]. To ensure a reaction time of at most 1 second, we set the wake
up interval of TelosB motes to be 0.5 second when vehicle is in motion. However,
when vehicle is not in motion, then the motes wake up once in 120 seconds to
establish communication with the smartphone (if it is there).

When the vehicle is in driving mode, radios would wake up every 0.5 sec-
onds, however, upon waking up, they would not need to perform relative vehicle
localization in all the cases. Relative vehicle localization is required only if it is
triggered by accelerometer of the smartphone, a new neighboring smartphone is
discovered, the vehicle overtakes (or is overtaken) by another vehicle, or when a
neighboring vehicle requests it. We observed in our simulations that radios need
to perform relative vehicle localization in at most 50% of the instances they wake
up.

If wireless radios are performing localization (i.e. wakeup is long), then their
wakeup duration is assumed to be 0.4 seconds, while if they do not perform lo-
calization, then it is possible for them to go back to sleep with in 0.1 seconds.
In our experiments, we observed that the duration of 0.4 seconds was enough for
the motes to (i) listen for the message from the phone; (ii) Transmit or receive
localization beacons; and (iii) Report RSSI values back to phone.

From these parameters, we can conclude that the average wake up duration
= 0.5 × 0.4 + 0.5 × 0.1seconds = 0.25 seconds Therefore, when the vehicle is
driving, then the total time spend my motes in awake state is = 2×3600

0.5
× 0.25 =

3600 seconds Similarly, when the vehicle is in parking mode, then the total time
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spend by motes in awake state is = 22×3600
120

× 0.1 = 66 seconds The total time
spend by motes in awake state per day = 3600 + 66 = 3666 seconds. The total
time spend by motes in standby state per day = 24×3600−3666 = 82734 seconds.
Based on these values, we can finally compute the battery lifetime of motes as =

2×2100×3600 mAs
3666×21.8+82734×5.1×10−3 mAs\day = 188 days
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