
GMProf: A Low-Overhead, Fine-Grained Profiling Approach for GPU
Programs

Mai Zheng
zhengm@cse.ohio-

state.edu

Vignesh T. Ravi
raviv@cse.ohio-state.edu

Wenjing Ma *
wenjing.ma@pnnl.gov

Feng Qin
qin@cse.ohio-state.edu

Gagan Agrawal
agrawal@cse.ohio-

state.edu
Dept. of Computer Science and Engineering, The Ohio State University

* Pacific Northwest National Lab, Richland, WA

ABSTRACT
Driven by the cost-effectiveness and the power-efficiency,GPUs
are being increasingly used to accelerate computations in many do-
mains. However, developing highly efficient GPU implementations
requires a lot of expertise and effort. Thus, tool support for tun-
ing GPU programs is urgently needed, and more specifically, low-
overhead mechanisms for collecting fine-grained runtime informa-
tion are critically required. Unfortunately, profiling tools and mech-
anisms available today either collect very coarse-grainedinforma-
tion, or have prohibitive overheads.

This paper presents a low-overhead and fine-grained profiling
technique developed specifically for GPUs, which we refer toas
GMProf. GMProf uses two ideas to help reduce the overheads of
collecting fine-grained information. The first idea involves exploit-
ing a number of GPU architectural features to collect reasonably
accurate information very efficiently, and the second idea is to use
simple static analysis methods to reduce the overhead of runtime
profiling. The specific implementation of GMProf we report inthis
paper focuses on shared memory usage. Particularly, we helppro-
grammers understand (1) which locations in shared memory are in-
frequently accessed? and (2) which data elements in device mem-
ory are frequently accessed?

We have evaluated GMProf using six popular GPU kernels with
different characteristics. Our experimental results showthat GM-
Prof, with all optimizations, incurs a moderate overhead, e.g., 1.36
times on average for shared memory profiling. Furthermore, for
three of the six evaluated kernels, GMProf verified that shared mem-
ory is effectively used, and for the remaining three kernels, it not
only helped accurately identify the inefficient use of shared mem-
ory, but also helped tune the implementations. The resulting tuned
implementations had a speedup of 15.18 times on average.

1. INTRODUCTION

1.1 Motivation
In recent years, Graphics Processing Units (GPUs) have become

extremely cost and power effective and have garnered increasing
popularity. Using a large number of simple, in-order cores,GPUs
have been effective in scaling the performance of a variety of non-
graphical applications across different domains, including financial
modeling, weather forecast, computational biology, and many oth-

1. __global__ void transpose(float *odata, float *idata, int width, int height)

2. { …

3. __shared__ float shared_data[BLK_DIM][BLK_DIM];

4. unsigned int xIndex = blockIdx.x * BLK_DIM + threadIdx.x;

5. unsigned int yIndex = blockIdx.y * BLK_DIM + threadIdx.y;

6. if ((xIndex < width) && (yIndex < height)) {

7. unsigned int index_in = yIndex * width + xIndex;

8. shared_data[threadIdx.y][threadIdx.x] = idata[index_in];

9. } …

10. }

Figure 1: Sample code showing the use of shared memory.

ers [2, 28]. On one hand, GPUs are part of extreme-scale systems,
e.g., in the list of top 500 supercomputers released in November
2011, three out of the top ten systems were built on GPUs [6]. On
the other hand, commonly used desktops and laptops are having
low or medium-end GPUs, which makes a highly parallel environ-
ment accessible and affordable to application developers who have
no or little prior parallel programming experience.

Although CUDA [2] and subsequently OpenCL [19] have fa-
cilitated the trend of using GPUs for application acceleration, it
remains very challenging to develop anefficientGPU implemen-
tation, especially for inexperienced developers. There are several
reasons for this, including the need for careful managementof GPU
memory hierarchy, and similarly, the need for optimizing the exe-
cution of a large number of concurrent threads, while maintaining
correctness. To promote wider use of GPUs, programmers needa
variety ofproductivityandperformance tools.

The focus of this work is on such tools, and more specifically,
on low-overheadyet accurateandfine-grainedprofiling methods.
Particularly, we argue that fine-grained information is essential for
optimizing a program on a modern GPU’s nuanced architecture.
Meanwhile, unless a tool provides this information with a low or
moderate overhead, it is unlikely that the programmers willuse the
tool. Unfortunately, existing profiling tools for GPUs [25,5, 4]
cannot provide sufficiently fine-grained information. Also, existing
methods for profiling (typically developed for CPUs) eitherdo not
provide fine-grained information [3, 29, 7], and/or will likely have
prohibitive overheads [27] (if at all they can be implemented on
a GPU). The main reason is that a very large number of threads
are concurrently executed on a GPU, leading to a large numberof
concurrenteventsof interest (e.g., memory accesses), whereas the
memory available for storing the information is very limited.

1.2 Our Approach
This paper presents a low-overhead and fine-grained profiling

technique developed specifically for GPUs, which we refer toas
GMProf. GMProf uses two ideas to help reduce the overheads of
collecting fine-grained information. The first idea involves exploit-
ing a number of GPU architectural features to collect reasonably ac-
curate information very efficiently. The second idea is to use simple
static analysis to reduce the overhead of runtime profiling.

The specific implementation of GMProf we report in this paper
focuses on shared memory usage. Effective use of shared mem-
ory has been one of the most critical factors for applicationperfor-
mance on GPUs. Figure 1 shows a simple GPU kernel that explic-
itly uses theshared memory, which is essentially a programmable
cache. Line 3 declares and allocates the arrayshared_datain shared
memory and line 8 transfers data from device memory to the shared
memory array. Developers need to maximize the utilization of this
small yet extremely fast shared memory for achieving the best per-
formance. This can be challenging, since it requires full knowl-
edge on data use patterns, which are often unavailable at compile
time. For example, memory addresses accessed at runtime may
depend on the user input, or the executed control flow paths can
vary at runtime. Various recent application studies on GPUshave
demonstrated significant performance advantages from careful use
of shared memory [17]. It should also be noted that while the
latest NVIDIA cards do provide L1 and L2 cache, careful use of
shared memory remains crucial for performance [24]. Thus, the
implementation of the GMProf approach we present in this paper
focuses on the following two critical questions: (1) which locations
in shared memory are infrequently accessed? and (2) which data
elements in device memory are frequently accessed?

To answer these questions, the current implementation of GM-
Prof includes two major components: Shared Memory Profiler and
Device Memory Profiler. Given a GPU kernel, Shared Memory
Profiler and Device Memory Profiler instrument the statements that
access shared memory and device memory, respectively. At run-
time, the instrumented code records the access numbers of shared
memory and device memory into counter arrays. At the end of exe-
cution, GMProf processes the counter values and presents the sum-
marized view of the results to developers for identifying inefficient
use of memory.

1.3 Summary of Contributions
Overall, in this work, we have made the following contributions

towards developing profiling tools for GPUs.

Exploiting GPU’s Architecture: At program runtime, GMProf
improves the performance by exploiting various GPU architectural
features and properties of GPU programs. The observation under-
lying these optimizations is that developers are most interested in
qualitative results (e.g. frequent or infrequent memory uses), in-
stead of the very precise number of memory accesses. Specifically,
the optimizations we perform include the use of faster (non-atomic)
memory operations, storing information in smaller-sized counters
in shared memory, and the use of threshold-based counter updates.
While the last optimization reduces the number of counter update
operations, the other two reduce the cost of each counter update
operation.

Combining Static Methods with Dynamic Methods:The second
main observation in our work is that even for applications that can-
not be completely analyzed at compile-time, simple compile-time
information can significantly reduce runtime profiling costs. GM-
Prof exploits simple static analysis to identify accessed memory

addresses that are statically determinable, invariant to thread IDs,
and/or invariant to loop iterators. The static analysis results help
the dynamic profiling components of GMProf eliminate, or reduce
the number of memory accesses that need instrumentation. GM-
Prof also leverages another simple static technique, i.e. live range
analysis, to improve the accuracy of profiling in the case when mul-
tiple data elements are loaded into the same shared memory address
during different phases of the program execution.

Implementing, Evaluating, and Demonstrating a Prototype of
GMProf: We have implemented a prototype of GMProf and eval-
uated it with six GPU kernel functions. We have shown that after
various optimizations, the overheads of profiling are quitelow for
the evaluated kernels , i.e., 1.36 times for shared memory profiling
and 55% for device memory profiling on average. Additionally, we
have compared GMProf’s optimizations with a software sampling
technique we implemented for GPU profiling. The results show
that GMProf has a good balance of low runtime overhead and high
accuracy comparing to sampling. Moreover, we have demonstrated
the utility of the tool with three case studies. For each case, we
show how the tool helps tune the application, and that the resulting
optimized application has significantly better performance.

2. RELATED WORK
Our work is related to previous work on profiling tools and static

analysis for memory hierarchy management. In both areas, wefirst
focus on approaches specific to GPUs, and then summarize major
efforts related to CPUs.

Profiling Tools. GPU profiling tools include TAUcuda [25], NVIDIA
Visual Profiler [5], and NVIDIA Parallel Nsight [4]. TAUcudafo-
cuses on coarse-grained runtime events, whereas NVIDIA Visual
Profiler and NVIDIA Parallel Nsight provide summarized infor-
mation on GPU hardware counters (such as branch divergence#,
launched warp#, non-coalesced device memory accesses). None
of these tools can provide very fine-grained information, e.g., in-
formation that may help improve the use of shared memory. A
recently proposed tool [12] profiles shared memory accessesto de-
tect shared memory bank conflicts. However, this tool tracksevery
shared memory access in a brute force way, incurring prohibitive
runtime overhead.

Program optimization for memory hierarchy has been an impor-
tant issue for uniprocessor (and multiprocessor) performance for
at least the last two decades. Thus, CPU profiling tools have also
focused on memory hierarchy related metrics. The relevant tools
can be mainly classified into two categories:simulation-based(e.g.,
Cachegrind [27]) andhardware counter basedapproaches (e.g., In-
tel VTune [3], TAU [29] and Vampir [7]). Simulation-based ap-
proaches track each memory access. While these tools reportcache
misses at various granularity (e.g., thread, function, andsource code
lines), they incur prohibitive runtime overhead (e.g., Cachegrind
slows down the programs by a factor of 20-100 times). On the other
hand, by exploiting hardware performance counters and sampling
techniques, the second category of tools [3, 29, 7] profile programs
with much lower overhead. However, some of these approaches
collect coarse-grained information [7], while others [3, 29] follow
the techniques that are inapplicable to a programmable cache on
GPU, which has to be explicitly managed.

Static Analysis Driven Approaches.Static analysis driven or com-
pile time approaches for managing shared memory on GPU have
been proposed by several researchers. Baskaranet al. developed
data movement schemes for shared memory with a polyhedral model,

targeting affine loops [11]. Udayakumaranet al. used a cost model
based approach to allocate shared memory dynamically [32].Ma
et al. deployed an integer linear programming model to solve the
problem of data arrangement on shared memory [23]. These ap-
proaches are either unable to deal with irregular and indirect ac-
cesses, or often in need of extra information such as the number of
iterations in a loop.

Compile time analysis for understanding cache reuse in CPUs
has also been studied. Cascaval used stack histogram to analyze
cache behavior [14]. Dinget al. proposed analysis algorithms to
find data access patterns by using profiling [16], potentially provid-
ing intuitions for cache optimizations. Data reuse distance informa-
tion is also used to exploit a new cache management scheme [22].
These approaches are not applicable when only a limited amount of
information about control flow and/or data accesses is available at
compile time.

3. GMProf: DESIRED FUNCTIONALITY
AND CHALLENGES

This section explains the challenges in profiling fine-grained in-
formation on a GPU, and especially, the space and time overheads
as well as inaccuracy it can involve. As a specific example, we
consider a trivial implementation of GMProf. Then, we list the
challenges in collecting accurate profiling information efficiently.

Consider the functionality of GMProf mentioned in Section 1.2.
Since the shared memory is explicitly allocated by a programmer,
each memory access instruction either accesses a shared memory
location or a device memory location. Therefore, profilers for shared
memory and device memory are two independent components of
GMProf. We discuss simple implementations of each of them next,
and highlight the time and space efficiency issues.

3.1 Profiling Shared Memory Use
Shared Memory Profiler needs to track accesses for each shared

memory address. Specifically, given that the size of the shared
memory is very small (e.g., 16 KB on Tesla C1060 and at most 48
KB on recent Fermi cards), the profiler can maintain one counter for
each shared memory address. Whenever a shared memory access
occurs, the profiler can increase the corresponding countervalue
by one. It can use integer (32-bit) counters to accommodate poten-
tially large numbers of memory accesses. Once the access number
reaches the maximum value (i.e.,232 − 1), the profiler can stop in-
creasing the counter. Another problem in obtaining correctcounts
is that different threads in a GPU kernel may access (read or write)
the same shared memory address concurrently, leading to race con-
ditions when updating the corresponding counter. To address this
issue, Shared Memory Profiler can useatomic operationsthat are
supported in CUDA and OpenCL.

The above simple design clearly involves high space and time
overheads. Since typical GPU kernels perform computationson
four-byte (or eight-byte) data types, such asinteger, float, or dou-
ble, the profiler needs to keep one counter for every four bytes in
shared memory. This means that, in the worst case, the profiler
needs the memory space with the same size as that of shared mem-
ory. On the other hand, the required space is a small fractionof
the size of device memory, so we can expect to store these counters
on device memory with relative ease. However, this can lead to a
very high runtime overhead. For each shared memory access, the
profiler introduces an atomic operation on device memory, which
can be more than 100 times slower than a shared memory access.

3.2 Profiling Device Memory Use
Unlike Shared Memory Profiler, Device Memory Profiler cannot

track the use of the entire device memory due to its huge size (e.g.,
4 GB for Tesla C1060 cards). Furthermore, tracking the use ofthe
entire device memory may not be a cost-effective way since many
GPU kernels do not use up the entire memory.

Therefore, Device Memory Profiler should track device memory
space that have been used by the GPU programs. More specifi-
cally, for each declared device memory array, Device MemoryPro-
filer can create ashadow arrayfor counters, where each element
(32-bit) in the shadow array stores the access number of the corre-
sponding element (32-bit or 64-bit) in the tracked device memory
array. For each device memory access, the profiler can increase
the corresponding counter. Similar to Shared Memory Profiler, De-
vice Memory Profiler can store the shadow arrays in device memory
and uses atomic operations for updating the counters. As a result,
in this simple design, the profiler adds one device memory atomic
operation for each access to device memory. This itself can be a
substantial overhead, since an atomic operation on device memory
is much slower than a normal read or write on device memory.

3.3 Design Challenges
Challenge 1: Profiling Efficiency.Our discussion above has clearly
pointed to challenges in time and space efficiency when profiling.
Particularly, to leverage massive parallelism for best performance,
GPU kernels typically launch hundreds or thousands of concurrent
threads. Each thread, in turn, issues a memory access operation ev-
ery few cycles. In trying to obtain efficiency, we must pay attention
to the cost of different operations on GPUs. For example, thecost
of each device memory access is much higher than a shared mem-
ory access, and atomic operations are significantly more expensive
than the non-atomic operations. Section 4 presents how GMProf
addresses this challenge.

Challenge 2: Profiling Accuracy. There is another challenge in
obtaining accurate information of shared memory use. A simple
scheme is to tabulate the aggregate number of accesses to each
shared memory address. However, it will only work for GPU ker-
nels that perform a simple memory management, i.e., where a chunk
of shared memory is dedicated for a certain piece of data throughout
the kernel execution. For longer running kernels, it is often desir-
able that a section of shared memory holds different data at differ-
ent periods during the execution. A simpleaddress-basedscheme
will not provide accurate information for such programs. Section 5
presents how GMProf addresses this challenge.

Two well-studied approaches can be used for optimizing a pro-
gram’s use of memory hierarchy, while reducing or eliminating the
overheads of profiling. The first mechanism is collecting data via
sampling[21, 18, 33, 31, 13, 10]. For comparison purpose, we
have designed and implemented a GPU-specific sampling scheme
that appeared most appropriate for addressing our problem.More
details are discussed in Section 6.2.

The second approach involves the use ofstatic analysisand can
completely eliminate any runtime costs [11, 20, 26, 30, 15].How-
ever, static analysis is applicable only if both of the memory ad-
dresses and the number of accesses are statically determinable. Un-
fortunately, this is not the case for many scientific, computation-
intensive applications that are suitable for GPUs. In fact,a recent
study has shown that many GPU kernel functions have dynamic
irregularities in both memory references and control flows [34].

4. GMProf: EFFICIENT PROFILING
APPROACH

We now describe the optimized profiling approach for GPU ar-
chitectures that we have developed. This section specifically fo-
cuses on runtime overhead reducing mechanisms we have intro-
duced. As we stated earlier, our approach involves use of simple
static analysis, GPU architectural features, features of GPU pro-
grams, and an understanding of how profiling information is likely
to be used by application developers, to reduce profiling overhead.

4.1 Static Analysis (SA) Optimization
As we stated earlier, profilers are most useful for applications

where all accesses and execution paths cannot be resolved atcom-
pile time. However, even indynamicor irregular applications,
many memory accesses can be resolved statically.

The SA optimization we introduce reduces the number of counter
update operations for both Shared Memory Profiler and DeviceMem-
ory Profiler.

The first step involves scanning all memory references in a GPU
kernel and checking whether the addresses as well as the corre-
sponding access numbers can be resolved at compile time. If so,
GMProf does not need to monitor such memory accesses at run-
time. In the next step, SA checks whether a memory reference is
dependent on thread IDs (e.g.,threadIdx.x). If not, such memory
access is invariant to thread IDs (referred to as tid-invariant), i.e.,
different threads access the same memory address. This informa-
tion is annotated and passed to the profilers (i.e., Shared Memory
Profiler and Device Memory Profiler) for optimized profiling.At
runtime, we use a single thread to add the total number of threads,
which can be obtained from the kernel configuration, to the corre-
sponding profiling counter. In this way, we keep the correct counts
while avoiding the contention of counter updates from hundreds or
thousands of threads completely. More importantly, this step makes
another optimization (Non-Atomic Operations) possible (discussed
in Section 4.2).

Finally, SA checks each array index within a loop or a nested
loop to see whether the index is dependent on loop iterators.If
not, such memory access is invariant to loop iterators (referred to as
loop-invariant). This information is annotated and passedto the
profilers for optimized profiling. For a loop-invariant, since the
number of accesses is determined by the number of iterations, the
profilers do not need to update the counter in every iteration. In-
stead, the profilers only instrument the last iteration by performing
one-time counter update operation, i.e., adding the numberof iter-
ations (determined at runtime) to the corresponding counter.

Note that we perform the standard conservative static analysis
here. We consider an access to be loop-invariant only if: 1) its value
does not change across iterations of the loop, and 2) it is accessed
in every iteration of the loop (i.e., it is not enclosed in a conditional
statement). In cases where certain part of the code or the context
cannot be analyzed, e.g., if there are procedure calls involved, SA
optimization will not report the expression as being loop-invariant,
and the memory access is monitored during runtime.

To explain how static analysis optimization works, we take the
simplified Co-clustering kernel in Figure 2 as an example. This
kernel contains the aforementioned memory accesses that are tid-
invariant or loop-invariant. For example, the access torowCS (line
5) is independent of the outermost loop iteratorr, which means it is
r-loop-invariant access. In addition, it is independent of thread IDs
and thus is also identified as tid-invariant access.

1. __device__ void RClusterCnt (float *data, int nRowCL, int *colCL, …)

2. { …

 //Computation and reduction on memory

3. for (int r = 0; r < nRow; r+= ROWCL_THRDS * ROWCL_BLKS) {

4. for (int rc = 0; rc < nRowCL; rc ++)

5. if (rowCS[rc] > 0)

6. for (int c = 0; c < nCol; c++) {

7. tempDistance += data[(r + n_idx) * nCol + c] *

 Acomp[rc * nRowCL + colCL[c]];

8. …}

9. …}

10. }

Figure 2: Simplified code of Co-clustering kernel.

4.2 Non-Atomic Operation (NA) Optimization
As we described in the previous section, our initial approach for

profiling involved the use of atomic operations, to avoid race con-
ditions when concurrent threads access the same location. These
operations turn out to be quite expensive especially when the num-
ber of competing threads is large.

Thus, we introduce NA optimization, where we replace atomic
operations with the normal (non-atomic) operations for updating
counter values. This optimization can improve the efficiency of
each counter update operation. At the first glance, however,it ap-
pears that this optimization may significantly compromise the ac-
curacy of the access counts we obtain. Specifically, in the case
when all threads access the same memory location at the same time,
the access count obtained with non-atomic operations may bevery
small. However, with the help of the SA optimization discussed
earlier, it turns out that such inaccuracy can be avoided to agreat ex-
tent. Specifically, static analysis can help identify thread-invariant
memory accesses, and consolidate concurrent updates of thesame
counter. As shown in our experimental results, after applying the
SA optimization, the use of non-atomic operations does not impact
the overall accuracy in almost all of the cases.

4.3 Shared Memory Counters (SM) Optimiza-
tion

The next optimization we introduce reduces the runtime over-
head of share memory profiling further. Specifically, it maintains
the counters for Shared Memory Profiler in shared memory instead
of device memory. The rationale is that device memory has much
higher latency than shared memory (e.g., 150 times slower on
Tesla cards), and therefore updating counters in shared memory for
Shared Memory Profiler can significantly reduce the cost of each
counter update operation.

The basic SM optimization stores 32-bit profiling counters in
shared memory instead of device memory. However, since the size
of shared memory is very limited, the 32-bit counters can notfit in
shared memory without incurring large space overhead. Thus, the
basic SM optimization may not be applicable for all applications.
On the other hand, to qualitatively identify frequent or infrequent
use of shared memory, it might be unnecessary to maintain a 32-bit
counter to keep counting to a large number. Based on this observa-
tion, we can use less bits for storing a profiling counter, Forexam-
ple, a configuration of 16-bit counters reduces half of the required
space, while a 8-bit configuration reduces 75% space overhead. As
a result, the SM optimization can be applied to more applications.

With a small-sized counter, however, the counting could exceed
the maximum value and lead to wrong results. The next optimiza-
tion avoid such a overflow problem and make the SM optimization
safe and more applicable.

4.4 Threshold (TH) Optimization
As we discussed earlier, one main problem with the trivial ap-

proach for collecting profile information is the number of updates
performed on the counters, and the space required for the counters.
We make the observation that programmers are most interested in
qualitative information, as opposed to precise access counts. For
example, a programmer would like to know whether a memory ad-
dress is frequently accessed or not. Thus, while the difference be-
tween, say, 10 accesses and 1000 accesses may be important, differ-
ence between 1000 and 1010 accesses may not be in certain cases.

Thus, we propose TH optimization, where we maintain counts up
to a predefined threshold, i.e., stop updating the counters once the
values reach a certain threshold. In this way, we reduce the number
of counter update operations, which, in a memory bandwidth lim-
ited GPU, are extremely expensive. As shown in Section 6, it turns
out that this idea can further lower the profiling costs on GPUs even
after applying the previous three optimizations. Moreover, as men-
tioned in the previous section, use of thresholds also enables use
of fewer bits for maintaining counters, which also has substantial
benefits such as make the SM optimization more applicable.

To implement the TH optimization, GMProf adds a threshold as
the upper bound of the counter values. The profilers check thevalue
of a counter before it is updated, and increase the counter only if the
value is below the threshold. In essence, the TH optimization is a
tradeoff between overhead and accuracy. A smaller threshold value
incurs lower runtime overhead since fewer updating operations are
performed. On the other hand, a larger threshold value provides
more accurate memory use information to developers. The appro-
priate thresholds for different GPU applications are tunable and can
be specified by developers based on prior program executions. For
example, if multiple frequently-used memory addresses need to be
differentiated (e.g., all of their access numbers are abovethe thresh-
old), developers can increase the threshold based on prior runs and
profile the program again until reaching the desired results.

4.5 Overall Profiling Algorithm
We now show how our runtime optimizations and the informa-

tion from the SA optimization are integrated. Algorithm 1 shows
the algorithm for Shared Memory Profiler with all the optimiza-
tions enabled. Specifically, the profiler creates a counter array in
shared memory for every shared memory address. In the case of
insufficient shared memory, the counter array is created in device
memory instead (lines 1-5). The SA optimization provides three
types of information for guiding instrumentation, i.e., statically de-
terminable references (lines 7-8), loop-invariants (lines 9-20), and
tid-invariants (lines 14-16 and 21-22). For statically determinable
references, the counts are recorded at compile time (line 8). For
loop-invariants, the number of iterations (n_iter) is computed at
run-time (line 11) if it is not statically determinable. Thecounter
is incremented only in the last iteration (lines 13-20). If the ac-
cess is tid-invariant as well, the increment (inc) is the multiplica-
tion of the number of iterations and the number of threads, and
only one thread (tid == 0) is used to perform the update (lines 14-
16). Otherwise, all threads increase their corresponding counters
by the number of iterations (lines 17-18). For tid-invariants that
are not loop-invariants, one thread is used to increase the counter
by the number of threads (lines 21-22). Note that a thresholdcode
(THRESHOLD) is checked when updating counters to guaran-
tee that the counts do not exceed the threshold (lines 16, 18,22, 23).
Also, the NA optimization, which is using non-atomic operations to
update counters, is used at the relevant statements (lines 16, 18, 22,

Algorithm 1 Optimized Shared Memory Profiling
1: if shared memory is availablethen
2: Createdynamic_count array in shared memory
3: else
4: Createdynamic_count array in device memory
5: end if
6: for each shared memory accessdo
7: if isStaticDeterminable(shm_addr) and

isStaticDeterminable(access_count) then
8: static_count[shm_addr] = access_count
9: else if isLoopInvariant(shm_addr, iterator) then

10: if (! isStaticDeterminable(n_iter)) then
11: Computen_iter
12: end if
13: if isLastIteration(iterator) then
14: if isTidInvariant(shm_addr) and (tid == 0) then
15: inc = n_iter * N_THREADS
16: dynamic_count[shm_addr] =

min(dynamic_count[shm_addr] + inc,
THRESHOLD)

17: else
18: dynamic_count[shm_addr] =

min(dynamic_count[shm_addr] + n_iter,
THRESHOLD)

19: end if
20: end if
21: else if isTidInvariant(shm_addr) and (tid == 0) then
22: dynamic_count[shm_addr] =

min(dynamic_count[shm_addr]+N_THREADS,
THRESHOLD)

23: else ifdynamic_count[shm_addr] <
THRESHOLD then

24: ++dynamic_count[shm_addr];
25: end if
26: end for

24) in this algorithm.
The algorithm for Device Memory Profiler is similar to Algo-

rithm 1 except that the SM optimization is inapplicable.

5. ENHANCED ALGORITHM: IMPROVING
PROFILING ACCURACY

This section presents an enhanced profiling algorithm, which ad-
dresses an important limitation of Algorithm 1. Particularly, the
methods we have presented so far cannot handle the situationwhen
a shared memory address holds different data elements during dif-
ferent periods of a kernel’s execution. In such a case, the number of
accesses to a shared memory address reported by Algorithm 1 may
not directly reflect the frequency of data use, and can only mislead
developers.

To understand the limitations of the techniques presented so far,
consider the following example. A GPU kernel first loads an array
sectionS1 from device memory to shared memory, performs some
simple computation while reading data from the shared memory ar-
ray only once, and then stores the results back to device memory.
Next, the kernel loads the array sectionS2 to the same shared mem-
ory location, for a similar computation and stores the results back
to device memory. Suppose this process repeats for many different
array sections. In this scenario, the shared memory addresses in-
volved do not have any data reuse, and the shared memory is not
being effectively used. However, Algorithm 1 will report a rela-

Algorithm 2 Enhanced Profiling Algorithm
1: for each shared memory arraydo
2: if shared memory is availablethen
3: createshadow_count array in shared memory
4: else
5: createshadow_count array in device memory
6: end if
7: end for
8: global_logic_clock = 0
9: for each load from device memory to shared memorydo

10: if tid == 0 then
11: ++global_logic_clock
12: end if
13: Initializeshadow_count with 0s
14: shadow_count.live.begin = global_logical_clock
15: end for
16: for each shared memory accessdo
17: Call Algorithm 1
18: end for
19: for each store from shared memory to device memorydo
20: if tid == 0 then
21: ++global_logic_clock
22: end if
23: Appendshadow_count to device memory buffer
24: shadow_count.live.end = global_logical_clock
25: Appendshadow_count.live to device memory buffer
26: Appendshm_array_name to device memory buffer
27: end for

tively high number of accesses to these shared memory addresses,
and thus mislead the application developers in believing that data
stored in shared memory has a high reuse.

An enhanced profiling method which overcomes this limitation is
presented as Algorithm 2. This algorithm is based on dynamically
computedlive ranges [8]. For our purpose, the live range of an ar-
ray section originally stored in a device memory location isdefined
as the interval between the time when the data is loaded from the
device memory location to a shared memory location and the time
when the data (which may be overwritten by intermediate compu-
tation results) is stored back from the same shared memory location
to the same or different device memory location. Our enhanced pro-
filing algorithm uses the live range information to accurately track
the access numbers for each piece of device memory data during its
live range in shared memory.

In Algorithm 2, the Shared Memory Profiler maintains a logi-
cal clock, which monotonically increases and marks the boundary
of live range for each data. Furthermore, the Shared Memory Pro-
filer creates a shadow array of counters in shared memory for each
shared memory array declared in a GPU kernel (lines 1-7). Foreach
statement that loads data from device memory to a shared memory
array (i.e., the beginning of a live range), the profiler increases the
logical clock by one, resets the corresponding shadow arraycoun-
ters, and records the logical clock value to the shadow array(lines
9-15). Within the data live range, the shadow array of counters are
updated using Algorithm 1 (lines 16-18). For each statementthat
stores data from a shared memory array to device memory (i.e., the
end of a live range), the profiler increases the logical clockby one
and stores the values in the corresponding shadow array of counters
into device memory (lines 20-23). Additionally, the profiler stores
the logical clocks for the live range and the shared memory array
name with the shadow array of counters for this live range (lines 24-

26). Note that this algorithm maintains one global logic clock, and
only one thread is needed for updating the clock. Also, whilethe
live ranges are computed dynamically, static analysis helps iden-
tify all the statements that transfer (i.e., load or store) data between
device memory and shared memory.

6. EXPERIMENTAL RESULTS
We have conducted the experiments using a NVIDIA Tesla C1060

GPU with 240 processor cores (8 cores/streaming multiprocessor *
30 streaming multiprocessors), a clock frequency of 1.296 GHz, 16
KB shared memory per streaming multiprocessor, and 4 GB device
memory. This GPU was connected to a machine with two AMD
2.6 GHz dual-core Opteron CPUs and 8 GB main memory. We have
implemented the prototype of GMProf based on CUDA Toolkit 3.0.
Note that we do not see any particular difficulty to port GMProf to
other GPU environments such as OpenCL [19] or stream SDK [1].

We have evaluated GMProf with six applications, including Co-
clustering (referred to asco), EM clustering (referred to asem),
Binomial Options (referred to asbo), Jacobi (referred to asjcb),
Sparse Matrix-Vector Multiplication (referred to asspmv), and DXTC
(referred to asdxtc). Among these applications, bothco andem
are data mining algorithms,bo is a financial modeling algorithm,
jcb andspmv are stencil computation applications, anddxtc is
a texture compression algorithm. We show theefficiency and
accuracy of GMProf in this section. Additionally, we demon-
strate theeffectiveness of GMProf in the next section.

6.1 Runtime Overhead
The current implementation of GMProf can be used for profiling

shared memory use only, or for profiling device memory use only,
or profiling both. A programmer who is interested in examining
whether their implementation is adequately using shared memory is
likely to profile shared memory only, whereas a programmer who is
interested in examining what arrays from device memory should be
allocated in shared memory may profile device memory only. Thus,
we have conducted two separate sets of experiments to measure
the overheads incurred by GMProf’s Shared Memory Profiler and
Device Memory Profiler, respectively.

6.1.1 Runtime Overhead for Shared Memory Profil-
ing

To measure the efficiency of shared memory profiling and the
performance contribution of the different optimizations,we run each
GPU kernel in five configurations, including (1) Native: the na-
tive run without any profiling instrumentation, (2) GMProf-basic:
the run with the trivial scheme (i.e., no optimizations) of shared
memory profiling, (3) GMProf-SA: the run with GMProf-basic and
the SA optimization applied, (4) GMProf-SA-NA: the run with
GMProf-basic and the SA and NA optimizations applied, and (5)
GMProf-SA-NA-SM: the run with GMProf-basic and the SA, NA,
and SM optimizations applied. Table 1 shows the execution time
and runtime overhead (within the parentheses) for the six GPU ker-
nels in all the configurations. As for TH optimization, we evaluate
it separately in section 6.4 since it represents an adjustable tradeoff
between overhead and accuracy.

Table 1 demonstrates that the trivial profiling scheme (GMProf-
basic) incurs very large runtime overhead. For example, GMProf-
basic adds 647.57 times overhead fordxtc. The main reasons
for the prohibitive runtime overhead are that the device memory
has a high latency, the atomic operations are time-consuming, and
the number of tracked memory accesses is huge. Therefore, the

Apps Native GMProf-basic GMProf-SA GMProf-SA-NA GMProf-SA-NA-SM

co 39.50 7186.75 (180.93x) 55.98 (0.42x) 72.27 (0.83x) 46.96 (0.19x)
em 129.57 18738.61 (143.62x) 131.54 (0.02x) 131.00 (0.01x) 131.00 (0.01x)*
bo 16.59 1503.53 (89.63x) 122.59 (6.39x) 35.35 (1.13x) 30.20 (0.82x)
jcb 163.31 951.07 (4.82x) 951.07 (4.82x) 560.06 (2.43x) 560.06 (2.43x)*
spmv 21.25 381.52 (16.95x) 341.06 (15.05x) 70.34 (2.31x) 40.72 (0.92x)
dxtc 21.94 14229.70 (647.57x) 14229.70 (647.57x) 338.20 (14.41x) 132.36 (5.03x)

Average 180.59x 112.38x 3.52x 1.57x

Table 1: Runtime overhead of different schemes for profilingshared memory use. Native means running a GPU kernel withoutany
profiling. GMProf-basic means running a GPU kernel with the trivial design of GMProf. GMProf-SA is applying the SA optimi zation
to GMProf-basic. NA means applying the NA optimization, andSM means applying the SM optimization. In each cell of the table,
the first number is the execution time of a GPU kernel in milliseconds and the second number within a parenthesis is the runtime
overhead compared to the native execution. The last row shows the arithmetic average overhead of different schemes. * Use device
memory due to insufficient shared memory for SM optimization.

trivial profiling scheme is impractical for profiling the memory use
of GPU programs.

After enabling the three optimizations, GMProf incurs a lowto
modest overhead for all six GPU kernels. As shown in Table 1, GM-
Prof adds 19%-5.03 times with an average of 1.57 times runtime
overhead to the native run of the GPU kernels. As an example, by
applying the three optimizations, GMProf reduces the overhead for
bo from 89.63 times to 82%. This is because GMProf exploits GPU
architecture-conscious optimizations and leverages invariant infor-
mation provided by simple static analysis for reducing the number
of counter update operations and improving the efficiency ofeach
counter update operation. With the modest overhead, we found that
GMProf is well suited for performance debugging or tuning.

Furthermore, different optimizations improve GMProf’s efficiency
for different GPU kernels to different extent, depending upon the
nature of the application. For example, the SA optimizationreduces
the overhead incurred by GMProf-basic by orders of magnitude for
co, em andbo, while reduces little for the others. This is because
the effect of SA optimization depends on the number of memoryac-
cesses that can be determined completely at compile time, aswell
as the number of loop-invariant and tid-invariant memory accesses
that can be identified in the GPU kernel. Forco, em andbo, the
SA optimization significantly reduces the number of counterupdate
operations, which can also alleviate contention from thesecounter
update operations from a large number of concurrent threads. The
NA and SM optimizations further reduce the overhead incurred by
GMProf-SA through improving the efficiency of each counter up-
date operation. Note that forem andjcb, the SM optimization is
inapplicable since there are insufficient free shared memory. As we
will see in section 6.4, by adding TH optimization, the SM opti-
mization can be applied to the two applications.

One exception for the effectiveness of the NA optimization oc-
curs inco, where the NA optimization even adds overhead to GMProf-
SA. In co, after applying the SA optimization to GMProf-basic,
only one thread needs to update the profiling counter for a fre-
quently executed memory access within a loop. Also, there isno
identical address accessed across different iterations orfrom other
statements executed by other threads. In this case, the original
atomic addition operation outperforms the non-atomic addition and
assignment operation (“+=”) used in the NA optimization.

6.1.2 Runtime Overhead for Device Memory Profil-
ing

Table 2 shows the runtime overhead of different schemes for pro-
filing device memory use. Note that because the device memory
arrays are typically much larger than the shared memory, theopti-

Apps Native GMProf GMProf GMProf
-basic -SA -SA-NA

co 39.50 3,304.29 155.00 61.13
(82.64x) (2.92x) (0.55x)

em 129.57 25,563.46 260.79 151.38
(196.29x) (1.01x) (0.17x)

bo 16.59 52.76 19.00 18.95
(2.18x) (0.15x) (0.14x)

jcb 163.31 542.74 542.74 491.71
(2.32x) (2.32x) (2.01x)

spmv 21.25 45.63 45.05 36.12
(1.15x) (1.12x) (0.70x)

dxtc 21.94 30.71 30.71 22.04
(0.40x) (0.40x) (0.01x)

Average 47.50x 1.32x 0.60x

Table 2: Runtime overhead of different schemes for profiling
device memory use. The four configurations and results have
the same meanings as those in Table 1. Note that the SM opti-
mization does not apply here.

mization of shared memory counters (SM) used in profiling shared
memory is inapplicable here.

Overall, the runtime overhead incurred by GMProf for profiling
device memory is modest, ranging from 1% to 2.01 times with an
average of 60%, which indicates GMProf is suitable for perfor-
mance debugging and tuning. The small overhead is mainly be-
cause of GPU architecture-conscious optimizations and assistance
of static analysis. For example, the SA optimization bringsdown
the runtime overhead incurred by GMProf-basic onco from 82.64
times to 2.92 times. The NA optimization further bring down the
overhead to 55%.

6.2 GMProf-Opts vs. GMProf-Sampling (Ef-
ficiency and Accuracy Comparison)

Sampling is widely used in the literature for reducing the run-
time overhead of CPU program profiling [21, 18, 33, 31, 13, 9,
10]. While direct applications of any of these techniques onGPUs
would likely cause very high contention among threads, the basic
idea of sampling is certainly applicable on GPUs. For comparison
purposes, we implemented a software sampling scheme on GPUs
we refer to as GMProf-Sampling. The method is as follows. We
generate a random sequence of 1’s and 0’s, with the probability of
1’s equals to the pre-specifiedsampling rate. The memory accesses
are mapped to the random sequence one by one through a sampling
counter, and only those accesses that correspond to 1’s are recorded.
To implement this method, we maintain alocal sampling counter

0

5

10

15

20

25

co em bo jcb spmv dxtc AVERAGE

Sampling(1/10) Sampling(1/100) Sampling(1/1000) GMProf-Opts

Figure 3: Runtime overhead comparison between GMProf-
Sampling (with sampling rates equal to 1/10, 1/100, and 1/1000)
and GMProf-Opts.

for each thread, and thus avoid the the contention for updating a
global counter among a large number of GPU threads. For clarity,
we refer to the GMProf scheme with SA, NA, and SM optimiza-
tions as GMProf-Opts in this section.

Figure 3 compares the runtime overhead of shared memory pro-
filing using GMProf-Opts and GMProf-Sampling. For fairness, we
also apply the SM optimization on GMProf-Sampling. Note that
the NA optimization and the invariants used in the SA optimiza-
tion may affect the accuracy of the sampling rate, thus they cannot
be applied to sampling directly. As shown in Figure 3, the run-
time overhead of GMProf-Sampling decreases as the samplingrate
decreases. However, even with a very low sampling rate, the aver-
age overhead is still higher than that of GMProf-Opts. For exam-
ple, GMProf-Sampling slows down the applications by 6.70 times
on average with a sampling rate of 1/1000, which is about 5 times
higher than that of GMProf-Opts.

Figure 4 further compares the accuracy loss of GMProf-Opts and
GMProf-Sampling. For each data array in a GPU application, we
calculate the relative error caused by these two schemes using the
following formula |Countscheme − Countactual|/Countactual,
whereCountscheme is the count reported by GMProf-Opts or GMProf-
Sampling, andCountactual is the actual access number obtained
through GMProf-basic. Note that for GMProf-Sampling, the re-
ported counts are calculated by multiplying the counter values with
the reciprocal of the sampling rate. The accuracy loss for a GPU ap-
plication is defined as the arithmetic average of the relative errors
for all data arrays within the application.

As shown in Figure 4, the accuracy loss of GMProf-Opts is very
small. For five of the six evaluated applications, the accuracy loss
is less than 5%.dxtc is the only outlier. In this application, there
are certain memory accesses inside function calls. Since the SA
optimization in our current prototype does not involve interproce-
dural analysis, these memory accesses cannot be resolved. As a
result, there are race conditions in counter updates after applying
the NA optimization. We believe more advanced static analysis is
needed for improving the accuracy in this case, which is a topic for
future investigation. Considering GMProf-Sampling, the accuracy
loss increases as the sampling rate decreases. With a high sam-
pling rate (e.g., 1/10), it can achieve a accuracy loss as lowas 9.5%
on average, which is still higher than the average loss of 6.9% by
GMProf-Opts. Moreover, GMProf-Sampling has very high runtime
overhead when the sampling rate is 1/10.

The above comparison and discussion indicates that GMProf-
Opts has a good balance of low runtime overhead and high accu-
racy, comparing to GMProf-Sampling.

6.3 Space Overhead
For shared memory profiling, without SM and TH optimizations,

GMProf maintains one 32-bit counter in device memory for every
four-byte of shared memory, thus, the space overhead is 16 KBon

0

0.2

0.4

0.6

0.8

1

co em bo jcb spmv dxtc AVERAGE

Sampling(1/10) Sampling(1/100) Sampling(1/1000) GMProf-Opts

Figure 4: Accuracy loss comparison between GMProf-
Sampling (with sampling rates equal to 1/10, 1/100, and 1/1000)
and GMProf-Opts.

Tesla cards where each streaming multiprocessor has 16 KB shared
memory in total. If at least half of the shared memory is available,
which is often possible when launching a configurable kernelwith
a small number of threads, the SM optimization can be enabledand
will use half of the shared memory, i.e., 8 KB on Tesla cards. The
required space can be further reduced with the TH optimization, as
will be discussed in Section 6.4. If the enhanced algorithm is en-
abled, additional device memory is required to keep the information
for each live range. More details about the effect of the enhanced
algorithm will be discussed in section 7.3.

For device memory profiling, GMProf creates a shadow array in
device memory to monitor the usage of each device memory ar-
ray, with one 32-bit counter element for each 32-bit or 64-bit of
device memory, depending on data types. Thus, the space over-
head for device memory profiling is 100% or 50%, relative to the
device memory used by the GPU kernels. However, the absolute
size of the space required by GMProf’s device memory profiling
is application-dependent and it is often very small compared to the
large amount of the entire device memory on GPU (e.g., 4 GB on
Tesla C1060). For the six applications evaluated, GMProf’sdevice
memory profiler consumes 126.53 MB device memory on average,
which accounts for only 3.09% of the entire device memory.

6.4 Overhead Reduction by TH Optimization
As mentioned earlier, the TH optimization is a tradeoff between

overhead and accuracy. The threshold in the TH optimizationis
adjustable and we use “0xFF” as an example in our evaluation.By
capping the maximum value to the threshold, we can use less bits
to store the profiling counters. In the case of “0xFF”, only 8-bit is
needed for each profiling counter. As a result, the space overhead
of GMProf is reduced to 1/4 of the original. Specifically, forshared
memory profiling, the overhead is reduced from 16 KB to 4 KB,
which make the SM optimization applicable toem andjcb. As
for device memory profiling, the average overhead is reducedfrom
126.53 MB to 31.63 MB, which accounts for only 0.77% of the
entire device memory.

The runtime overhead may also be reduced since the TH opti-
mization reduces the the number of counter update operations. For
example, the overhead forjcb is reduced from 2.43 times to 5%
after applying the TH optimization (the detailed table is omitted
due to space limit). On average, the runtime overhead for shared
memory profiling after applying the TH optimization is further re-
duced from 1.57 times to 1.36 times, while the overhead for device
memory profiling is reduced from 60% to 55%.

We do not quantify the accuracy loss after TH optimization with
the metric we had introduced earlier. This is because TH doesresult
in very different counts (i.e., threshold code instead of actual count)
for the locations that are accessed frequently. The main underlying
idea for TH is that it should still allow effective decisionsfor shared
memory usage to be made. We will demonstrate this claim through

Apps GMProf GMProf
-basic w/o TH w/ TH

em_v1 ShM a1 (983,040) a1 (983,040) a1 (THR)
a2 (65,536) a2 (65,536) a2 (THR)
a3 (65,536) a3 (65,536) a3 (THR)
a4 (1,289) a4 (1,289) a4 (THR)

DM a5 (30,720) a5 (30,720) a5 (THR)
a6 (19,200) a6 (19,200) a6 (THR)

a7 (513) a7 (513) a7 (THR)
a8 (513) a8 (513) a8 (THR)
a9 (3) a9 (3) a9 (3)
a10 (2) a10 (2) a10 (2)
a11 (1) a11 (1) a11 (1)

em_v2 ShM a1 (983,040) a1 (983,040) a1 (THR)
a2 (65,536) a2 (65,536) a2 (THR)
a3 (65,536) a3 (65,536) a3 (THR)
a5 (30,720) a5 (30,720) a5 (THR)
a6 (19,200) a6 (19,200) a6 (THR)

DM a4 (1,280) a4 (1,280) a4 (THR)
a7 (513) a7 (513) a7 (THR)
a8 (513) a8 (513) a8 (THR)
a9 (3) a9 (3) a9 (3)
a10 (2) a10 (2) a10 (2)
a11 (1) a11 (1) a11 (1)

Table 3: Profiling results for two versions of EM clustering (em).
Each result cell shows the normalized array names, and the cor-
responding average counts for the arrays within the parenthe-
ses. ShM means shared memory, DM means device memory,
and THR means threshold.

case studies in the next section.

7. CASE STUDIES
In Section 6, we demonstrated using six applications that various

optimizations in GMProf are effective in reducing the overheads.
This section focuses on theeffectivenessof GMProf.

For the six applications we have experimented with, we applied
GMProf-basic (the trivial but very high overhead version) and GM-
Prof with and without the TH optimization, and compared the accu-
racy of the access counts. For each array variable, the current proto-
type of GMProf extracts the maximum value, the minimum value,
and the average value from the corresponding group of counters
(due to space limit, only the average counts are presented inthis
section). Note that more fine-grained results could be presented
with more advanced visualization techniques.

For three of the six applications, i.e.,co, spmv, anddxtc, we
found that GMProf correctly verifies that these applications have
efficient use of shared memory. Therefore, we will focus on the
other three applications in this section.

For each of the other three applications, we evaluated two ver-
sions of the GPU implementation. In the first version (*_v1), only
trivial memory optimizations were performed. With the guidance of
GMProf, the second version (*_v2) were generated, which turned
out to have better memory utilization and much higher efficiency.

7.1 EM: Frequent Use of Device Memory
EM is a data-mining (clustering) algorithm. It features many ar-

rays of different sizes being accessed with different access patterns.
We start withem_v1, where four variables are allocated in shared
memory. As shown in Table 3, GMProf found that all of the four
shared memory arrays (a1 - a4) are accessed more than the thresh-
old, which means shared memory is highly utilized. Meanwhile,

Apps GMProf GMProf
-basic w/o TH w/ TH

bo_v1 ShM 0 0 0
DM a1 (276) a1 (276) a1 (THR)

a2 (276) a2 (276) a2 (THR)
a3 (128) a3 (128) a3 (128)
a4 (1) a4 (1) a4 (1)

bo_v2 ShM a1 (174,788) a1 (165.881) a1 (THR)
a2 (169,221) a2 (160,315) a2 (THR)

DM a3 (128) a3 (128) a3 (128)
a5 (9) a5 (9) a5 (9)
a4 (1) a4 (1) a4 (1)

Table 4: Profiling results for two versions of Binomial Options
(bo). The results have the same meanings as those in Table 3.

however, several device memory arrays (i.e.,a5 - a8) also have
high numbers of access. Based on this information, programmers
generated a more efficient versionem_v2 by allocating different
arrays into shared memory. Essentially, this is a knapsack prob-
lem, i.e., putting different data arrays that have frequentaccesses
in limited shared memory, except that the data arrays can be fur-
ther partitioned to accommodate with each other. In this specific
example, we use simple greedy algorithm to select the two most
frequently used device memory arrays (a5 anda6), partition them
among thread blocks, and fit them into the shared memory. Mean-
while, a relatively less used array (a4) is swapped out from shared
memory to device memory due to the limited size of shared mem-
ory. This turned out to be an effective optimization, asem_v2
runs about 3.32 times faster thanem_v1. Note that this optimiza-
tion could not have been performed using traditional staticmemory
management techniques since the access frequency of different ar-
rays depends on runtime parameters.

7.2 Binomial Options: No Use of Shared Mem-
ory

Binomial Options is a popular financial option pricing applica-
tion. While the recent release of CUDA sampling codes from NVIDIA
includes a fine-tuned implementation of this algorithm, it is not suit-
able for demonstrating GMProf. Instead, by taking an implementa-
tion without shared memory directives (bo_v1), we evaluated an
application that needs performance tuning.

As shown in Table 4, GMProf found that two device memory ar-
rays (i.e.,a1 anda2) in bo_v1 have average access numbers that
exceed the threshold, which implies a high reuse for both arrays.
Guided by this information, programmers can create anotherver-
sionbo_v2. In this version, a new arraya5 is created to hold the
input data, anda1 anda2 are resized to fit into shared memory. We
again analyzedbo_v2 to verify the effectiveness of shared memory
usage through GMProf. The result shows that in this version,both
a1 anda2 in the shared memory are frequently used, and the num-
ber of device memory accesses decreases significantly compared
to bo_v1. This resulted in a very large performance gain, specif-
ically, we observed thatbo_v2 outperformsbo_v1 by a factor
of 39.63. Note that in this case, the optimization can be achieved
without knowing the exact access numbers above the threshold.

7.3 Jacobi: Effectiveness of the Enhanced Al-
gorithm

Our last case study used Jacobi, a widely used scientific kernel.
Jacobi involves stencil computation which could be optimized us-
ing advanced static methods for memory management. However,
we include Jacobi in the case studies since it demonstrates the ef-

Apps GMProf GMProf
-basic w/o Enh. Alg. w/ Enh. Alg.

jcb_v1 ShM a1 (5760) a1 (5748)* a1 (2)**
DM in (4) in (4) in (4)

out (1) out (1) out (1)
jcb_v2 ShM a2 (4757) a2 (4741)* a2 (4)**

DM in (1) in (1) in (1)
out (1) out (1) out (1)

Table 5: Profiling results for two versions of Jacobi (jcb) with
and without the Enhanced Algorithm (Enh. Alg.). The results
have the same meanings as those in Table 3. * Show threshold
if enable TH optimization. ** Count in each live range.

fectiveness of the enhanced algorithm we have developed.
Jacobi has an input matrix (in) and an output matrix (out). For

appropriate utilization of shared memory, we need to selectwhich
array(s) should be allocated in shared memory, and also needto
decide what tile size should be used. We started with a version
(jcb_v1) that movesout from device memory to shared mem-
ory. Using GMProf, we identified that movingout is not useful.
Based on the suggestion from GMProf, programmers created a sec-
ond version (jcb_v2) that keepsout in device memory, but moves
in into shared memory.

Table 5 shows the profiling results of GMProf for the two ver-
sions of Jacobi,jcb_v1 andjcb_v2, with and without the en-
hanced algorithm. Here, the profiling results without the enhanced
algorithm show that injcb_v1 the arraya1 (tile of out) has a
large average number that above the threshold, which means it is
frequently used, However, after using the enhanced algorithm that
considers different live ranges (results shown in the fifth column of
Table 5), we found that forjcb_v1, a1 has no reuse except load
from and store to device memory. This shows that the enhanced
algorithm is necessary for understanding the code correctly.

The results also indicate that injcb_v1,whilea1 does not have
reuse at all, the arrayin does have some reuse in device mem-
ory. Based on this hint, programmers created a second version
(jcb_v2), which moves the arrayin into shared memory and holds
out in device memory. We then verified the effectiveness of mem-
ory usage forjcb_v2 using the enhanced algorithm. From Table
5, we can observe thata2 (tile of in) is reused multiple times and
there is no reuse in device memory. It should be noted that with this
improvement,jcb_v2 outperformsjcb_v1 by 2.59 times.

In addition, using Jacobi, we studied the additional overheads
arising from the enhanced algorithm. After applying the enhanced
algorithm, the runtime overhead forjcb increased from 5% to
23%. The additional overhead is primarily due to the need forcopy-
ing counter values from shared memory to device memory for each
live range and maintaining the logical clock. The total space over-
head for storing additional information on device memory turned
out to be 2.36 MB.

7.4 Summary
In all the three cases, the second versions were significantly faster

than the first versions of implementation. Figure 5 summarizes
the performance improvement that was achieved for each of the
case studies going from*_v1 to *_v2. Specifically, we observed
that*_v2 outperformed*_v1 by a factor of 3.32, 39.63, and 2.59
for EM, Binomial Options, and Jacobi kernels, respectively(15.18
times on average). This further demonstrates and validatesthe ne-
cessity of tools such as GMProf for novice GPU programmers.

8. CONCLUSIONS

0

200

400

600

800

em bo jcb AVERAGE

E
xe

cu
ti

o
n

 t
im

e
 (

m
s)

*_v1

*_v2

Figure 5: Performance improvement from tuning the use of
GPU memory hierarchy based on GMProf’s profiled data.

In this paper, we have presented GMProf, a low-overhead fine-
grained profiling approach for the modern GPU architectures. Un-
like existing methods which either collect coarse-grainedprofiling
information or are not applicable to GPU architectures, GMProf
uniquely exploits architecture-conscious optimizationsand simple
static analysis to reduce the overheads of collecting fine-grained in-
formation on GPUs. Additionally, we have presented and evaluated
a specific implementation of GMProf. This implementation pro-
files shared memory and device memory separately with the goal
of optimizing the use of limited shared memory on GPUs.

Our experimental results with six popular GPU kernels show
that GMProf incurs modest runtime overhead, e.g., 1.36 times for
shared memory profiling and 55% for device memory profiling on
average. More importantly, GMProf is able to identify the ineffi-
cient use of memory and verify the efficient memory usage in the
tested applications. Based on the reports from GMProf, casestud-
ies involving three different applications have achieved an average
performance improvement of 15.18 times compared to the initial
versions. This indicates that GMProf is an efficient as well as ef-
fective approach for improving application performance onGPUs.

9. REFERENCES
[1] ATI Stream Technology. http://www.amd.com/stream.
[2] CUDA Showcase.

http://www.nvidia.com/object/cuda_home_new.html.
[3] Intel VTune . www.intel.com/software/products/vtune.
[4] NVIDIA Parallel NSight.

http://developer.nvidia.com/tools/Development.
[5] NVIDIA Visual Profiler.

http://developer.nvidia.com/tools/Development.
[6] Top 10 Systems - 11/2011. http://www.top500.org.
[7] Vampir - Performance Optimization. http://www.vampir.eu.
[8] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.
[9] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.

Henzinger, S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde,
C. A. Waldspurger, and W. E. Weihl. Continuous profiling:
Where have all the cycles gone. InACM TOCS, 1997.

[10] M. Arnold and P. F. Sweeney. Approximating the calling
context tree via sampling. InResearch report RC 21789
(98099). IBM, 2001.

[11] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy,
J. Ramanujam, A. Rountev, and P. Sadayappan. Automatic
data movement and computation mapping for multi-level
parallel architectures with explicitly managed memories.In
PPoPP, 2008.

[12] M. Boyer, K. Skadron, and W. Weimer. Automated dynamic
analysis of cuda programs. InProc. of 3rd Workshop on
Software Tools for MultiCore Systems, 2008.

[13] M. Burrows, U. Erlingson, S.-T. A. Leung, M. T.

Vandevoorde, C. A. Waldspurger, K. Walker, and W. E.
Weihl. Efficient and flexible value sampling. InACM
SIGPLAN NOTICES, pages 160–167, 2000.

[14] C. Cascaval and D. A. Padua. Estimating cache misses and
locality using stack distances. InICS, 2003.

[15] A. Chauhan and C.-Y. Shei. Static reuse distances for
locality-based optimizations in matlab. InICS, 2010.

[16] C. Ding and Y. Zhong. Predicting whole-program locality
through reuse distance analysis. InPLDI, 2003.

[17] E. Gutierrez, S. Romero, M. A. Trenas, and E. L. Zapata.
Memory locality exploitation strategies for FFT on the
CUDA architecture.VECPAR, 2008.

[18] G. Jin, A. Thakur, B. Liblit, and S. Lu. Instrumentationand
sampling strategies for Cooperative Concurrency Bug
Isolation. InOOPSLA, 2010.

[19] Khronos Group. OpenCL: The Open Standdard for
Heterogeneous Parallel Program.
http://www.khronos.org/opencl, 2008.

[20] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: A
compiler framework for automatic translation and
optimization. InPPoPP, 2009.

[21] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. InPLDI, 2003.

[22] W. Liu and D. Yeung. Enhancing LTP-driven cache
management using reuse distance information.The Journal
of Instruction-Level Parallelism, 2009.

[23] W. Ma and G. Agrawal. An integer programming framework
for optimizing shared memory use on gpus. InPACT, 2010.

[24] W. Ma, S. Krishnamoorthy, and G. Agrawal. Practical loop
transformations for tensor contraction expressions on
multi-level memory hierarchies. InCC, pages 266–285,

2011.
[25] A. D. Malony, S. Biersdorff, W. Spear, and

S. Mayanglambam. An experimental approach to
performance measurement of heterogeneous parallel
applications using cuda. InICS, 2010.

[26] M. Marron, M. Méndez-Lojo, M. V. Hermenegildo,
D. Stefanovic, and D. Kapur. Sharing analysis of arrays,
collections, and recursive structures. InPASTE, 2008.

[27] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. InPLDI, 2007.

[28] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,
and J. C. Phillips. GPU computing.Proceedings of the IEEE,
96(5):879–899, May 2008.

[29] S. S. Shende and A. D. Malony. The Tau parallel
performance system.Int. J. High Perform. Comput. Appl.,
20:287–311, May 2006.

[30] M. M. Strout, L. Carter, and J. Ferrante. Compile-time
composition of run-time data and iteration reorderings. In
PLDI, June 2003.

[31] O. Traub, S. Schechter, and M. D. Smith. Ephemeral
instrumentation for lightweight program profiling. Technical
Report, Harvard University, 2000.

[32] S. Udayakumaran, A. Dominguez, and R. Barua. Dynamic
allocation for scratch-pad memory using compile-time
decisions.ACM Trans. Embed. Comput. Syst., May 2006.

[33] J. Whaley. A portable sampling-based profiler for java virtual
machines. InACM 2000 conference on Java Grande, 2000.

[34] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen.
On-the-fly elimination of dynamic irregularities for gpu
computing. InASPLOS, 2011.

