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ABSTRACT
Stencil computations arise in many scientific computing do-
mains, and often represent time-critical portions of applica-
tions. There is significant interest in offloading these com-
putations to high-performance devices such as GPU acceler-
ators, but these architectures offer challenges for developers
and compilers alike. Stencil computations in particular re-
quire careful attention to off-chip memory access and the
balancing of work among compute units in GPU devices.

In this paper, we present a code generation scheme for sten-
cil computations on GPU accelerators, which optimizes the
code by trading an increase in the computational workload
for a decrease in the required global memory bandwidth.
We develop compiler algorithms for automatic generation of
efficient, time-tiled stencil code for GPU accelerators from a
high-level description of the stencil operation. We show that
the code generation scheme can achieve high performance
on a range of GPU architectures, including both nVidia and
AMD devices.

1. INTRODUCTION
Stencils represent an important computational pattern used
in scientific applications in a variety of domains including
computational electromagnetics [18], solution of PDEs us-
ing finite difference or finite volume discretizations [16], and
image processing for CT and MRI imaging [3,4]. A number
of recent studies have focused on optimizing stencil compu-
tations on multicore CPUs [2, 6, 8, 17, 19] as well as GPUs
[11–13].

Stencil computations involve the repeated updating of val-
ues associated with points on a multi-dimensional grid, using
only the values at a set of neighboring points. For multi-core
processors, stencil computations are often memory-band-
width bound when the collective data for all grid points
exceeds cache size, since each grid point is accessed at each
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time step. Time-tiling, i.e., tiling along the time dimension,
is useful in enhancing data locality. The standard approach
to time-tiling of stencil computations requires loop skewing
to make tiling legal and this results in loss of inter-tile con-
currency [10], since inter-tile dependences are introduced in
the spatial directions due to the skewing. The approach of
“overlapped tiling” [10], also called “ghost zone” optimiza-
tion [3,11], has been used for preserving concurrency in par-
allel time-tiled execution of stencil computations. However,
we are unaware of any fully automated compiler approach
for the generation of overlapped-tiling code for execution on
GPUs. In this paper, we develop compiler algorithms for au-
tomated GPU code generation for stencil computations and
demonstrate effectiveness through experimental evaluation
using a number of stencils on four GPU platforms.

The paper is organized as follows. In Sec. 2, we provide
some background on GPUs and the key issues in achieving
high performance with them. In Sec. 3, we formalize the
class of stencil computations we consider. The compiler al-
gorithms for generation of overlapped tiled code for GPUs
are presented in Sec. 4. Sec. 5 presents experimental results.
Related work is covered in Sec. 6, and we conclude in Sec. 7.

2. GRAPHICS PROCESSING UNITS
Graphics Processing Units (GPUs) are massively-threaded,
many-core architectures with peak floating-point through-
put of over 1 TFLOP/s. NVIDIA GPUs contain hundreds
of cores (streaming processors) arranged in tightly coupled
groups of 8–32 scalar processors per streaming multi-processor.
Threads are grouped into thread blocks that are scheduled
on a streaming multi-processor and cannot migrate. A sin-
gle multi-processor can concurrently handle several blocks
of threads using zero-overhead hardware multi-threading to
interleave their execution on its cores. Parallelism is ex-
posed both across thread blocks and within thread blocks.
Threads within a block are cooperative and can synchronize
with each other, but threads in different blocks cannot syn-
chronize, even if they are scheduled on the same streaming
multi-processor.

Each thread has access to global, off-chip memory and a
shared scratch-pad memory that is shared among all threads
within a block. Threads within a block can communicate
and exchange data through shared memory. Thread syn-
chronization can be achieved by the use of barrier instruc-
tions that cause all threads within a block to stop at the bar-



rier until all threads have reached the barrier. Thread syn-
chronization is, in general, not feasible across thread blocks.

Architectural Model: Low-level programming models are
commonly used to write GPU programs. The two most
common models are CUDA [14] and OpenCL [9, 15]. In
both models, the programmer writes an imperative program
(called a kernel) that is executed by each thread on the de-
vice. Threads are spawned in 1-, 2-, or 3-dimensional rectan-
gular groups of cooperative threads, called blocks (CUDA)
or work-groups (OpenCL). A 1- or 2-dimensional grid of
blocks is used to schedule the thread blocks. Both the size
and number of thread blocks are fixed when launching a
GPU kernel and cannot be changed after the threads have
launched.

Efficient GPU programs typically involve the scheduling of
hundreds of threads per streaming multi-processor to hide
memory latency. The streaming multi-processors schedule
threads at the granularity of warps, which comprise 32 threads
on previous and current generation architectures. The thread
scheduler time-shares the streaming multi-processors between
all currently active warps, and thread context switches incur
no overhead.

Challenges: Several sources of inefficiency can arise when
developing GPU applications. GPU devices provide a very
high off-chip memory bandwidth (up to 192 GB/sec for the
GTX 580), but this bandwidth is only achievable with co-
alesced access. Data from the off-chip memory is trans-
ferred to the GPU device in contiguous blocks and there-
fore high bandwidth can be achieved only when requests
by concurrent threads in a warp fall within such contigu-
ous blocks. When non-contiguous memory locations are
accessed by threads, the achieved bandwidth can be much
lower than the peak, leading to stalling and wasted compute
cycles. Branch divergence is another source of inefficiency.
Threads within a warp that follow different control paths
are serialized, again leading to wasted compute cycles. Tra-
ditional approaches to time tiling of stencil computations to
enhance data reuse for CPUs do not translate well to GPUs
because they lead to uncoalesced memory access and diver-
gent branching of threads.

Another challenge comes from shared scratch-pad memory
implemented as a banked memory system. If concurrently
executing threads in a block make requests to shared mem-
ory locations in the same bank, a bank conflict occurs and
the requests are serialized. Therefore, to achieve optimal us-
age of shared memory, concurrently executing threads should
access data from different banks. We present in this paper
an automated code generation approach to overcome these
challenges, for the class of stencil computations as described
in Section 3.

3. STENCIL COMPUTATIONS
Recent work has shown promise for high performance by use
of overlapped tiling on GPUs [11] for stencil computations.
In this paper, we present an automated approach to generate
efficient overlapped tiling code for stencil computations on
GPUs. We first describe the features of a Domain-Specific
Language (DSL) to describe stencil computations, such that
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G = [0, 5]× [0, 6]

Figure 1: Example of a 2-D grid

any program written in this language can be processed auto-
matically by our compiler. The code generation algorithms
for overlapped tiling are detailed later in Section 4.

3.1 Stencil DSL
Our stencil DSL models iterative methods operating on (dense)
fields atop a Cartesian grid. In addition to the the data
space, we describe the stencil function which is applied it-
eratively on each point of the grid.

We enforce some constraints on the DSL to facilitate trans-
formation to efficient code. First, to enable compile-time
generation of overlapped tiled code, we need to model the
halo of the stencil, and it needs to be exactly computable at
compile time. This implies that the neighboring relationship
remains constant during the computation. Second, in order
to perform tiling along the time dimension, the computation
must iterate a constant number of time steps before any
field-spanning operation is performed (e.g., a convergence
check). Finally, we remark that to ease code generation, we
enforce the use of a second temporary field to store the result
of the application of the point function on the input field.
Thus in this work, we address Jacobi-like methods, and not
Seidel-like methods.

We now define the three key concepts of computation grids,
fields, and stencil functions before putting it together to
describe a full program using this DSL.

Computation Grid: Every stencil computation that we
consider is defined on a computation grid, which is a bounded,
rectangular region in Zn. The supporting grid can be seen
as a Cartesian coordinate system on a contiguous subset of
Zn. A grid can be defined as a union of “sub-grids”. This is
particularly relevant to define regions in the space that may
have different physical properties, such as boundaries. So
we have:

G ⊂ Zn

Sub-grids Gi of the grid G are non-intersecting subsets of
integer points, defining a partition of G.

A sub-grid is defined by an origin point αi and and end point
βi in each of the n dimensions, with αi ≤ βi. That is:

Gi = {[α1..β1]× [α2..β2]× . . .× [αn..βn], αi, βi ∈ Z, αi ≤ βi}

Fields: Once we have defined our computation grid, we can
define the data attached to this grid for a particular compu-
tation. This takes the form of a (series of) fields attached to



a particular (sub-)grid. Multiple fields are associated with a
single grid typically when a stencil uses data from multiple
sources during the computation. A field is implemented as
a data structure that maps a value to every point in the
grid. The type of these values can be simple scalar values or
complex recursive types, defined by the following grammar:

ElemType −→ real | integer | vector n of ElemType

| StructType
StructType −→ {field1 : ElemType1,

field2 : ElemType2, ...}

We denote FG a field F associated to a (sub-)grid G.

Stencil Functions: The last component of a stencil com-
putation is the sequence of stencil functions that are applied
iteratively to the fields defined on the computation grid. A
stencil function defines a computation that is applied to each
point of a (sub-)grid. Different functions can be used for
different sub-grids, as for instance to handle boundary con-
ditions. The stencil function uses neighboring field points in
the same field or other fields in its computation of the new
value for the point.

Given a collection of p fields Fk
Gk , a stencil function f is a

function

f : F1
G1 × . . .×Fp

Gp → TFp

where TFp is the type of elements in field Fp. The domain
of definition Gf of this function is a sub-grid of Gp, and we
have ∀i ∈ [1..p], Gf ∈ Gi. This function is implicitly invoked
for each point of Gf .

As an example, consider a simple 2-D stencil function that
is defined on the computation grid introduced in Figure 1.
We define the stencil as:

f(AG)[1..N − 2, 1..M − 2] =A[−1, 0] +A[0,−1] +A[0, 0]+

A[+1, 0] +A[0,+1]

where the notation A[i, j] shows an access to the field A
at grid coordinates (i, j) from the current grid point, and
[1..N−2, 1..M−2] specifies the range of the grid over which
the stencil function should be applied1. Since we are using
Cartesian grids in Zn, the grid offsets must be integer val-
ues. Furthermore, they must be constant. This notation
naturally extends to grids of any dimensionality. This sten-
cil function effectively computes a new value for a grid point
based on the immediate neighbors in both the horizontal and
vertical directions.

In this example, we assume that the addition operator (+)
is well-defined for the value type of elements in the field A.
For scalar, vector, and matrix types, the operator is clearly
well-defined. However, if our value type is of structure type,
the addition operator may not be well-defined in general.

Program Specification: Using the previous definitions of

1Here, it is assumed that N and M are the bounds of the
computation grid.

computation grid, field, and stencil function, we can now de-
fine a complete stencil program. A stencil program defines
the underlying computation grid, a set of one or more fields
that are associated to the grid, a sequence of stencil func-
tions that are applied on the (sub-)grids, and the number
of steps the iterative process is repeated. For each field, we
must define the value type for the points. We must also
define the region over which each stencil function operates.
Finally, we must define the number of iterations over which
the stencil computation will occur, which is attached as an
attribute of the grid. In each iteration, every stencil func-
tion is evaluated in the proper region. Stencil programs in
our framework are formally defined as:

Program −→ GridDef F ieldDefs Funcs

GridDef −→ Bounds, TimeSteps

FieldDefs −→ Name : ElemType F ieldDefs

| ε

Funcs −→ Name ( Arrays ) [ Bounds ]

= Expr Funcs

| ε

Expr −→ FieldAccess | Expr Op Expr

The bounds assigned to stencil functions define the sub-grids
in the computation. A stencil function always operates on
a sub-grid of the entire computation grid, and it may span
the entire computation grid.

In the presence of multiple stencil functions, the semantics of
a stencil program asserts that they are executed in sequential
order. That is, the first stencil function is applied to each
point in its region and the results are written back to the
data grid before any evaluation of the second stencil function
occurs. There is no ordering constraint between grid points
within a stencil function evaluation. That is, each evaluation
of a stencil function within a single outer iteration occurs
concurrently.

3.2 Example
As a concrete example, we consider the following stencil pro-
gram, where M is a parameter:

G = [0,M − 1], 64

AG : real

f1(AG)[0] = A[0]

f2(AG)[1..M − 2] = 0.333 ∗ (A[−1] +A[0] +A[1])

f3(AG)[M − 1] = A[0]

In this program, we define the computation grid as the re-
gion [0,M − 1] in Z, where the stencil should be applied
iteratively over 64 time steps. We define one field AG which
associates a field of real numbers onto the computation grid.
Finally, we define a three stencil functions f1, f2 and f3. f2
computes an average of grid point values, defined in the
range [1,M − 2] on the computation grid. The boundary
points are updated with specific equations defined by the
stencil functions f1 and f3.

The semantics of this program is that of the C-like pseu-



1 real A[M];
2 real A_tmp[M];
3

4 copy(A_tmp /* dest */ , A /* src */ );
5

6 for (n = 0; n < T; ++n) {
7 A[0] = A_tmp[0];
8 for (i = 1; i < M-1; ++i) {
9 A[i] = 0.333 * (A_tmp[i-1] + A_tmp[i] + A_tmp[i+1]);

10 }
11 A[M-1] = A_tmp[M-1];
12 swap(A_tmp, A);
13 }

Figure 2: Pseudocode for a simple 3-point stencil.

docode as shown in Figure 2. Note the use of the A_tmp
array to help implement the semantics of the stencil pro-
gram. In each iteration (n-loop), the new values for A are
computed using the old values of A from the previous iter-
ation. Therefore, the A_tmp array is used to cache the old
values of A. Also, the variable T is used as a parameter
for the number iterations over which to perform the stencil
computation.

4. OVERLAPPED TILING
4.1 Overview
Tiling for stencil computations is complicated by data shar-
ing between neighboring tiles. Cells along the boundary
of a tile are often needed by computations in surrounding
tiles, requiring communication between tiles when neighbor-
ing tiles are computed by different processors. To compute
a stencil on a cell of a grid, data from neighboring cells is
required. These cells are often referred to as the halo region.
In general, to compute an N ×M block of cells on a grid,
we need an (N + n)× (M +m) block of data to account for
the cells we are computing as well as the surrounding halo
region, where n and m are constants derived from the shape
of the stencil. For GPU devices, the halo region needs to be
re-read from global memory for every time step as surround-
ing tiles may update the values in these cells. This limits
the amount of re-use we can achieve in scratchpad memory
before having to go back to global memory for new data.
The new cell values produced in each time step must also be
re-written to global memory as other tiles may require the
data in their halo regions. In addition to the cost of going
to global memory for each time step, global synchronization
is also required to ensure all surrounding tiles have com-
pleted their computation and written their results to global
memory before new halo data is read for each tile.

To get around these issues, overlapped tiling has been pro-
posed [10] as a technique to reduce the data sharing require-
ments for stencil computations by introducing redundant
computations. Instead of forcing tile synchronization after
each time step to update the halo region for each tile, each
tile instead redundantly computes the needed values for the
halo region. This allows us to efficiently perform time tiling
and achieve high performance on GPU targets.

Consider a simple 2-D Jacobi 9-point stencil like the one
shown in Figure 3. In order to compute one time step of
an n × n tile, we need to read (n + 2) × (n + 2) cells into
scratchpad memory, compute the stencil operation on each
of the n × n points, then write back n × n points to global

1 for(t = 0; t < T; ++t) {
2 for(i = 1; i < N-1; ++i) {
3 for(j = 1; j < N-1; ++j) {
4 A[i][j] = CNST * (B[i ][j ] +
5 B[i ][j-1] + B[i ][j+1] +
6 B[i-1][j ] + B[i-1][j-1] +
7 B[i-1][j+1] + B[i+1][j ] +
8 B[i+1][j-1] + B[i+1][j+1]);
9 }

10 }
11 for(i = 1; i < N-1; ++i) {
12 for(j = 1; j < N-1; ++j) {
13 B[i][j] = A[i][j];
14 }
15 }
16 }

(a) (b)

Figure 3: Jacobi 9-Point Stencil. In (a), C code is shown
for the stencil, and in (b), the accessed data space is shown
for one grid point. The tan cell is the (i, j) point, and each
red hashed cell is read during the computation of the (i, j)
cell.

Logical Computation Actual Computation
at time t

Actual Computation
at time t+1

Elements needed at time t+1 Useless computation

Figure 4: Overlapped Jacobi 9-Point Stencil for T = 2.

memory. Now, let us consider the computation of two time
steps of the stencils on a single block, without having to go
back to global memory between the two time steps. If we
read (n + 4) × (n + 4) cells into memory, we can compute
a (n+ 2)× (n+ 2) tile of cells in the first time step, which
includes the results for our original n× n tile as well as the
halo region needed for the next time step. If we again apply
the stencil operation to the (n+2)×(n+2) tile, we correctly
compute the inner n × n tile for the second time step but
the results computed in the halo region for the second time
step are not correct. However, this is not a problem since
we only care about the inner n × n region. An illustration
of this computation is presented in Figure 4.

4.2 Code Generation
To generate efficient GPU code, we need to tile the data
space of the stencil grids into units that can be computed by
a single thread block on a GPU device without any needed
block synchronization. For each stencil operation, we need
to determine the region of grid points that will be computed
by each thread block, including any needed redundant com-
putation for intermediate time steps. The input to our code
generation algorithm is a sequence of stencil operations and
the output is overlapped-tiled GPU code and a host driver
function.

Code generation for overlapped tiling on GPU architectures



Algorithm 1: Overlapped-tiling code generation algorithm

Input: P : Program, B : Block Size, T : Time Tile Size, E
: Elements Per Thread

Output: Pgpu : GPU Kernel, Phost : CPU function
1 R ← DetermineTileSize(P, B, T)
//Generate GPU Kernel

2 Pgpu ← GenerateGPUKernel (P, B, R, T) (§ 4.3)
//Generate CPU Function

3 Phost ← GenerateHostCode (P, B, R, T) (§ 4.4)

requires us to first identify the footprints of the stencil(s),
determine proper block sizes for the target architecture, and
then generate the GPU kernel code and host wrapper code.
The overall algorithm is presented in Algorithm 1. The fol-
lowing sections describe all of the steps for the code gener-
ation algorithm.

Determining Abstract Tiles: To implement overlapped
tiling, we need to create tiles such that a single thread block
can compute all grid points for all stencil operations for T
time steps, where T is the time tile size, without requiring
any inter-block synchronization. For single-stencil compu-
tations, we only need to worry about the halo regions that
are needed in intermediate time steps. However, for multi-
stencil computations, we need to account for grid cells that
may be needed for later stencil computations.

To determine the required computation for each sub-grid, we
work backwards across all stencils and all time steps within
our time tile. We start by assuming the last stencil com-
putation in the last time step operates on a rectangular tile

that is defined by an origin ~x0 and length ~l0. For each sub-
grid used to compute this stencil, we can build a rectangular
region that forms a tighest-possible bound on the sub-grid
that includes all grid points needed for that stencil compu-
tation.

Once rectangular regions have been built for all involved
sub-grids, we move onto the previous stencil in execution
order and perform the same computation. Once we finish
with the first stencil in execution order, we wrap around
to the last stencil and continue the process again until we
have processed all stencils for all time steps in our time tile.
When we generate a new rectangular tile for a sub-grid for
which we have already computed a tile, we form the new
tile by forming the union of the old and new result and then
taking the tightest-possible rectangular bound.

This tile size selection procedure is formalized in Algorithm 2.
The GetUpdatedGrid(s) function returns the sub-grid that is
updated for the given stencil, and the function GetSourceGrids(s)
returns all sub-grids that are used on the right-hand side of

the given stencil. The function GetRequiredBounds(g, s, ~x,~l)
returns a rectangular region that represents the grid cells
that are needed in grid g to compute stencil s in the re-

gion defined by ~x and ~l. For a given stencil program P , the
ExtractSubGrids(P ) function returns all sub-grids that are

touched by any point function. Finally, the RectangularHull(∪i(~xi,~li))
function returns the region that forms the tightest-possible
rectangular bound on the given (possibly non-rectangular)
region.

Algorithm 2: Finding the tile size.

Name: DetermineTileSize
Input: P : Stencil Program, T : Time Tile Size

Output: (~xg,~lg) ∀ Sub-Grids
1 S ← ExtractStencilFunctions (P)
2 DG ← ExtractSubGrids (P)
3 foreach SubGrid g ∈ DG do

4 (~xg,~lg) ← (~x0,~l0)
5 end
6 foreach TimeStep t in (T, ..., 1) do
7 foreach StencilFunction s in Reverse (S) do
8 g ← GetUpdatedGrid (s)
9 src ← GetSourceGrids (s)

10 foreach SubGrid dg ∈ src do

11 (~x′dg,~l
′
dg) ← GetRequiredBounds (dg, s, ~xg, ~lg)

12 (~xdg,~ldg) ← RectangularHull

((~xdg,~ldg) ∪ (~x′dg,~l
′
dg))

13 end
14 end
15 end

The results of this algorithm are a set of rectangular regions

defined by ~xg and ~lg, one for each sub-grid g. These regions
define the grid cells that must be processed in each time
step for each sub-grid in order to properly compute the final
stencil in the final time step of the time tile. These regions
will later be used to derive the per-block computation code.
For the case of multiple grid points processed per thread, the
~lg quantities are just multiplied by the number of elements
per thread, element-wise in each dimension.

Note that to compute the final result for our (~x0,~l0) region
for each sub-grid, we do not need to compute values for the

entire (~xg,~lg) grid in each time step. However, on GPU
architectures, it is more efficient to perform this redundant
computation and let each thread perform the same amount
of work in each time step. Otherwise, threads would contain
control-flow instructions that would cause branch divergence
and lower overall performance.

1-D Multi-Stencil Example: Let us now consider a multi-
stencil computation. In the following example, we use two
stencil computations operating over two data grids, defined
as:

fA(BG)[1..N − 2] = B[−1] +B[0]

fB(AG)[1..N − 2] = A[0] +A[1]

Again, we use a time tile size of three. We start by assigning

an initial tile of (~xB ,~lB) = (x0, l0) to grid B. We see that
the computation of B only depends on the grid A, so we
use the index expressions to compute the needed region of

A, which is (~xA,~lA) = (x0, l0 + 1). We then backtrack to
the computation for grid A, and determine that the needed

region in grid B to compute A is (~xB ,~lB) = (x0 − 1, l0 + 2).
This completes time step three, so we reverse to time step
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Figure 5: Tile region computation for 1-D multi-stencil.

two and perform the same computation. Backtracking all of
the way to the beginning of time step one, we have:

(~xA,~lA) = (x0 − 2, l0 + 5)

(~xB ,~lB) = (x0 − 2, l0 + 4)

A pictorial representation of this process is shown in Figure 5

4.3 Generation of GPU Kernel Code
Now that we know the amount of redundant computation
that is needed for each sub-grid, we can generate the GPU
kernel code for the stencil time tile. For this, we need to
define a set of parameters that are used as input to the code
generation algorithm:

Parameter Description

E The number of cells to process per thread
~B The desired GPU block size (x, y, z)
T The time tile size

Using the tile regions determined by Algorithm 2, we know
that for each sub-grid g, the region of computation for a

given thread block is given by (~xg,~lg). Let us define the

region with the maximum size as (~xmax,~lmax), where ~xmax

and ~lmax are affine expressions in ~x0 and ~l0, our abstract
tile size. Here, our definition of maximum size is the largest
number of grid points contained in the region defined by

(~xg,~lg). Then, given that ~B is our desired thread block size,

we can solve for ~l0 with:

~lmax = ~B (1)

The value ~x0 is still a symbolic entity, but we now have

a concrete value for ~l0 which we can use to generate GPU
kernel code. An important observation at this point is that

the region (~xg,~lg) defines the region of real computation for
the stencil operation writing sub-grid g and the halo region
(e.g. the region that is computed redundantly) is defined as:

Halo(g) = (~xmax,~lmax)− (~xg,~lg) (2)

Note that the halo region is, in general, not a rectangular
region. It is instead a rectangular bound around the non-
halo region.

Algorithm 3: Generating shared-memory definitions

Name: GenerateSharedMemory

Input: P : GPU Program, ~B : Block Size, ~E : Elements
Per Thread, D : Sub-Grids

Output: P : GPU Program
1 foreach SubGrid g in D do

2 P ← DeclareSharedRegion (P, NumberOfPoints ( ~B,
~E), g)

3 end

Shared/Local Memory Size: To take advantage of the
GPU memory hierarchy, it is necessary to use shared/local
memory to cache results whenever possible. To generate
high-performance GPU code using overlapped tiling, we need
to determine how much shared memory is needed to cache
the redundant computations that are performed. This com-
putation is straight-forward, since we only need to account
for the results produced by each thread. Therefore, the
amount of shared memory we need for the computation (in
number of data elements) is simply:

SharedSize =
∑
g

(Area( ~B)) (3)

This allows each thread to cache the result it produces for
each stencil computation. The Area() function simply re-
turns the number of grid points within the region defined by

(~xg,~lg).

This process is formalized in Algorithm 3. Given a block size
and the number of grid points to process per device thread,
a shared memory region is declared for each sub-grid. This
shared memory region is declared for the GPU program P .
The NumberOfPoints function simply returns the number of
integer points contained within the block defined by taking

the component-wise multiplication of ~B and ~E.

Thread Synchronization: Thread barriers are used be-
tween stencil operations to ensure that all threads have fin-
ished the computation for a particular stencil operation be-
fore any thread starts computing a value for the next stencil
operation. The thread blocks compute completely indepen-
dently, but the threads within a thread block must be syn-
chronized as one thread may produce a result that is needed
by another thread in the next stencil operation.

Block Synchronization: Our computation model dictates
that for each stencil operation, a snapshot of the data is used
as input for every evaluation of every grid point, and writes
back to the grid are done after all evaluations have finished.
In other words, all reads from global memory must see the
same data. Unfortunately, this is hard to guarantee on GPU
architectures which lack block synchronization and GPU-
wide memory fences. To get around this issue, a buffering
approach is used. For each sub-grid used as an output for
a stencil computation, two grids are actually maintained in
GPU memory. For each time tile, one version is used as
input and another is used as output. Between time tiles,
the host will swap the buffer pointers before the next ker-
nel invocation. This ensures that all reads within a kernel



Algorithm 4: Thread code generation

Name: GenerateGPUKernel
Input: P : Stencil Program, ~B : Block Size, ~E : Elements

Per Thread, T : Time Tile Size
Output: Pgpu : GPU Program

1 S ← ExtractStencilFunctions (P)
2 D ← ExtractSubGrids (P)
3 Pgpu ← NewGPUProgram ()

4 Pgpu ← GenerateSharedMemory (Pgpu, ~B, ~E, D)
(Algorithm 3)

5 InShared ← ∅
6 foreach TimeStep t in T do
7 foreach Function f in S do

8 foreach Element e in Iterate ( ~E) do
9 foreach SubGrid g in GetSources (f) do

10 if g ∈ InShared then
11 Pgpu ← GenerateSharedMemoryReads

(Pgpu, g, e, f)
12 else
13 Pgpu ← GenerateGlobalMemoryReads

(Pgpu, g, e, f)
14 end
15 end
16 Pgpu ← GenerateFunctionEvaluation (Pgpu, f,

e)
17 end
18 Pgpu ← GenerateThreadSync (Pgpu)
19 Pgpu ← GenerateSharedMemoryWrite (Pgpu, g, e)
20 InShared ← InShared ∪ GetDestination (f)
21 Pgpu ← GenerateThreadSync (Pgpu)
22 end
23 end
24 foreach SubGrid g in D do

25 foreach Element e in Iterate ( ~E) do
26 if ¬ Halo (g, e) then
27 Pgpu ← GenerateGlobalMemoryWrite (Pgpu, g,

e)
28 end
29 end
30 end

invocation see the same data and no issues can arise from
one thread block completely finishing a computation before
another block starts.

Thread Code: We can now generate the per-thread code
that will implement the stencil computation. This code im-

plements the computation of all sub-stencils for
∣∣∣ ~E∣∣∣ data

elements over T time steps. In the first time step, each
thread reads its needed data from global memory, performs
the computation of the first stencil operation, and stores the
result to shared/local memory. This process is repeated for
each stencil operation in the stencil computation. For each
subsequent time step, each thread reads its needed data from
shared/local memory, performs the computation of each sub-
stencil, in order, and stores the result to shared/local mem-
ory. In the last time step, if the thread is not part of the
halo, the final result is written back to global memory.

This process is formalized in Algorithm 4. Here, code is
generated for each stencil function evaluation for every time
step of our time tile. A new GPU program object is cre-

Algorithm 5: Host code generation

Name: GenerateHostCode
Input: P : Stencil Program, Pgpu : GPU Program, ~B :

Block Size, ~E : Elements Per Thread, T : Time

Tile Size, ~N : Problem Size, Ttotal : Total Number

of Time Steps, (~x0,~l0)
Output: Phost : Host Program
Output: Phost : Host Program

1 Phost ← NewHostProgram ()
2 DG ← ExtractSubGrids (P)
3 NumBlocks ← (Nx/l0,x, Ny/l0,y, ...)
4 foreach SubGrid g in DG do
5 ggpu,0 ← AllocateGPUBuffer (g)
6 ggpu,1 ← AllocateGPUBuffer (g)
7 Phost ← CopyHostToDevice (Phost, ggpu,0, g)
8 Phost ← CopyHostToDevice (Phost, ggpu,1, g)
9 end

10 Body ← { InvokeKernel (Pgpu, NumBlocks); Swap(ggpu,0,
ggpu,1) ∀ SubGrid g in DG }

11 Phost ← GenerateTimeLoop (Phost, Ttotal / T, Body)
12 foreach SubGrid g in DG do
13 Phost ← CopyDeviceToHost (Phost, ggpu,†, g)
14 end

ated that represents our generated kernel code, and we gen-
erate code to evaluate multiple grid points per thread (if
needed), and use shared memory to cache results whenever
possible. Different implementations of the generate func-
tions can be used to target different languages, including
CUDA, OpenCL, LLVM IR, etc.

Example: As an example, let us consider a Jacobi 5-point
stencil over 2 time steps. The stencil function can be defined
as:

f(AG)[1..N − 1, 1..M − 1] =0.2 ∗ (A[−1, 0] +A[0, 0]+

A[1, 0] +A[0,−1] +A[0, 1])

The generated code for an OpenCL target will apply the
stencil function twice, once at time t and again at time t+1.
Global memory will only be read at the beginning of time
step t, and written at the end of time step t+1. The results
computed in time step t will be cached in shared memory
and read in time step t+1. A barrier will be placed between
the time steps to ensure all shared memory writes complete
before any shared memory reads occur in time step t+ 1.

4.4 Generation of Host Code
To be a complete code generation framework, host code is
also needed to properly configure and execute the generated
GPU kernels. For our purposes, this involves creating a
C/C++ function that is responsible for copying input data
to the GPU device before kernel invocation, setting up the
proper grid and block sizes, invoking the kernel, and copying
output data back to the host after kernel invocation. The
general procedure is outlined in Algorithm 5, and details are
provided in the following subsections.

Copy In/Out: Copy-in/copy-out code is generated by de-
termining the amount of global halo that is needed, allocat-



ing buffers of the appropriate size, and copying data to/from
the device at the appropriate time. A global halo is used to
eliminate conditional behavior around the boundary in GPU
kernel code. When time tiling is used, a thread that would
ordinarily access the sub-grid boundary may now read sev-
eral points beyond the edge of the grid. To make sure these
memory accesses stay within bounds and that the intermedi-
ate results are correct, the boundary grid cells are replicated
into a halo region of width equal to the maximum radius of
all stencils that read from the sub-grid.

Thread Blocks: The GPU block size is pre-determined
as an input to the code generation algorithm, but we also
need to determine the number of thread blocks that will
be executed. Remember that each thread block computes a

region of (~xmax,~lmax) for grid g, where only (~x0,~l0) is useful

work. If ~N is our total problem size, then we need | ~N/~l0|
total blocks, where the division is performed element-wise
and the length is a measure of the total number of blocks in
the volume.

Time Loop: The host code is also responsible for imple-
menting the outer time loop. Each invocation of the GPU
kernel will compute T time steps of the stencil. If S is the to-
tal number of time steps, then the host code will invoke the
kernel S

T
times. After each time tile, the input and output

buffers are swapped to make the output from the previous
time tile the input to the next time tile.

5. EVALUATION
In this section, we report on an experimental evaluation of
the code generation scheme. using GPU devices from both
AMD and nVidia – AMD A8-3850 APU (Radeon HD 6550D
GPU), nVidia GTX 280, GTX 580, and Tesla C2050 devices.
For the nVidia devices, we used the publicly available CUDA
SDK 4.1 RC2 to execute OpenCL programs. For the AMD
devices, we used the AMD Accelerated Parallel Processing
SDK 2.6. Across all devices, we tested on Red Hat Enter-
prise Linux 6.2 AMD64 with the kernels and device driver
versions recommended by the respective device vendors.

The characteristics of the tested GPU devices are as follows:

GTX GTX Tesla AMD
280 580 C2050 A8-3850

Peak SP 933 GF/s 1.58 TF/s 1.03 TF/s 480 GF/s

Peak B/W 141.7 GB/s 192 GB/s 144 GB/s Variable2

The characteristics of the tested stencil programs are as fol-
lows:

2The AMD Fusion chips are integrated CPU/GPU devices
with the GPU cores using system memory, making the peak
bandwidth variable.

Elements Number Ops
Program Per Pt of Arrays Per Pt Dim.

Jacobi 1-D 3-Pt 3 1 3 1
Jacobi 1-D 5-Pt 5 1 5 1
Jacobi 1-D 7-Pt 7 1 7 1

Jacobi 2-D 5 1 5 2
Jacobi 3-D 7 1 7 3

Poisson Solver 9 1 9 2
Electromagnetics 2/2/3 3 11 2
Rician Denoising 5 2 44 2

Gradient 5 1 18 2
TV Update 2D 7 1 59 2

The Jacobi stencils are synthetic Jacobi-style stencil pro-
grams. The Poisson Solver stencil is an application of the
Poisson PDE in two dimensions. The Electromagnetics sten-
cil is an application of the 2-D Finite-Difference Time-Domain
method [18]. The Rician Denoising and TV Update 2D sten-
cils are components of the CDSC CT/MRI imaging pipe-
line [1]. The Gradient stencil is an application of a gradient
operator on a two-dimensional grid.

5.1 Performance Analysis
We evaluated the performance improvement of overlapped
tiled stencil code as generated by our algorithm by examin-
ing the performance over many stencil programs. We per-
formed an exhaustive search of the parameter space (block
size, time tile size, and spatial tile sizes) to determine the
best performing version. For comparison purposes, we also
show the results obtained by only searching in the spatial tile
size and not performing time tiling. This allows us to eval-
uate the effectiveness of time tiling using overlapped tiling
for these stencils.

Figure 6 shows the results of this experiment. Each graph
shows a different GPU devices, and each bar shows perfor-
mance results for a particular stencil program. Overlapped
tiling is particularly effective for 1-D and 2-D stencils, as
shown in the Jacobi 1-D, Jacobi 2-D, Poisson, Electromag-
netics, TV Update 2D, and Gradient stencils. For 3-D sten-
cils, the computational overhead of overlapped tiling often
offsets the savings in global memory access. The same is also
true in the 2-D Rician Denoising stencil, where the ratio of
computation to memory access is already high.

Peak floating-point performance on a GPU device can only
be achieved by issuing a multiply-and-add instruction in
each clock cycle. Due to the ratio of floating-point addi-
tion to multiplication being quite high in all of the tested
stencil programs (often on the order of 5–10), it is expected
that the actual performance is significantly lower than device
peak. Further, most stencil operations involve multiplying
a number by the result of a chain of additions, which does
not map well to multiply-and-add instructions (instead, we
would need an add-and-multiply instruction). As an exam-
ple, consider the Gradient stencil program. For each point,
there is one reciprocal square-root operation and 17 addi-
tions. If we consider only the additions, the achievable peak
single-precision floating-point performance of the GTX 580
drops to 790 GFlop/s. Taking this into account, we achieve
about 44.3% of the achievable peak on the GTX 580 for the
Gradient stencil.

To evaluate our performance results, we compare against the
results published in other stencil literature. Datta [5] reports
15.8 GFlop/s and Tang et al. [19] report 19.9 GFlop/s for a
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Figure 6: Performance of stencils across architectures

7-point Jacobi 3D stencil on an Intel Nehalem using double-
precision. On the GTX 580, we achieve 50 GFlop/s for a
7-point Jacobi 3D stencil in single-precision mode, and 28.7
GFlop/s in double-precision mode. Tang et al. also report
a maximum of 5.3 GPoints/s for a 2-D heat equation stencil
on an Intel Nehalem, which translates into 31.8 GFlop/s.
Our equivalent Jacobi 2-D stencil achieves 49.5 GFlop/s in
double-precision mode on the GTX 580. Meng et al. [11]
report approximately 2× 106 cycles per iteration on a GTX
280 for a Poisson stencil that has been manually tiled using
overlapped tiling with a time tile size of 3. With a clock
speed of 1.3 GHz, this gives approximately 70.2 GFlop/s. In
comparison, the Poisson stencil generated by our framework
achieves 81.7 GFlop/s on the GTX 280.

In a different work, Datta et al. [6] show 36 double-precision
GFlop/s for a 7-point Jacobi 3D stencil on a GTX 280 af-
ter aggressive auto- tuning. On the GTX 280, we achieve
20 GFlop/s. We note that the results presented here are
shown for automatically generated code that implements
overlapped tiling. We do not yet perform some of the manual
optimizations performed by Datta et al. in their auto-tuning
work. Additionally, 3D stencils are not handled well by over-
lapped tiling on GPU architectures due to the amount of
redundancy computation that is needed for even small time
tile sizes. In such cases, the optimizations proposed by Datta
el al. are more beneficial than overlapped tiling on GPUs.

5.2 Impact of Tile Size Selection
The proper selection of block size, time tile size, and ele-
ments per thread is essential for the performance of the gen-
erated code. Figure 7 shows the performance of the Jacobi
2-D stencil for a fixed block size and varying time tile size
and elements per thread. The performance on four different
architectures is shown: an nVidia GTX 580 (Fermi), Tesla
C2050 (Fermi), GTX 280 (GT200), and an AMD A8-3850
APU (Radeon HD 6550D). The block sizes were chosen such
that the stencil achieves optimal performance on the archi-
tecture for some time tile size and elements per thread.

The trend in each case is that time tiling, through over-
lapped tiling, improves the performance of the stencil pro-
gram for increasing time tile sizes up to a point. After this

point, the overhead of overlapped tiling offsets the benefits
of the time tiling. Therefore, there is an optimal time tile
size. The choice for the number of elements per thread to
process has an effect on this optimal time tile size, as shown
in the graphs. For the GTX 580, this point is at T = 6 for
10 and 12 elements per thread, but only T = 5 for 6 and
8 elements per thread. For the A8-3850 APU, the optimal
time tile size is around 5 for each case.

Insights into this optimal time tile size can be gained by
looking at the actual computation being performed on the
device for each time tile size. Figure 8 shows normalized
GPU performance counter data for a time tile size of 1 to 10
for a fixed elements per thread value of 10 (GTX 280) and
12 (GTX 580). We see that as we increase the time tile size,
the total number of global loads generally decreases up to
a point and then saturates. For larger time tile sizes, more
work is being cached in shared memory resulting in the de-
crease in global loads. There is a corresponding increase
in the number of shared memory loads/stores and total in-
structions executed as we increase the time tile size. Again,
as we increase the time tile size, we are doing more work
on data in shared memory, but the percentage of redundant
computation also increases, leading to the increase in total
instructions executed.

From the GPU time counter, we see that minimum total
time spent on the computation is at a time tile size of 6.
As we increase this size, we see that the total number of
instructions executed continues to increase, but the total
number of global loads remains relatively constant. Hence,
we begin to increase the overall execution time. It is im-
portant to note, however, that the floating-point through-
put of the device does continue to increase as we continue
to increase the time tile size and hence perform a larger
portion of work in shared memory. However, larger time
tile sizes also mean that smaller percentages of the total
floating-point throughput is actually useful and not just re-
dundant computation. Therefore, after a time tile size of 6,
the cost of the redundant computation starts to exceed the
savings in global memory transfer. The limiting factor for
performance for smaller time tile sizes is thus global mem-
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ory bandwidth. This changes to floating-point instruction
throughput for larger time tile sizes.

Note that even when time tiling through overlapped tiling is
not profitable, our code generation algorithm still produces
high-performance code. Our framework can still utilize spa-
tial tiling of the stencil computation in order to achieve levels
of performance that surpass that of multi-core CPUs.

6. RELATED WORK
A number of recent studies have focused on optimizing sten-
cil computations for multicore CPUs and GPUs [2, 6, 8, 12,
17, 19, 20]. Strzodka et al. [17] use time skewing and cache-
size oblivious parallelograms to improve the memory system
pressure and parallelism in stencils on CPUs. PATUS [2] is
a stencil compiler proposed by Christen et al. that uses both
a stencil description and a machine mapping description to
generate efficient CPU and GPU code for stencil programs.
Han et al. [8] propose an extension to OpenMP to allow
for pattern-based optimization of stencil programs on CPUs
and GPUs. Micikevicius et al. [12] hand-tuned a 3-D fi-
nite difference computation stencil and achieved an order of

magnitude performance increase over existing CPU imple-
mentations on GT200-based Tesla GPUs. Datta et al. [6]
developed an optimization and auto-tuning framework for
stencil computations, targeting multi-core systems, NVidia
GPUs, and Cell SPUs. They proposed autotuning as essen-
tial in order to achieve performance levels on GPUs where
the benefits outweigh the cost of sending data across the
PCIe bus. But neither of these studies considered time-tiled
implementations on GPUs.

The work of Tang et al. [19] is perhaps the most closely-
related to ours. They propose the Pochoir stencil com-
piler which uses a DSL embedded in C++ to produce high-
performance code for stencil computations using cache-obliv-
ious parallelograms for parallelism. They target x86 using
the Intel C++ Compiler and the Intel Cilk Plus library.
They show good performance on x86 targets, but do not
address issues specific to GPU code generation for stencil
computations.

Closely related to our work is that of Meng et al. [11]. They
propose a performance model for the evaluation of ghost
zones for stencil computations on GPU architectures. They
consider the effects of tile size selection on the performance
of the final code, and propose an approach based on user
provided annotations for GPU code generation, but do not
consider fully automated code generation.

Overlapped tiling, the technique used in our automatic code
generation framework, was used by Krishnamoorthy et al.
[10] for enhancing tile-level concurrency for multicore sys-
tems. Nguyen et al. [13] proposed a data blocking scheme
that optimizes both the memory bandwidth and computa-
tion resources on GPU devices. Peng et al. [7] investigate
the selection of tile sizes for GPU kernels, with an emphasis
on stencil computations. However, none of these works con-
sider fully automatic, high-performance code generation for
stencil computations on GPUs.

7. CONCLUSION
In this paper, we have introduced an automatic code gen-
eration scheme for stencil computations on GPU architec-
tures. This scheme uses overlapped tiling to provide effi-
cient time tiling on GPU architectures, which are massively
threaded but are susceptible to performance degradation due
to branch divergence and a lack of memory coalescing. We
have shown that our scheme produces high performance code
on a variety of GPU devices for many stencil programs. We
further performed an analysis of the resulting code for var-
ious time tile sizes to identify the limiting factors, showing
that global memory access is the limiting factor for smaller
time tile sizes, and computational overhead is the limiting
factor for larger time tile sizes.
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