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Abstract

In manifold learning, algorithms based on graph Laplacianstructed from data have received
considerable attention both in practical applicationstiedretical analysis. Much of the existing work
has been done under the assumption that the data is sammhed fmanifold without boundaries and
singularities or that the functions of interest are evadatway from such points.

At the same time, it can be argued that singularities and dags are an important aspect of the
geometry of realistic data. Boundaries occur whenever toegss generating data has a bounding
constraint; while singularities appear when two diffener@nifolds intersect or if a process undergoes a
“phase transition”, changing non-smoothly as a functioa parameter.

In this paper we consider the behavior of graph Laplaciap®gits at or near boundaries and two
main types of other singularitiesntersections where different manifolds come together and sharp
“edges”, where a manifold sharply changes direction. We show theb#havior of graph Laplacian
near these singularities is quite different from that inititerior of the manifolds. In fact, a phenomenon
somewhat reminiscent of the Gibbs effect in the analysisoafrier series, can be observed in the be-
havior of graph Laplacian near such points. Unlike in theriiotr of the domain, where graph Laplacian
converges to the Laplace-Beltrami operator, near siniji@grgraph Laplacian tends to a first-order
differential operator, which exhibits different scalinghavior as a function of the kernel width. One
important implication is that while points near the singities occupy only a small part of the total
volume, the difference in scaling results in a dispropoxditely large contribution to the total behavior.
Another significant finding is that while the scaling behawabthe operator is the same near different
types of singularities, they are very distinct at a more ezfilevel of analysis.

We believe that a comprehensive understanding of thesetstes in addition to the standard case
of a smooth manifold can take us a long way toward better nastfar analysis of complex non-linear
data and can lead to significant progress in algorithm design

1 Introduction

Dealing with high-dimensional non-linear data is one of kieg challenges in modern data analysis. In
recent years a class of methods based on the mathematiga wéta manifold has become popular in
machine learning, starting with the papers [24, 26]. Theeulythg intuition is that a process with a small
number of parameters will generate a low-dimensional saria the potentially very high-dimensional
space of features and that this situation is ubiquitous atrwerld data. This idea is captured nicely by
the technical notion of a smooth embedded Riemannian mdnifdiich provides the first realistic model
for general non-linear data. Still it does not reflect certanportant aspects of real data, which can be
mathematically understood as singularities and bounslarie
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The most basic and, arguably, most important singularitseal data is ainter-
section where two different manifolds come together in a regionpafce. This often
happens in classification where two classes with presundifirent structure can
give rise to similar objects (consider, e.g., the simijaof MNIST digits “7” and “1”
on the right). Another important type of singularity is a-{@ionension one) édgé,
which is ubiquitous in computer graphics (think of an edgehef surface of a ta-
ble) and happens whenever the behavior of an underlyingepsochanges rapidly beyond a certain point
(a “phase transition”). Finallypoundariesoccurs when there are bounding constraints on the undgrlyin
process (think how poses of the human body are constrainéuelnange of motion of the joints) or on the
representation in the ambient space (e.g., pixels cannetregative intensity).

In this paper we provide an analysis of these three casegfdatian-based learning algorithms. It turns
out that all of these singularities result in a behavior niearsingularity markedly different from that inside
the manifold, a phenomenon somewhat reminiscent of the'&éffect in Fourier analysis. In particular,
the scaling of the operator is different near singularitids a result of this scaling behavior, singularities
cannot be ignored, even globally, despite the fact thativels few points are located near them, since
each of these points contributes disproportionately tddted operator. We also find that at a finer level of
analysis these singularities have quite different effegtich are discussed below.

We believe that a comprehensive understanding of thesetstes in addition to the standard case of a
smooth manifold can take us a long way toward better methmrdsalysis of complex non-linear data and
can lead to significant progress in algorithm design.

Related work. Methods based on graph Laplacians constructed from daeadeiaed acceptance for a
range of inference tasks including clustering [28], seufiesvised learning (e.g. [7, 29]) and dimensional-
ity reduction [3], as well as others. An analysis in [3] pastl a mathematical framework for many of these
methods by connecting graph Laplacian constructed from tethe Laplace-Beltrami operator of the un-
derlying manifold based on the relation of the Laplacian tredheat equation. That analysis was extended
and generalized in [20, 18, 11, 4, 25, 13, 19, 5] providing taitedl understanding of graph Laplacians ob-
tained from manifold data. While boundary effects have k&eadied in non-parametric kernel smoothing
(see, e.g., [16, Chapter 4.4]), they have not been consideithe Laplacian-related literature, although we
note that boundary behavior for the infinite data case canebgedl from the Taylor series expansion in
Lemma 9 of [11]. To the best of our knowledge, other singtisiare not considered in that literature.
(In fact, the reason causing the different scaling behdaioimtersection and edge types of singularities is
somewhat different from that for the boundary case.)

In related developments, a considerable amount of recerk as been aimed at understanding the
case of intersecting linear spaces using various techsiffoen algebraic geometry to spectral clustering
(e.g., [27, 10, 21]) both in terms of algorithms and thecgdtguarantees. In our setting, this is a special
case of a singular manifold with intersection singulasitidnother related work is [14], where the authors
analyze a model based on a mixture of manifolds in the cowfesg¢mi-supervised learning.

We also note that there has been much recent interest instegoting topological invariants of mani-
folds and other spaces (see, e.q, [8, 9, 22, 23]). The lineook wost related to our results is on learning
stratified spaces, where multiple submanifolds (stram)fgued” nicely together [1, 6, 17], which provides
an even more general model for a singular space.

Summary of results. Consider the (appropriately scaled, see Section 2) graplatianL, ; constructed
from n data points, using the Gaussian kernel with bandwidthcan be shown (see the references above)
that ast tends to zero and tends to infinity at an appropriate ratg, ; converges to the Laplace-Beltrami
operatorA (a second order differential operator) inside the maniftidhis paper, we show that for singular
manifolds L,, ; exhibits a very different behavior near the singularity. specifically, for a sufficiently



smooth functionf and a smalt, within distance\/¢ of the singularity setl,, ; f is approximated b%D,
where D is some first order derivative operator that will be desaribgplicitly. The difference in scaling
becomes crucial whehis small as the%D term becomes dominant. To simplify the discussion, we will
first assume that the data is infinite, and tiiys f can be replaced by, f. Finite sample bounds and rates
will be discussed later. The types of singularities congidén the paper are as follows:

Boundary At a point z near manifold boundaryl.; can be approximated by
\/qs( )On, WhereR is the distance fromx to the boundary and is the unit
vector toward the nearest boundary point (outward normtdesboundary).0,
denotes the directional derivative, whifgz) is a scalar function of the form
¢(z) = Ce =",

Intersection and edge. The situation is more complicated for other types of.. &
singularities, where two different manifolély andS2, intersect or come together.

Given a pointzy € €2y consider its projectionz, onto 2 and its nearest neighbat, in the singularity.
Similarly to the boundary case, laf; andns, be the directions ta, from x; and x, respectively and
let Ry and Ry be the corresponding distances, f(x1) can be approximated b?}gzbl )On, f(x0) +

\/2(252(\/{) On, f(x0). Importantly, the form of the scalar functiogs, ¢, is different for dn‘ferent types of

boundary-type

intersection-type

singularities: for intersection-type singularity, we baw;(z) = A;ze=%%* | while for edge-type we have
oi(z) = Aize‘cz2 + Bl-e‘czz. Here the coefficientsi;, B; and C' depend on the angle between the
manifolds and can be written explicitly.

Significant points and observations:

1. Scaling. Within O(+/t) distance of the singularityl,; is dominated by a differential operator different
from the Laplace-Beltrami operator. Away from the singityathe higher-valuedi(//t) term fades and.;
becomes an approximation to the Laplace-Beltrami operator

2. Contributions of singular points. Let the dimension of the manifold ke The volume of points within
\/t of the singularity is approximately/t voly_1(S), wherevoly_(S) is d — 1 dimensional volume of
the singular points, assuming that the set of singular pdinis d — 1 dimensional (co-dimension one),
which is always the case with the boundary and “edge” singida (and may or may not be the case with
intersection). Fix a functiorf. Ast — 0, the integralL, f over the points within/t of the singularity does
not disappear and, in fact, will converge to a constant, iéipg on the function and thé— 1 dimensional
volume of the singularity. Moreover, because of the operstaling, the contribution of those near-singular
points to theL, norm will tend to infinity. We remark that, while differentdim a technical point of view,
this phenomenon is reminiscent to the Gibbs effect in Foseeies, where effects of discontinuity do not

vanish as approximation becomes more and more precise.
3. Shape near the boundaryWhile the7 scaling

is common for all singularities, the type of singular- [
ity is reflected in the shape of the functignwhich

is very different for different types of singularities. \
Somewhat over-simplifying matters, one can think o
of ¢ = e=* for the boundary case; = ze=* for (a) boundary  (b) intersection (c) edge

the intersection singularity ang = e~ + ze=* for the edge (see figures above). These differences lead
to quite distinctive patterns, when the operator is apptited fixed function. For example, the directional
derivative terms disappeat the intersection-type singular points. In fact for thesa{sol; converges to

the usual Laplace-Beltrami operator. However, at pointhiwiy/z distance of these points we expect to see
L, f take both positive and negative values of magnityte We think that this difference may be a key to
future algorithms.

O(“ﬂ’ (0]

1For compactness, we are simplifyirtp for edge singularities by removing some higher order tefsee Section 3.3).



4. Rates and finite sample boundsConvergence rates foras well as finite sample bounds are provided
in Section 4. Interestingly, and perhaps counter-intelyivthe scaling implies that fewer data points are
required to ensure thd; ,, is an accurate (relative) estimatelgfnear the boundary than inside the domain.
5. Impact on eigenfunctions Eigenfunctions of the graph Laplacian associated to datased in a large
number of applications. While the question of convergesceery subtle (see [5] for the proof in the case of
a smooth manifold), our results for fixed functions provideirdication of the expected answer assuming
the convergence holds. We provide a brief discussion of$dation 5.

It turns out that the boundary case automatically leads tenien boundary conditions (even though
the operator does not "see” the boundary explicitly). Qsiteprisingly, the edge singularity appears to have
no effect on the limit behavior of eigenfunctions, at ledshé singular manifold is isometric to a smooth
one (think of bending a sheet of paper). The case of the gtton is more complex, but intersections of
co-dimension two or more seem to have no effect on the linfieb@r of eigenfunctions (i, norm).

Some experimental results based on our theoretical findiag$e found in Appendix C.

2 Problem Setup

Let 2 be the set ofc smooth compact Riemannian submanifolds of intrinsic dsi@nd embedded in
RY. For each smooth componefi, let ©; denote its interior and$?; its boundary of2;. We assume
the boundarie®; satisfy thenecessary smoothness conditfaniset 2 be the union of2;, andof) be the
union of 9Q;. Q; and2; may not be disjoint, and we will consider the following twoysahat they can
associate with each other: they intersect in their intgfier 2; N Q; # () or they are “glued” along (part
of) their boundaries. More precisely, given a paint Q, we say thatr is regular if it falls in the interior
of exactly onesubmanifold(2;; that is,z € Q;,x ¢ Q;, j # i. Otherwise is asingular point There are
several possible singularities, and this paper consitterfotlowingthree general classés

1. boundary-type: Boundary points that belong to exactlg smooth submanifold;: that is,z €
8Qi,ZL' §é Qj,j 75 7,

2. intersection-type: Points at the intersection of two sth@ubmanifolds. For simplicity of exposition,
we assume that the intersection happens between the mbdétioe submanifolds; that is; € ©; N
Qj>i 7£ ]1

3. edge-type: Boundary points that belong to the boundarfegs/o smooth submanifolds. That is,
x € 08y ﬂan,i # .

For technical reasons, we will assume that the set of singudants is also a smooth manifold of lower
dimension, at least locally. Moreover, for edge and intgtisa singularities the tangent space at each point
of the singular manifold is the intersection of the tanggraces to each “piece”. We will call a union of
smooth manifold$2 with the above types of singularitiesiagular manifold Notice that for a regular point

x, the manifold is smooth at, and the tangent spacesats homeomorphic t&®R?.

For a singular manifold2, we consider the followingiecewise-smooth functiofi : Q@ — R. In
particular, setf; := f]@, i =1,...,k, be f restricted to the submanifold;. We require that eaclfi is
C*-continuous on interior points. le{x) be a piecewise smooth probability density functionfband we
assume thal < a < p;(x) < b < oc.

Graph Laplacian. Givenn random sampleX = {X;,---, X, } drawn i.i.d. from a distribution with
densityp(x) on ), we can build a weighted graghi(V, ) by mapping each sample poit; to vertexv;

2\We require that the derivatives of the first two orders of thasition map exist, i.eM is aC?-manifold, see [12], page 50.
3There are other cases, which can be considered as a mixttivesefthree general cases.



and assigning a weight;; to edgee;;. One typical weight function is the Gaussian, which is usethis
paper and defined as follows:
1 1 1 IX-XleN
wnt (X, Xj) = S Ko(Xi, Xj) = —gmrqe ‘
Notice that in this Gaussian weight function, the Eucliddamance is used. The normalization b%m
is for the convenience of limit analysis.

Let W, be the edge weight matrix of gragh with W,, (4, j) = w(X;, X;), andD,, ; be a diagonal
matrix such thaD,, ;(i,) = Zj wy (X5, X;), then the unnormalized graph Laplacian is defined as the
matrix L, ; = D, — W, .. Now for a fixed smooth functiorfi(z), and any point: € 2, the graph Laplacian
applied to this functiory is thus

L f(x ZKt z, X;)[f (@) — f(X5)].

Limit behavior of graph Laplacian. The limit study of graph Laplacians primarily involves thimits of
two parameters, sample sizeand weight function bandwidth As n increases, one typically decreases
to let the graph Laplacian capture progressively a finer Istcacture. With a proper rate as a function of
n andt, the limit of L,, ; and its various aspects at regular points, including théefample analysis, are
studied in [2, 20, 18, 25, 13, 19, 4, 5]. The basic result isttelimit of L,, . f () at a regular point is (up

to a constant,, ; f () % —p(r)Ap2f(x) = —p(x){%div[ngrad f(x)}, whereA . is called theweighted
Laplacian see [15]. See [19] for the limit analysis of other versiohgraph Laplacians at regular points.

3 Limit Analysis of Graph Laplacian on Singular Manifolds

The limit analysis of graph Laplacians typically involvasits of two parameters, the sample sizand the
(Gaussian) kernel bandwidth This is usually done in two steps, first analyzing the litnit- 0 for infinite
data and then obtaining finite sample results and rates-as>o using concentration inequalities.

In this section we analyze the behavior of the infinite grapplacian (i.e.L,, ;,n = 00), L, f (x), when
x is on or near a singular point,is small and the functiorf : O — R, is fixed. Finite sample results and
rates are given in Section 4.

For a fixedt we defineL; as the limit ofL,, ; as the amount of data tends to infinity:

Lof(2) = Loouf(2) = By (L f (& / Ki(oy)(f(@) - f@)pwdy. @)

Local coordinate system: The above integral is defined on the maniféld In order to study the behavior
of this integral for a smalt, we need to introduce a local coordinate systems. athe most convenient
coordinate system for our purpo&és obtained by a local projection from the manifold to itsgant space
7. : Q — T,. This projection is one-to-one and smooth for points sfitly close tar. Hence its inverse,
7, ! exists as well. Note that on an intersection or edge sinigyiktue projection is onto the union of tangent
spaces. However, it is still one-to-one as long as we réstr@cprojection of points from each piece to their
respective tangent space.

In what follows, we often use change of variables to converingegral over a manifold to an integral
over the tangent space at a specific point. The following eware used throughout the paper. For two
pointsz,y € €, lety’ = 7, (y) be the projection of in the tangent spacg, of ; atz. Let Jr,|, (resp.

“We note that another possibility is to use the coordinatéesysjiven by the exponential map (as in [2, 11]). This has an
advantage of being independent of the embedding, but egjoiore subtle analysis in the presence of singularities.



Jw—lyy/) denote the Jacobian of the map at pointy € €; (resp. of the inverse map;, ! aty’ € T,). For
y sufficiently close tar, we have (e.g., [22])

lz =yl = llz = ¥/l + Ollz = ') = |z = ylI* = | = ¥'II* + O(ll= = /"), )
|[Jmaly — 11 = O(lz — y|*) and |J7 |, — 1| = O(Jlz — y/'||*). ©)

3.1 Boundary-type: Manifold with Boundary

We first analyze the limit of; f () whenz is near esmoothboundary of a single smooth manifdltias the
results for the boundary case are simpler to state.

Theorem 1. Let f € C%(Q), p(z) € C®(Q) with0 < a < p(z) < b < oo, and I be the smooth
boundary of2. Given a point: near the boundary, let, be its nearest neighbor on the boundai, and
n the inward normal direction of? at zo. Put||z — zq|| = rv/t. For ¢ sufficiently small we have

1 pld=D/2 1
Lef (@) = = e planf () + 0 (2. @
Consequently, it: is on the boundary, i.er, = 0, thenz = x4 and

1 rld=1)/2

Lif@) = " p(m)@nf(w)—i—O(%).

The proof of the theorem can be found in Appendix A.1. For cangoen, the corresponding result for
interior points is as follows:

Lf(2) = =57 2p() Aye () + o(1), ©

Hence the graph Laplacian has a different behavior on or aéaundary point from interior points. The
values of L, f(z) are of different orderO(1/+/t) near the boundary as opposed@¢l) in the interior.
Intuitively, the scaling difference stems from integrgtiover a half-plane for boundary points versus inte-
grating over a (high-dimensional) plane for points awayrfieoundary, which causes the integration of the
first-order derivative terms non-vanishing in the formeseca

In practice, we do not know the boundary, and apply the sgioteal normalization for all: € Q. The
result is that the large values bf f () are likely to correspond to points near the boundary (orratimgular
set, see below).

We think that these observation could lead to useful teclesdor data analysis and help to design better
algorithms that respect singularities. See Appendix CrZéme preliminary experiments on the MNIST
dataset.

3.2 Intersection-type: Intersection of Manifolds

We now present results on the behavior of the graph Laplaman the intersection of twé-manifolds(;
and(, embedded iR with N > d. Note that we do not assume that the intersection is of catiina
one. We also remark that while the boundary behavior is chlgdhe integration over a half-disk (which
causes asymmetry in the integration of first-order termshéandary points, this is not the case for points
around intersection singularity and edge-type singylarithe behavior around these latter two types of
singularities are more involved and are more subtle to aealy

Theorem 2. LetQ); andQ, be twod-dimensional smooth manifoldsR¥ potentially with boundaries, and
their intersection(2; N Q5 is a smooth manifold of dimensidf< d — 1). Let f be a continuous function
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overQ = Q; U O, whose restrictionf; := flg, on Q;, 1 = 1,2, is C%-continuous. Given a point € €
near the intersection, let, be its nearest neighbor if2; N €25, andx; (resp. x2) be its projection in the
tangent space d; at z, (resp. in the tangent space Qf at z). Put ||z — x¢|| = r/t. For a sufficiently
smallt, we have

1 - 1
Lef () = an2re7r () On () + o800, o) + 0 (2 ) ©)
wheren; andn, are the unit vectors in the direction of, — z1 andxy — x2, respectively, and is the angle
betweem; andn,.

Proof. Givenz € €y and its nearest neighbay in €2, N €, recall thatz; and
xo are the orthogonal projection af onto the tangent spacg, o, of }; at xo,
and onto the tangent spa@g, o, of Qs atzo, respectively. For any € Qo, lety/’
denote its orthogonal projection onto the tangent sffage,,. See the right figure
for an illustration. By the definition of,, we haveL, f(z) = } [5 Ki(z,y)(f(z) —
fy))p(y)dy. Since2 = Q; U Q2, this can then be decomposed as

Lif(z) = % ; Ki(z,y)(fi(z) — fl(y))p(y)der% : Ki(z,y)(fi(x) = f2())p(y)dy  (7)

The first term above, which is the integral o¥er, is exactly the graph Laplacian
of f1 at an interior pointz of Q. Thus, it is bounded by (1). We now focus on the second integral over
Q. LetB(x) denote the ball ilR™Y center around: with radiustz < for a sufficiently small constant > 0.
In the derivation below, we will approximate the integrakothe manifold, by an integral over the region
B(z) Ny C Q. The error term induced ©(e~t *) = o(1) for smallt; see Appendix B in [11]. Using
the fact thatf, (zo) = fa(x0), we have:

1 1

7 | Kilz,y)(fil2) — fo(y))p(y)dy = ;/ _ Ki(z,y)(fi(z) — f2(y))p(y)dy + o(1)
Qo B(x)N2

— [ K@) - Aapwdy+ g [ Kl (Galm) - L))y + o)
B(z)N22 B(z)N2

— U@~ @) [ Koy +; [ Kle)($ @) - f)p)dy+ o). @)
B(z)N2

B(z)N22

Since||z — x| = r/1, it follows from Eqn (2) that|zg — 1 || = v+ O(t3/2).
It can then be shown thdtr — 25| = rv/t - sinf + O(t) and ||zg — 2| = 7v/t - |cos | + O(t). For
simplicity, letO(t?) denoteO (+°~) for a sufficiently small positive constaat For a pointy € B(z) N Qs
and its projectiony’ in T, o,, we have thaflz —y|| = O(t2) and|lzo —y| < |lzo—z|| +[lz —y| = O(t2).
This implies that|y — /|| = O(t) and||z — /|| = O(t%) by Eqn (2). Using these distance bounds, we have:

Ky(w,y) = die—ux—yu?/t B L S v S ] L

t /2 td/2 td/2

ollz=y" |-y’ =yl
t

I S A So12vy L ey A (4+1/2
= 5° le=v'IF/t (1 4+ O(t)) - (1 + Ot ))_We lz=yI%/t . (1 + O (t/?))
T—T 2 29—y’ 2 ~ . 1 z9—y' 2 ~
= ﬁ%e—%+% 1+ O(t1/2)) — td%(e—r? sin? 6 eom))e_w 1+ O(tl/z))
1 . / ~ . -
= We—y«? Sln2€e_||m2_y |\2/t(1 + O(tl/Q)) _ 6_7«2 sin2 GKt(xg,y/)(l + O(t1/2)). (9)



Now consider the first term in Eqn (8). Let, denote the projection map from
Oy ontoTy, o, andr ! its inverse. Denote bi := 7, (B(z)NTy, .0,) to be the projection dB(z) N1}, q,
on the tangent spadg,, o,. By applying Taylor expansion tf(x) atxy andp(y) atxg, and combining Eqn
2 and 3, we have that:

(f(2) - f(z0)) /B .
- L (Vo) m) + O

Kl y)po)dy = (VS (an)var — o) +0W) [ Kol y)olu)dy
B(x)N22

S

[NIES

—r24in26 _Huc'zfty'll2 50k . 5 )
) [ [(a c (1 + O(t4)) (o) + Ot >>]J iy

B

»—n,\,‘

2 ~

sin2€(1 + O((t

N

a7 (1O, f1(w0) + O((t2))e™

) (p(xo) + O((t2)) /B ol 1/t g

=t; (o, f1(z0) + O(t2))e "> 501 4 O(2)) (p(x0) + O(t2))( /T = 4y o))
:%C’gp(aco)re_r2 Sm298n1f1 (xo)+o0 <%> , (10)

whereCy = [ e llFqu = [, e lFdu = 7¥/2 Note that we use the fact th%é(\/f) =

O(£)=o0 (%) in the above derivation. From the first line to the second Vigeperform a change of

variable. From the third line to the fourth line in the abowidation, we relax/,, e~ 12=¥'1"/tdy’ to be

Jp el Pty O(e=t ) = [, e~l=2=vI*/tdy 4+ O(1) based on the result from Appendix
0:52 T

Bin [11].
For the second item in Egn (8), we have

0:22

% /B . Ki(z,y)(f(x0) — f(y))p(y)dy

1 / Ki(2,9)(f(20) — f(x2) + f(a2) — F(u)p(y)dy
B(z)N

L) — Fa)] /B . Ky, y)dy + - /B o Kl ) e2) — )y

t ﬂQQ t

1 2.2 1

= Csp(zo)rcosd - e " 5070y zg) + o <—> 11
v 3P(20) h, f2(0) 7 (11)
Intuitively, the first term in the third line is bounded by theantity in the last line by a similar argument
as the one carried out in Eqn (10) above. For the second tetheithird line, observe that if we replace

the kernelK; (z, y) to be Ky (2, y), thent fB(x)ﬁﬁg Ki(x2,y)(f(z2) — f(y))dy roughly corresponds to the

standard weighted graph Laplacian of functirat an interior pointz, in Q5. Furthermore, by a derivation
similarly to the one in Eqn (9), replacing;(x,y) by K;(x2,y) only changes the integral by a factor of
e~"*sn”0 Hence the second term can be bounded (b). See Appendix A.2 for detiafs

The theorem then follows from Eqn 10 and 11. [

From the theorem, we can see that for a pairn the intersection or near intersectidn,f () is of
the form %Cm"ﬂ where the coefficienC' is determined by the derivatives gfand the position of:.
Furthermore, for a point on the intersection, we have= 0. Hence it follows that the order df, f(z) at
an intersection point ithe sames those at regular points, i.€(1), instead of orde©(1/+/t) as for points
near singularities.

®*Notezs is in Ty, 0,. In Eqn (11), to illustrate the intuition behind the derieat we abuse the notation slightly and y&e:2)
to refer tof (7~ (x2)), wherer —*(z2) is the point fromQ» whose projection iy, o, iS 2.
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3.3 Edge-type: Gluing Boundaries

We now consider the case where two manifolds are glued alipgut of) their boundaries. The behavior
of graph Laplacian for edge-type points is in some sense dh&mation of that for boundary-type and
for intersection-type points: locally, a point can bothé€s¢he boundary (thus will have terms arised from
boundary effect) and the other manifold (which has effeatslar to those produced by Eqgn (8)). See
Appendix A.3 for the proof of the following theorem.

Theorem 3. LetQ); (i = 1, 2) be twod-dimensional smooth manifoldsRf¥ with interior ©2; and nonempty
boundaryo?;. Assume their shared boundad§?; N 0€2s is ad — 1-dimensional smooth manifold. Lgbe
a continuous function ove = Q, U 0, whose restriction; := f|g ,7 = 1,2 is C*-continuous. Given a
pointz € Q; near the glued boundary, let, be its nearest neighbor i, N9Q,, and put]|z —zo|| = rv/t.
Then for a sufficiently smat| we have that

L] (@) = ~p(aa)la(r,0)0m (20) + Bl 00n o] +0 (- 12)
wheref is the angle between the two inward boundary normahndn, of 92, and 02, at zy respectively,
a(r,0) = %w(d_l)/Qe_’"Q — rr?2®(\/2r cos 9)6_’”2 sin6,
B(r,0) = %ﬂ(d_l)/Qe_TQ + rr?2®(\/2r cos §) cos e’ sin? 0
and ®(z) is the cumulative distribution function of the standard mat distribution.
Furthermore, ifz is on the edge, i.er, = 0, then we have

1 1
Lef () = =5 epl)n @200, f0) 4 0 ) + 0 (1)

The theorem indicates that for a pointhearo$2; N 9, the limit of L; f () is close to the weighted
sum of two normal gradients. Asmoves to the se®(2; N 0€2,, the weights for the two normal gradients
will be equal. Finally, for a point: on the boundary$); N 925, the behaviorl, f (x) is equivalent to the
addition of the two boundary effects froffy and(2, together.

Intersection-type singularity again. Notice that for the case of two manifold®;, and (2, intersect at
Q1 N Qy of co-dimensionl, we can actually regard this scenario as four pieces of mlasif2;, Q7 Q3
and(;, glued together by); N Q.. Here, we usé)” and(2; to denote the two pieces 6f; but on the
different side of€2; N Q5. The advantage of taking this view is that we allow the funtdi on manifolds
Q; andQ, to be only C°-continuous at the intersectidi; N €2, instead ofC2-continuous as required
in Theorem 2. (However, note that Theorem 2 also holds forctmes when the co-dimension of the
intersection is higher thah) Using the same argument as in the proof of Theorem 3 to &ss of gluing

4 d-manifolds along a commadh — 1-boundary, we obtain the following corollary.

Corollary 4. Let(; andQ, be twod-dimensional smooth manifolds R potentially with boundaries,
and their intersectiorf2; N 25 is a smooth manifold of dimensidn Let f be a continuous function over
Q = O U Q, whose restrictionf; := f|g on;, i = 1,2, is C*-continuous at any regular point ard’-
continuous at points if2; N 2-. Given a pointr € 21 near the intersection, lety be its nearest neighbor
in ©; N Qy, andz; (resp.z2) be its projection in the tangent space(f at = (resp. in the tangent space
of Q, at ). For a sufficiently smalt, we have

A

d—1)/2
Lof(a) = — D) O i (20) + By S (0) + Ona S5 (20) + Dy 5 (@0)] 40 (i) (13)

1
2 Vi Vi
whered, fi (x0), d_n,) f1 (20) are the directional derivatives of; on two sides of2; N Q, same for
aﬂlf;($0)>an1f2_($0)'



Interestingly, it appears the eigenfunctions for a singuianifold with intersection-type singularity can
be only C%-continuous across the intersection (instead’dfcontinuous) within each piece of manifold.
Hence the above Corollary will be useful in analysing theeefgnctions around intersection singularities
(or co-dimension 1).

4 Finite Sample Complexity and Convergence Rate

Theorem 5. Letzy,- - - ,x,, be i.i.d. random variables iiR"Y sampled from a probability distribution on
Q with the intrinsic dimensiod with densityp(z), 0 < a < p(z) < b < oo, defined on the manifold dn
with the intrinsic dimensiod. Let f be a bounded functionf (x)| < M. Then for anyr € Q we have

ntd/2+2 2 >

" 2C, + 2C et /3 (14)

P(ILnif(2) = Lef(2)] > €) < 2nexp (

whereC, andC,, are constants depending on the manifold.

The proof is based on an application of the Bernstein indéiguaahd the union bound and can be found
in Appendix B.
The immediate corollary is that to get an asymptotic cormecg for an arbitrary fixed point (that is an
error of the order ob(1)), we need to seleat so thatnt?/?+2/log(n) — oo. That is, we can choose
t = (log(n) /n)d%‘l g(n), whereg(n) is an arbitrary function such thétn,, ., g(n) = co.

On the other hand, for points near the singular set the geafithe operator.,, ; changes. While inside
the domainL,, ; f (z) = O(1) for a smooth (fixed) functiorf, for « on the singular set or sufficiently close

to it (within /¢ distance),L,, +f(z) = O(%). Thus an accurate estimate for the appropriately rescaled

operator requires thait?/>+! /log(n) — oo leading tot = (log(n)/n)d%g(n). This may seem counter-
intuitive as fewer points are required on the singularigntinside the domain to obtain an accurate estimate.
One explanation is that near a singularity we are effegtiestimating a degree one differential operator,
while inside the domain we are estimating the Laplace-Bediroperator, which is degree two.

5 Discussion of Impact on Laplacian Eigenfunctions

Eigenfunctions of graph Laplacians obtained from data playmportant role in a variety of applications
from spectral clustering to dimensionality reduction aathssupervised learning. While full proof of their
convergence is likely to be very subtle and is beyond the esadpthis paper (see [5] for the proof of
eigenfunction convergence for the smooth case), we wokeddi discuss the implications of our results for
eigenfunctions under the assumption that such convergakes place. Lep; be an eigenfunction of;
(normalized to norni in Ls). We put) = lim; o A; and¢ = lim;_.g ¢ (with the functions converging in
Lo norm). We will also assume that the necessary derivativiss. ex

Below, we briefly discuss the impact of each type of singtyariSome numerical experiments are
provided in Appendix C.3. For simplicity, we will assume thamples to be infinite and the multiplicity of
each eigenfunction to be one.

Boundary singularity:  For a pointz on or near (withiny/z of) the boundary our results indicate

1 1
Moi(x) = Ly () = C\%a”(b(w) +o (%)

10



where(' is a constant independent ©f Thus, for small values of, and\;¢:(z) = O(%)anqﬁ(w), which

is clearly impossible unlesg,¢;(z) = O(v/t). Passing to the limitwe see that for: on the boundary,
oho(x) = 0, meaning that the limit eigenfunctions of the graph Lagla@utomatically satisfy the Neumann
boundary conditions. The experimental results in Appe@i&Xare consistent with this finding.

Edge singularity: Consider now a point at the edge where two "sheetQ] and{2; come together. From
Theorem 3 we have

Lun(x) = %(am@(x) T nn(a)] + 0 (%) |

wheren; andn, are the two directions normal to the singular setaBy an argument following the one
above, we havép, ¢;(z) + dn,¢:(z) = O(\/t). and hence

On () + Onyp(x) =0

In other words the directional derivatives for the limit @idunction must cancel each other. This is quite
surprising for the following reason: suppose, that the eslggularity is obtained by folding a smooth
manifold (imagine folding a sheet of paper, creating an gddéen the above condition means that the
eigenfunctions of the original surface are invariant unithés "folding”, despite the fact that the graph
Laplacian operator is very different near the singular bedther words if a singular surface is isometric to
a smooth manifolds, the spectral structure appears to lseqet, even though the distances computed for
points near the edge are very far from the intrinsic distarmresmooth and the operator near the edge is not
the Laplace-Beltrami operator.

Some numerical illustrations of this phenomenon are gingheé Appendix C.3.

Intersection singularity:  For the intersection singularity the analysis follows thathe edge case, but
the implications for the shape of eigenfunctions are notgletely clear, and warrents further investigation.
One intriguing observation is that if the co-dimension & §ingularity is greater than one, it has only a local
effect on the shape of eigenfunctions. The situation isagmals to the disjoint union of manifolds. The
reason is easy to see — the volumeGtneighborhoodB around the singular set of co-dimension at least
two, will be at mostO((v/#)?) = O(t). Recall that an eigenfunction minimizes the quantitye;, ¢;) 1, )
under orthogonality conditions. We see that the contrdoutif the points around the singular set is bounded

by O(t)O(%) = O(y/t) and vanishes as— 0.

There are additional subtleties related to convergende jvhich are ignored since we are not aiming to provide a fudbpr
of convergence.
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A Proofs for Theorems on Graph Laplacian Limit

A.1 Sketch of Proof for Theorem 1

For a sufficiently smalt, let 2, be the set of points that are within distarié€—¢ from the boundary)Q
(a thin layer of “shell”), where is any sufficiently small positive constant. Sgf, = /4. We will show
that for a smalt, L, f (=) is approximated by two different terms 6xy, and(2;,,, and more importantly they
have different orders af

Points away from boundary. Given a pointz € ©, let B(z) denote the ball of radiug/?—< centered at
x, wheree is any sufficiently small positive constant. First, we apgmate the integral in Eqn (1) when the
integral is taken inside the bail(x). By results from Appendix B of [11], the error induced by coaming
the integral to withimB(x) N Qis only O(e=* ).

Now given a pointy € B(z), letu be the projection of onto the tangent spadg ¢, of Q2 atz. Choose
x to be the origin off}, . We have the following approximations for each of the thexens in the integral
in Eqn (1) (see e.g, [2, Chapter 4.2] and [11, Appendix B])reH€ (a) denotesk (a) = e~ 7. N andd are
the dimension of the ambient space and of the tangent sy atively.

K(llz = ylg~) = K(lulga) + O(lullga)
fl@) = fly) = —u"Vf(z) - gu"H(z)u + O(|ullfa) (15)

p(y) = p(a) +u" Vp(x) + O(|ullf.)

whereH (z) is the Hessian of (z) atz.
Now for simplicity let O(t?) denoteO(t%—¢) for any sufficiently small positive constant> 0. Let
0 — T, « be the projection fronf) onto the tangent spack; o, and setR := 7, (B(z) N Q).
Obviously,R C T, . Combing the above approximations together with the faatghc B(z) and thus
|z — y|| = O(t), and using a change of variahle— /tw, we obtain the following:

Lif(z) = 1 [gKi(z,y)(f(z) — f(y)p(y)dy
= 7 Jo(yrm Ke(, ) (f (@) — f(y)p(y)dy + O(e™" ")

= i [e AE(Jul2) (Ve V  (2) + SuT H (2)u)x ) (16)
(p(z) + Vtul Vp(2)t¥2 Jrn Y du + L - O(t/?)
= = Jp o ¢ e { (@) (WY ()] +

[V f(z) x w"Vp(x) + gp(z)w” H(z)w]}dw + o )

From the first line to the second line, we replace the integval Q with ball B(z), generating an expo-

nentially small error for sufficiently smail[11, Appendix B]. From the second line to the third line, by
changing the variable from to 7,(y) = u, this integral can be rewritten as an integral over the regio
R C T, q. In the fourth line, we relax this integral ovét to be the integral over the entire tangent space

T, plus another exponentially small er@fe~* “) which is consumed by(%).
For an interior pointr € €2, T} o Is ad-dimensional linear space, and the functiﬁruw”fw is an even
function onT}, . When taking the integral, the first term in the last integnaEqn (16) with ordeO (%)

is odd and therefore vanishes. The remaining three ternheilast line of Eqn (16) are of ordéx(1) inside
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the integral, and they are exactly the weighted Laplacian a$ previously studied in the literature, and
henceL; f(x) = o(=-). The kernel is however not symmetric for points on or neabitendary, which are

i Vi
studied next.

Y

4

\

Figure 1: Gaussian weight atnear the boundary.

Points near boundary. We now consider: € , (the “shell”) near the boundary. See Figure 1, where
we show the local neighborhood aroungrojected inl’, . Letx, be the nearest boundary point 9 to

z. Choose a local coordinate systemif, with 2 at the origin, and assume the projectionwgfin 7, o

is at—z. Letn the unit direction along: — z. Whenz is close to the boundary, the kerné}(x, y) is no
longer symmetric. In particular, consider an orthonornwdrdinate system around the Gaussian kernel
is symmetric in all coordinate-axis other than alang z. Along the directiom, the Gaussian convolution
is from —z/+/t (as we have changed variable fram— +/tw) to +oo, which is not symmetric. Therefore,
e‘”“’”fw is not an even function in the normal directinpand the integral of the highest order term (i.e, the
first term ofO (%)) in the last integral of Eqn (16) will not vanish.

Specifically, letu = (uqy,us,...,uqy) be the coordinate of in the aforementioned coordinate system
of T, o. Assume that: is the coordinate along the normal direction Recall that we have applied the
change of variable — v/tw. So letw = (wy,ws, . .. ,wy) be the coordinate af. Since we have assumed
in the theorem thafz — || = rv/t, we have tha% = r + O(r?). When we integrate the last integral
in Egn (16), all the odd terms ef; still vanish in all directions except the normal directionand the most
important point is that the leading term along the normadation is of ordeiO (%) different fromO(1)

for the interior points. In particular, we have:

“+00 “+00 [e’e] 2
Lif(z) = —%p(x)@nf(m) /_ i /_ /_ i e_”w”Rdwldwldwg <oodwg + o (%)

1 1 a1 o |
:—%'571 7 e 8nf(w)+o(%).

The theorem follows from further performing the Taylor emp@n of f () atx.

A.2 Details for the Intersection Case

Our goal is to bound the integrélfB(x)m@ Ki(z,y)(f(zo) — f(y))p(y)dy as in Eqn (11). First, recall
thatr,, : Qo — Ty, ., iS the projection map frorf2, to the tangent space 6%, atzy. For points orf2,
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sufficiently close targ, this map is in fact a bijection and its inverse! exsits. Hence for sufficiently
small (and thus is close enough ta), 7! (z2) exists and we set it to he; := 7~ !(z2) € Q. Since
|lzo — wal| = 7 cos O/t + O(t), we havel|ze — x3]| = O(t) by Eqgn (2). It follows from triangle inequality
that ||z — z3|| = ||z — x2|| + O(t) = rsin 0/t + O(t). We can then apply a similar derivation as in Eqn (9)
to show that

Ky(w,y) = e 0K, (23,9) - (1+ O(VE); and Ky(x,y) = e VK (23,9') - (1+ O(VE), (17)
wherey/ is the projection ofy on T}, o, as defined in Section 3.2. We now have

1/ - Ki(z,y)(f(wo) — f(y)p(y)dy
B(z)N

t Qs

1

Z%(f(wo) —f(ws))/ N Kt(w,y)p(y)derz/ ~ Ki(z,y)(f(w3) — f(y)p(y)dy  (18)
B(x)NQs B(z)NQe

Following the same derivation as in Eqn (10), and combiniitty Wro — x2|| = 7 cos 0/t + O(t), the first
term can be bound by:

Qo

£ (FGa0) = faa) [ o Kl )y

:%(Héﬂo — 1y Ony fao) + O(tF))e (1 1+ O(t3)) (p(xo) + O(t})) /T i)
:%Cgp((ﬂo)?“ cosf - e~ sin? O 0n, foxo) + 0(%). (19)

By using Eqn (17), the second term in Eqn (18) is:

1 / Ki(,9)(f(x3) — f(y)p(y)dy
B(z)N

Q2
:%/ eI L O(VE)) - Ko, ) (f (s) — f(y))p(y)dy
B(z)N22
Loy L [ o K D)~ )y + o) @

Now observe that since the radius Bfx) is @(t%‘e) for a sufficiently small positiver, and since the
distance frome to x3 is O(t'/?), we have that there exists some tlljz3) of radius still in the asymptotic

order of@(t%‘a) aroundzs such thafB’(z3) is contained insid@(x). This implies thal®’(z3) N Qy C
B(z) N Q3. Hence by results from Appendix B of [11],

/ _ Ki(xs,y)(f(xs) — f(y))p(y)dy = / Ki(z3,y)(f(x3) — F(y)p(y)dy + O(e™" 7).
B/ (x3)NQ2

B(I)ﬂﬁz

On the other hand% fB,(ws)m@ Ki(x3,y)(f2(x3) — f2(y))p(y)dy is simply an approximation of the func-
tional LaplacianZ, f(x3) of the function f, at an interior pointrs over a manifoldQ,. Hence by Eqn
5,

1 1

[ Kany)(F ) ~ F)p)dy =~ 57 () g fas) + ol

t B/ (z3)NQ2 2
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It then follows from Eqgn (20) that

1

: /B . Koz, y)(f(x3) — F(y)p(y)dy

2 1

_rrsinzol / Ki(ws,y)(f(x3) — F(y))p(y)dy + o(—)
B(z)N

t Qs

Sl =

1

%). (21)

= = 37 pl@) A0 o)+ ol =) = of

Putting Eqgn (18), (19) and (21) together, we conclude that

% /IB(x)mﬁ2 Ki(z,y)(f(x0) — f(y))p(y)dy = %0317(1'0)7“ cos0- eI a4 O(%%

which is what we claimed in Egn (11).

A.3 Proof for Edge-type Points

Figure 2: Edge case.

Suppose we have two manifolds forming the “edge”, denotentbg Q; and,. We use the same
notation as in the proof for the intersection case; see lingiiation in Figure 2. In particular, lety denote
the closest point frond2; N 99 to a pointz € Q. Letx; andxz, be the projection of on the tangent
spacel,, o, andT,, o, atzg, respectively. Note thatr — xo|| = rv/t. Let f1, f2 be the restriction off
on; and(), respectively; we know thaf; (z9) = fa(xo). Again,B(z) denotes the ball centeredaatvith
radiust2 <. Then we have

1

% /QKt(w, y)(f(z) = f(y)p(y)dy = n /B(xm Ki(z,y)(f(x) = f(y))p(y)d + o(1);

and

Q

l/ Ki(z,y)(f(z) — f(y)p(y)dy

B(z)N

- / Kl ) (@)~ Filn)pl)dy + / _ Ky(a,y)(fi@) - L@)pu)dy  (22)
B(z)N

Q1 B(x)N2
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The first integral in Eqn (22) oB(z) N is exactly what we had before for the boundary singulariag#tl
the second line in Eqn (16)), which we have shown to be thevatlg in Appendix A.1:

; ; v p1<x0)e—r2<w1,n1>+o<%>- =
Now consider the second integral in Eqn (22)Bix) N Qo
: / _ Ki(z,y)(fi(x) — fa(0)p(y)dy
B(z)NQ2
-2 /  Ki(a,y)(fi(x) — falxo) + falxo) — F2(9))p(y)dy
B(z)NQ2
— [ K (io) ~ fila)py + 5 [ K Faleo) = Falu)pln)dy
B(z)NQs B(z)NQe

1 1
=—(fi(z) - fl(wo))/ _ Ki(z,y)p(y)dy + - / _ Kz, y)(falzo) — fo(y))p(y)dy  (24)
t B(x)N 2 t JB(x)n0,
Let . denote the projection frofs to T, q,, and set) = 7,(y) for any pointy € Q. Since the
notation is the same with intersection case, we have by Eqgn (9

1
w7

SetB := 7,(B(z) N (1) as the image dB(z) N Q5 in the tangent spacE,, o,. LetT, ,.0, denote the
half-space of the tangent spdEg o, that contains?. Combing the bounds in Eqn (2) and (3), for the first
integral in Eqn (24), we have

FUA@) o) [ Kwpidy = G006~ i) [ Kaeypo)

Ki(z,y) = — (e 50 0l I7/8 (1 4 5(1/2))).

= (f1(@) ~ filao))e™" /B eIV O(#%)) (p(wo) + O(t%)dyf

— L (i) — Ful@o))e 01 + O(112) (o) + O(t2)) ( /T

+
0,9

—O(r,0)pa(o)re ™ S0 (V £y (20). ) + 0 <%> , (25)

Vit

whereC'(r, 0) fT* e~ lle2— y,||2/tdy = Jpa wa>—rcos(0) € ”yHQdy = 742®(\/2r cos 0), andyy is the

d-th entry of coordlnate of in the d-dimensional tangent space. The last step above also ewalpplying
the following formula:

fi(x) = fi(zo) = (Vfi(zo), 21 — x0) + O(||& — mo|*) = rv/E(V f1(20), M) + O(2).

Now for the second integral in Eqn (24), we have:

[ K ale) = Falu)pln)dy
B(x)N22

7 fo o, KD TR0 (o)

[ KVl a0 - aalp)dy ;[ Kl (Vh],e - ip)dy (20
B(x)N2 B(x)N2
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The second term from the above equation is exactly the saih@asvere considering a point; nears the
boundary of2,. Hence using the results from Appendix A.1, we have that

1

t /B(x)mﬁg Ki(w,y)(V fal,, w2 = y)p(y)dy

1 ; / -
:tg_H 6—r2 sin? 0 /B e—||902—y ”2/t<vf2|x07$2 o y>(p(xo) + O(t1/2))dy
2

1 —r?sin A —||z2—vy’
:té—’-le 2 29(]9(330) + O(t1/2))<Vf2|mO, /B e lz2—y ”2/1&(1,2 o y)dy)
2
1 —r?sin S —||z2—y’
:ti—’_le 2 29(]9(330) + O(t1/2))<Vf2|mO, /+ e llz2—y ||2/t($,2 o y)dy>
2 0,29
1 _ td/2
=— —r2 Sm29(p(l’0) + O(tl/2))( w%e—ﬂ cos? 98n2f2)
t§+1 2
1 1 a4 1
= — % . 577%6_72&12]02(%0) + O(_t) 27)
For the first term from Eqgn (26), we have:
1
] Kw) (Va0 = w2)po)dy
B(z)N22
1 —r?sin —||z2—y’ S S
=0 [ e P O AT fa(wo). a0 — 22) o) + Oy
2
1 . ~ ~ ’
eSO G(2)) (o) + OWA)) [ NI fy (), wo — wa)dy
t§+l B
1 . /
:té—i_l e—TQ sin? ep(x0)<Vf2(wo),mo o 1'2> / e_||;p2_y ||2/tdy/
2 R
L 229 —Nz2—=y'11%/t 7,/ —tc
=—¢ p(20)(V fa,xg — x2) , ¢ dy' +0(e™" )
¢z Twoyﬁz
1 —r<sin 1
=—P(@0)C(r,0) - cos e P07 £y (w9),N2) + 0 <%> : (28)

whereC(r, 0) is defined earlier. Let’ be the projection of; on the tangent spacg,, o,. The last step in
Eqn (28) uses the fact thiig — 22| = r/t - | cos 8] + O(t). Combining all the results in (23), (25), (26),
(27), and (28), we prove Theorem 3.

B Proof for Convergence Rate

Lemma 6. Let Xy, ---, X, Z be i.i.d. random variables &" from densityp(z) € C*(Q), 0 < a <
p(z) < b < oo, Ki(z,y) be a Gaussian weight function anf| < M, then for anyr € Q

Tltd/2€2
P > € S 2 exXp —m (29)

whereC,, andC,,, only depend o and K (-,-), f(-), p(+).

% 3" Kilw, Xi) f(Xi) — EzlK(x, 2) ()]
i=1
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Proof. Let W;(z) = Ky(x, X;) f(X;), andY;(z) = W;(z) — Ex,[W;(z)]. We haveEx;, [Y;(z)] = 0, and

Yi(z)] < [Wi2)| + [Ex, [Wi(2)]]

[ Ko, X) f(X)| + | Jq Ke(z,9) f(y)p(y)dyl
td%M + Mb [ Ki(z,y)dy
7 + MbCy = (Cp + MbC,t%/?) //2

whereCy = [ K(z,y)dy < oo, andC,, = M. For VarY;(z)],

VarlY(z)] = Ex, [W7(2)] — {Ex, [Wi(x)]}?

Jo K2 (@, 9) 2 (9)p(y)dy + [ Jo Ki(z,y) f (y)p(y)dy]?
#M% Jq Ki(z,y)dy + M?*b*C}

2 M*bCy + MPH*C2 = (C, + M6 C2t%/%) [t/

whereC, = M?bC,. By the Bernstein’s inequality

P ( %any,-(x) > e) < 2exp (—( i /2 ) (32)
i=1

Cy + M2b2C24/2) + (Cyy + MbCyt/2)e/3
Proof of theorem 5Forz € Q, we putf(z) — f(X;) into Lemma 6, obtaining:
P (|Lnif(x) = Lif(2)]] > €)

_p ( LS il X0 (@) - 1(X0) ~ B lKila, 2)(7 (@) — £(2))
=1

( nt(d+4)/2 2 )
<2exp

(30)

VAN VAN | BRVAN

(31)

VAVARVANI

O

> te)

20, + 2Cte/3

The proof of theorem 5 is done.

C Experimental results

Below we provide some numerical results validating thecakanalysis, some experiments with real datasets
and several numerical experiments in support of our camjeston the eigenfunction behavior.

C.1 A numerical example

In this section, we illustrate the behavior of graph Lamacon or near the singularity points through a
simple numerical example. In order to explore differentesasve consider the union of 1-dimensional
manifolds$) as shown in Figure 3 (a), which is a combination of three lime@rvals,Q;, Q2, andQ; in R2.
We take 2500 point uniformly spaced over the singular méhiéod choose (z1, x2) = (z1 + 0.2)% + 23
(restricted to the manifold).

Shape and Scaling BehaviorThe value ofL,, + f (z) over all points in; is shown in Figure 3 (b). We
can see thak,, . f(z) near the boundary is approximately half a Gaussian functidiile the function near
the intersection is similar to a function of the forptz) = azre~’ as predicted by Theorem 2. The shape
of L, + f(x) near the corner is also what we expect from Theorem 3.

To explore the scaling effects, in Figure 3 (c) we plot valoEleg |L,, . f ()| againstiog(t) for different
values oft. Each graph corresponds to a fixed painthosen near a boundary, intersection or edge singu-
larity. Our theoretical results predict a linear curve Wsitbpe—% in log-log coordinates (corresponding to
1/+/t, which is consistent with our experimental results as shiow(n).
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Figure 3: Ly, . f () with f(z1,72) = (21 + 0.2)? + 23 over(). In (c), x axis islog(| L, f(z)|) andy axis
is log t. The three curves are for three points near each type oflsitiiyu

C.2 Singularity Detection and Estimation

Bunny Model: In the following exam-
ple, we use the union of the Stanford bunny °;
dataset (in blue) and a plane= 0 (in :

1 fa®
s

red), which intersects the bunny in the mid- . ) /
dle as shown in panel (a). We have take - NI
10000 points for both the bunny and the (a) Data set (b) Values df,,,

plane in the point cloud, and choose the
function f = y. The values ofL,, ; f on
the bunny are shown in panel (b). We can
see that the values df,, . f at the intersection ar@ and values near the intersection go up (in yellow) and
down (in blue) as expected from the theoretical analysie®irtersection singularity.

on Bunny whenf(z,y, z) = y.

MNIST Data: From the scaling behavior of the graph Laplacian near sargigs, it is potentially pos-
sible to detect certain such singularities on real worlédats. We use the example of the MNIST digit
images. The image of each digit can be thought of as a sangptedlow-dimensional manifold embedded
in the high-dimensional pixel space. We choose funcfi¢n) to be the summation of the pixel intensity
of each image. We take the images corresponding to the%opf the highest value of.n,tf(z) as the
“near singularity/boundary” images, which are compareth#&“average” images of each digit. The results
are shown in Figure (7). We see that the images on the righsigreficantly larger (and systematically
different) from average, suggesting that they may belorthegart of the boundary, which can be detected
through the sum-of-pixel-intensity function.

C.3 Laplacian Eigenfunctions on Singular Manifolds

In this section, we will provide two numerical examples tdidete our to conjectures about the Laplacian
eigenfunctions on the singular manifolds.

Folded Rectangle: In this example, we consider two manifolds: (1) the rectdagegion;, (—0.3,0.3) x
(—0.5,0.5) x {0}, in R? and (2) the "folded” rectangl@,, obtained by transforming the positiyepart of
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Oy, i.e.{(x,y,2) € Q1 : y > 0}, by applying the linear transformation given by the matrix

1 0 0
0 cos(w/4) —sin(w/4)
0 sin(w/4) cos(m/4)

and keeping the rest 61; fixed as showing in Fig. 4. We sét and(2, are intrinsically isometric, yef,
has an edge singularity.

We choose&000 uniformly-spaced points in both; and€,.

With this two data sets, we construct their graph Laplaceioes respectively, and calculate their eigen-
values and eigenvectors using the Gaussian kerneltwith10~*. Figure 5 shows the first 16 nontrivial
eigenvectors of two graph Laplace matrices. We can seehbatdrresponding eigenvectors match nearly
perfectly. It can be easily verify that they also match efgantions of the rectangle with Neumann bound-
ary conditions.

To give some precise numerical results we measure theveldifference between the sets of eigen-
values. Let/\}C and Ai be the two vectors of first eigenvalues fof2; and(), respectively. We define the
(relative) difference as

- AR = ARl
diffy, = ————
1A

The table below shows the difference for various values.diVe observe that the approximation appears
quite precise with difference of the order®f %, thus providing further evidence in support of our conjec-
ture on the behavior of eigenfunctions.

Kk 10 50 100
diff, | 0.0014| 0.0012| 0.0011

Sliced and flipped sphere: To give a more interesting non-flat example, we consider pacrss shown
in Fig. 6: the standard unit spherelR? and the "sliced and flipped” sphere, where the top of the spiser
sliced off and glued in the opposite direction. More pregigd) S; = {(z,y,2) € R? : 22492 +22 = 1.};

(2) Ss is the set of points irb; except that the points above the plane- 0.75 are moved to their mirror
reflection on the other side of the plane= 0.75. We see that5; and S, are intrinsically isometric. To
construct the Laplacian we samplg000 points from each space and choose 5 x 10~%. In this example,

it is not easy to visualize the eigenvectors due the mutiiglof eigenvalues. However, from the table below
we observe that the spectra of the graph Laplacian on thoe#aius are very similar.

k 10 50 100
diff, | 0.0099| 0.0182| 0.0148
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Figure 5: 2nd-17th eigenvectors of the graph Laplace negtrof the two manifold§); and(,.
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Figure 6: Unit spheré&; (left), and unit sphere with the top “sliced and flippes}’ (right).



() (d)

Figure 7: An averaged image of digits "1” and "8” (left parjels an averaged image with a large value of
graph Laplacian constructed from the data set of imagediedpio a function defined by the sum of pixel
intensities.
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