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Abstract

In manifold learning, algorithms based on graph Laplacian constructed from data have received
considerable attention both in practical applications andtheoretical analysis. Much of the existing work
has been done under the assumption that the data is sampled from a manifold without boundaries and
singularities or that the functions of interest are evaluated away from such points.

At the same time, it can be argued that singularities and boundaries are an important aspect of the
geometry of realistic data. Boundaries occur whenever the process generating data has a bounding
constraint; while singularities appear when two differentmanifolds intersect or if a process undergoes a
“phase transition”, changing non-smoothly as a function ofa parameter.

In this paper we consider the behavior of graph Laplacians atpoints at or near boundaries and two
main types of other singularities:intersections, where different manifolds come together and sharp
“edges”, where a manifold sharply changes direction. We show that the behavior of graph Laplacian
near these singularities is quite different from that in theinterior of the manifolds. In fact, a phenomenon
somewhat reminiscent of the Gibbs effect in the analysis of Fourier series, can be observed in the be-
havior of graph Laplacian near such points. Unlike in the interior of the domain, where graph Laplacian
converges to the Laplace-Beltrami operator, near singularities graph Laplacian tends to a first-order
differential operator, which exhibits different scaling behavior as a function of the kernel width. One
important implication is that while points near the singularities occupy only a small part of the total
volume, the difference in scaling results in a disproportionately large contribution to the total behavior.
Another significant finding is that while the scaling behavior of the operator is the same near different
types of singularities, they are very distinct at a more refined level of analysis.

We believe that a comprehensive understanding of these structures in addition to the standard case
of a smooth manifold can take us a long way toward better methods for analysis of complex non-linear
data and can lead to significant progress in algorithm design.

1 Introduction

Dealing with high-dimensional non-linear data is one of thekey challenges in modern data analysis. In
recent years a class of methods based on the mathematical notion of a manifold has become popular in
machine learning, starting with the papers [24, 26]. The underlying intuition is that a process with a small
number of parameters will generate a low-dimensional surface in the potentially very high-dimensional
space of features and that this situation is ubiquitous in real-world data. This idea is captured nicely by
the technical notion of a smooth embedded Riemannian manifold, which provides the first realistic model
for general non-linear data. Still it does not reflect certain important aspects of real data, which can be
mathematically understood as singularities and boundaries.
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The most basic and, arguably, most important singularity inreal data is aninter-
section, where two different manifolds come together in a region of space. This often
happens in classification where two classes with presumablydifferent structure can
give rise to similar objects (consider, e.g., the similarity of MNIST digits “7” and “1”
on the right). Another important type of singularity is a (co-dimension one) “edge”,
which is ubiquitous in computer graphics (think of an edge ofthe surface of a ta-
ble) and happens whenever the behavior of an underlying process changes rapidly beyond a certain point
(a “phase transition”). Finally,boundariesoccurs when there are bounding constraints on the underlying
process (think how poses of the human body are constrained bythe range of motion of the joints) or on the
representation in the ambient space (e.g., pixels cannot have negative intensity).

In this paper we provide an analysis of these three cases for Laplacian-based learning algorithms. It turns
out that all of these singularities result in a behavior nearthe singularity markedly different from that inside
the manifold, a phenomenon somewhat reminiscent of the Gibb’s effect in Fourier analysis. In particular,
the scaling of the operator is different near singularities. As a result of this scaling behavior, singularities
cannot be ignored, even globally, despite the fact that relatively few points are located near them, since
each of these points contributes disproportionately to thetotal operator. We also find that at a finer level of
analysis these singularities have quite different effects, which are discussed below.

We believe that a comprehensive understanding of these structures in addition to the standard case of a
smooth manifold can take us a long way toward better methods for analysis of complex non-linear data and
can lead to significant progress in algorithm design.

Related work. Methods based on graph Laplacians constructed from data have gained acceptance for a
range of inference tasks including clustering [28], semi-supervised learning (e.g. [7, 29]) and dimensional-
ity reduction [3], as well as others. An analysis in [3] provided a mathematical framework for many of these
methods by connecting graph Laplacian constructed from data to the Laplace-Beltrami operator of the un-
derlying manifold based on the relation of the Laplacian andthe heat equation. That analysis was extended
and generalized in [20, 18, 11, 4, 25, 13, 19, 5] providing a detailed understanding of graph Laplacians ob-
tained from manifold data. While boundary effects have beenstudied in non-parametric kernel smoothing
(see, e.g., [16, Chapter 4.4]), they have not been considered in the Laplacian-related literature, although we
note that boundary behavior for the infinite data case can be derived from the Taylor series expansion in
Lemma 9 of [11]. To the best of our knowledge, other singularities are not considered in that literature.
(In fact, the reason causing the different scaling behaviorfor intersection and edge types of singularities is
somewhat different from that for the boundary case.)

In related developments, a considerable amount of recent work has been aimed at understanding the
case of intersecting linear spaces using various techniques from algebraic geometry to spectral clustering
(e.g., [27, 10, 21]) both in terms of algorithms and theoretical guarantees. In our setting, this is a special
case of a singular manifold with intersection singularities. Another related work is [14], where the authors
analyze a model based on a mixture of manifolds in the contextof semi-supervised learning.

We also note that there has been much recent interest in reconstructing topological invariants of mani-
folds and other spaces (see, e.g, [8, 9, 22, 23]). The line of work most related to our results is on learning
stratified spaces, where multiple submanifolds (strata) are “glued” nicely together [1, 6, 17], which provides
an even more general model for a singular space.

Summary of results. Consider the (appropriately scaled, see Section 2) graph LaplacianLn,t constructed
from n data points, using the Gaussian kernel with bandwidtht. It can be shown (see the references above)
that ast tends to zero andn tends to infinity at an appropriate rate,Ln,t converges to the Laplace-Beltrami
operator∆ (a second order differential operator) inside the manifold. In this paper, we show that for singular
manifoldsLn,t exhibits a very different behavior near the singularity set. Specifically, for a sufficiently
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smooth functionf and a smallt, within distance
√

t of the singularity set,Ln,tf is approximated by1√
t
D,

whereD is some first order derivative operator that will be described explicitly. The difference in scaling
becomes crucial whent is small as the1√

t
D term becomes dominant. To simplify the discussion, we will

first assume that the data is infinite, and thusLn,tf can be replaced byLtf . Finite sample bounds and rates
will be discussed later. The types of singularities considered in the paper are as follows:

Ω1

Ω2

Ω3

boundary-type

intersection-type

edge-type

Boundary. At a point x near manifold boundary,Lt can be approximated by
1√
t
φ( R√

t
)∂n, whereR is the distance fromx to the boundary andn is the unit

vector toward the nearest boundary point (outward normal atthe boundary).∂n

denotes the directional derivative, whileφ(z) is a scalar function of the form
φ(z) = Ce−z2

.
Intersection and edge. The situation is more complicated for other types of
singularities, where two different manifoldsΩ1 andΩ2 intersect or come together.
Given a pointx1 ∈ Ω1 consider its projectionx2 onto Ω2 and its nearest neighborx0 in the singularity.
Similarly to the boundary case, letn1 andn2, be the directions tox0 from x1 and x2 respectively and
let R1 andR2 be the corresponding distances.Ltf(x1) can be approximated by1√

t
φ1(

R1√
t
)∂n1f(x0) +

1√
t
φ2(

R2√
t
)∂n2f(x0). Importantly, the form of the scalar functionsφ1, φ2 is different for different types of

singularities: for intersection-type singularity, we have: φi(z) = Aize−Cz2
, while for edge-type we have1:

φi(z) = Aize−Cz2
+ Bie

−Cz2
. Here the coefficientsAi, Bi and C depend on the angle between the

manifolds and can be written explicitly.

Significant points and observations:
1. Scaling. Within O(

√
t) distance of the singularity,Lt is dominated by a differential operator different

from the Laplace-Beltrami operator. Away from the singularity, the higher-valued (1/
√

t) term fades andLt

becomes an approximation to the Laplace-Beltrami operator∆.
2. Contributions of singular points. Let the dimension of the manifold bed. The volume of points within√

t of the singularity is approximately
√

t vold−1(S), wherevold−1(S) is d − 1 dimensional volume of
the singular points, assuming that the set of singular points S is d − 1 dimensional (co-dimension one),
which is always the case with the boundary and “edge” singularities (and may or may not be the case with
intersection). Fix a functionf . As t → 0, the integralLtf over the points within

√
t of the singularity does

not disappear and, in fact, will converge to a constant, depending on the function and thed− 1 dimensional
volume of the singularity. Moreover, because of the operator scaling, the contribution of those near-singular
points to theL2 norm will tend to infinity. We remark that, while different from a technical point of view,
this phenomenon is reminiscent to the Gibbs effect in Fourier series, where effects of discontinuity do not
vanish as approximation becomes more and more precise.

O( 1
√

t
)

O(
√

t)

O( 1
√

t
)

O(
√

t)
O(

√

t)

O( 1
√

t
)

(a) boundary (b) intersection (c) edge

3. Shape near the boundary.While the 1√
t

scaling
is common for all singularities, the type of singular-
ity is reflected in the shape of the functionφ, which
is very different for different types of singularities.
Somewhat over-simplifying matters, one can think
of φ = e−z2

for the boundary case,φ = ze−z2
for

the intersection singularity andφ = e−z2
+ ze−z2

for the edge (see figures above). These differences lead
to quite distinctive patterns, when the operator is appliedto a fixed function. For example, the directional
derivative terms disappearat the intersection-type singular points. In fact for these points Lt converges to
the usual Laplace-Beltrami operator. However, at points within

√
t distance of these points we expect to see

Ltf take both positive and negative values of magnitude
√

t. We think that this difference may be a key to
future algorithms.

1For compactness, we are simplifyingφ’s for edge singularities by removing some higher order terms (see Section 3.3).
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4. Rates and finite sample bounds.Convergence rates fort as well as finite sample bounds are provided
in Section 4. Interestingly, and perhaps counter-intuitively, the scaling implies that fewer data points are
required to ensure thatLt,n is an accurate (relative) estimate ofLt near the boundary than inside the domain.
5. Impact on eigenfunctions. Eigenfunctions of the graph Laplacian associated to data are used in a large
number of applications. While the question of convergence is very subtle (see [5] for the proof in the case of
a smooth manifold), our results for fixed functions provide an indication of the expected answer assuming
the convergence holds. We provide a brief discussion of it inSection 5.

It turns out that the boundary case automatically leads to Neumann boundary conditions (even though
the operator does not ”see” the boundary explicitly). Quitesurprisingly, the edge singularity appears to have
no effect on the limit behavior of eigenfunctions, at least if the singular manifold is isometric to a smooth
one (think of bending a sheet of paper). The case of the intersection is more complex, but intersections of
co-dimension two or more seem to have no effect on the limit behavior of eigenfunctions (inL2 norm).

Some experimental results based on our theoretical findingscan be found in Appendix C.

2 Problem Setup

Let Ω be the set ofk smooth compact Riemannian submanifolds of intrinsic dimension d embedded in
R

N . For each smooth componentΩi, let Ωi denote its interior and∂Ωi its boundary ofΩi. We assume
the boundaries∂Ωi satisfy thenecessary smoothness conditions2. Let Ω be the union ofΩi, and∂Ω be the
union of∂Ωi. Ωi andΩj may not be disjoint, and we will consider the following two ways that they can
associate with each other: they intersect in their interior(i.e, Ωi ∩ Ωj 6= ∅) or they are “glued” along (part
of) their boundaries. More precisely, given a pointx ∈ Ω, we say thatx is regular if it falls in the interior
of exactly onesubmanifoldΩi; that is,x ∈ Ωi, x /∈ Ωj, j 6= i. Otherwise,x is asingular point. There are
several possible singularities, and this paper considers the following three general classes3.

1. boundary-type: Boundary points that belong to exactly one smooth submanifoldΩi: that is,x ∈
∂Ωi, x /∈ Ωj, j 6= i;

2. intersection-type: Points at the intersection of two smooth submanifolds. For simplicity of exposition,
we assume that the intersection happens between the interior of the submanifolds; that is,x ∈ Ωi ∩
Ωj, i 6= j;

3. edge-type: Boundary points that belong to the boundariesof two smooth submanifolds. That is,
x ∈ ∂Ωi ∩ ∂Ωj , i 6= j.

For technical reasons, we will assume that the set of singular points is also a smooth manifold of lower
dimension, at least locally. Moreover, for edge and intersection singularities the tangent space at each point
of the singular manifold is the intersection of the tangent spaces to each “piece”. We will call a union of
smooth manifoldsΩ with the above types of singularities asingular manifold. Notice that for a regular point
x, the manifold is smooth atx, and the tangent space atx is homeomorphic toRd.

For a singular manifoldΩ, we consider the followingpiecewise-smooth functionf : Ω 7→ R. In
particular, setfi := f |Ωi

, i = 1, . . . , k, bef restricted to the submanifoldΩi. We require that eachfi is

C2-continuous on interior points. letp(x) be a piecewise smooth probability density function onΩ and we
assume that0 < a ≤ pi(x) ≤ b < ∞.

Graph Laplacian. Given n random samplesX = {X1, · · · ,Xn} drawn i.i.d. from a distribution with
densityp(x) on Ω, we can build a weighted graphG(V,E) by mapping each sample pointXi to vertexvi

2We require that the derivatives of the first two orders of the transition map exist, i.e.,M is aC2-manifold, see [12], page 50.
3There are other cases, which can be considered as a mixture ofthese three general cases.
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and assigning a weightwij to edgeeij . One typical weight function is the Gaussian, which is used in this
paper and defined as follows:

wn,t(Xi,Xj) =
1

nt
Kt(Xi,Xj) =

1

n

1

td/2+1
e−

‖Xi−Xj‖
2
RN

t .

Notice that in this Gaussian weight function, the Euclideandistance is used. The normalization by1
ntd/2+1

is for the convenience of limit analysis.
Let Wn,t be the edge weight matrix of graphG with Wn,t(i, j) = wt(Xi,Xj), andDn,t be a diagonal

matrix such thatDn,t(i, i) =
∑

j wt(Xi,Xj), then the unnormalized graph Laplacian is defined as then×n

matrixLn,t = Dn,t−Wn,t. Now for a fixed smooth functionf(x), and any pointx ∈ Ω, the graph Laplacian
applied to this functionf is thus

Ln,tf(x) =
1

nt

n
∑

j=1

Kt(x,Xj)[f(x) − f(Xj)].

Limit behavior of graph Laplacian. The limit study of graph Laplacians primarily involves the limits of
two parameters, sample sizen and weight function bandwidtht. As n increases, one typically decreasest
to let the graph Laplacian capture progressively a finer local structure. With a proper rate as a function of
n andt, the limit of Ln,t and its various aspects at regular points, including the finite sample analysis, are
studied in [2, 20, 18, 25, 13, 19, 4, 5]. The basic result is that the limit of Ln,tf(x) at a regular pointx is (up

to a constant)Ln,tf(x)
p→ −p(x)∆p2f(x) = −p(x){ 1

p2 div[p2grad f(x)]}, where∆p2 is called theweighted
Laplacian, see [15]. See [19] for the limit analysis of other versions of graph Laplacians at regular points.

3 Limit Analysis of Graph Laplacian on Singular Manifolds

The limit analysis of graph Laplacians typically involves limits of two parameters, the sample sizen and the
(Gaussian) kernel bandwidtht. This is usually done in two steps, first analyzing the limitt → 0 for infinite
data and then obtaining finite sample results and rates asn → ∞ using concentration inequalities.

In this section we analyze the behavior of the infinite graph Laplacian (i.e.,Ln,t, n = ∞), Ltf(x), when
x is on or near a singular point,t is small and the functionf : Ω → R, is fixed. Finite sample results and
rates are given in Section 4.

For a fixedt we defineLt as the limit ofLn,t as the amount of data tends to infinity:

Ltf(x) = L∞,tf(x) = Ep(X)[Ln,tf(x)]f(x) =
1

t

∫

Ω
Kt(x, y)(f(x) − f(y))p(y)dy. (1)

Local coordinate system: The above integral is defined on the manifoldΩ. In order to study the behavior
of this integral for a smallt, we need to introduce a local coordinate systems atx. The most convenient
coordinate system for our purposes4 is obtained by a local projection from the manifold to its tangent space
πx : Ω → Tx. This projection is one-to-one and smooth for points sufficiently close tox. Hence its inverse,
π−1

x exists as well. Note that on an intersection or edge singularity the projection is onto the union of tangent
spaces. However, it is still one-to-one as long as we restrict the projection of points from each piece to their
respective tangent space.

In what follows, we often use change of variables to convert an integral over a manifold to an integral
over the tangent space at a specific point. The following bounds are used throughout the paper. For two
pointsx, y ∈ Ωi, let y′ = πx(y) be the projection ofy in the tangent spaceTx of Ωi at x. Let Jπx|y (resp.

4We note that another possibility is to use the coordinate system given by the exponential map (as in [2, 11]). This has an
advantage of being independent of the embedding, but requires more subtle analysis in the presence of singularities.
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Jπ−1|y′) denote the Jacobian of the mapπx at pointy ∈ Ωi (resp. of the inverse mapπ−1
x at y′ ∈ Tx). For

y sufficiently close tox, we have (e.g., [22])

‖x − y‖ = ‖x − y′‖ + O(‖x − y′‖3) ⇒ ‖x − y‖2 = ‖x − y′‖2 + O(‖x − y′‖4), (2)

|Jπx|y − 1| = O(‖x − y‖2) and |Jπ−1|y′ − 1| = O(‖x − y′‖2). (3)

3.1 Boundary-type: Manifold with Boundary

We first analyze the limit ofLtf(x) whenx is near asmoothboundary of a single smooth manifoldΩ as the
results for the boundary case are simpler to state.

Theorem 1. Let f ∈ C2(Ω), p(x) ∈ C∞(Ω) with 0 < a ≤ p(x) ≤ b < ∞, and ∂Ω be the smooth
boundary ofΩ. Given a pointx near the boundary, letx0 be its nearest neighbor on the boundary∂Ω, and
n the inward normal direction ofΩ at x0. Put‖x − x0‖ = r

√
t. For t sufficiently small we have

Ltf(x) = − 1√
t

π(d−1)/2

2
e−r2

p(x0)∂nf(x0) + o

(

1√
t

)

. (4)

Consequently, ifx is on the boundary, i.e.,r = 0, thenx = x0 and

Ltf(x) = − 1√
t

π(d−1)/2

2
p(x)∂nf(x) + o

(

1√
t

)

.

The proof of the theorem can be found in Appendix A.1. For comparison, the corresponding result for
interior points is as follows:

Ltf(x) = −1

2
πd/2p(x)∆p2f(x) + o(1), (5)

Hence the graph Laplacian has a different behavior on or neara boundary point from interior points. The
values ofLtf(x) are of different order,O(1/

√
t) near the boundary as opposed toO(1) in the interior.

Intuitively, the scaling difference stems from integrating over a half-plane for boundary points versus inte-
grating over a (high-dimensional) plane for points away from boundary, which causes the integration of the
first-order derivative terms non-vanishing in the former case.

In practice, we do not know the boundary, and apply the sameglobal normalization for allx ∈ Ω. The
result is that the large values ofLtf(x) are likely to correspond to points near the boundary (or other singular
set, see below).

We think that these observation could lead to useful techniques for data analysis and help to design better
algorithms that respect singularities. See Appendix C.2 for some preliminary experiments on the MNIST
dataset.

3.2 Intersection-type: Intersection of Manifolds

We now present results on the behavior of the graph Laplaciannear the intersection of twod-manifoldsΩ1

andΩ2 embedded inRN with N > d. Note that we do not assume that the intersection is of codimension
one. We also remark that while the boundary behavior is caused by the integration over a half-disk (which
causes asymmetry in the integration of first-order terms) for boundary points, this is not the case for points
around intersection singularity and edge-type singularity. The behavior around these latter two types of
singularities are more involved and are more subtle to analyze.

Theorem 2. LetΩ1 andΩ2 be twod-dimensional smooth manifolds inRN potentially with boundaries, and
their intersectionΩ1 ∩ Ω2 is a smooth manifold of dimensionl(≤ d − 1). Let f be a continuous function
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overΩ = Ω1 ∪ Ω2 whose restrictionfi := f |Ωi
on Ωi, i = 1, 2, is C2-continuous. Given a pointx ∈ Ω1

near the intersection, letx0 be its nearest neighbor inΩ1 ∩ Ω2, andx1 (resp. x2) be its projection in the
tangent space ofΩ1 at x0 (resp. in the tangent space ofΩ2 at x0). Put‖x − x0‖ = r

√
t. For a sufficiently

smallt, we have

Ltf(x) =
1√
t
πd/2re−r2 sin2 θp(x0)(∂n1f1(x0) + cos θ∂n2f2(x0)) + o

(

1√
t

)

, (6)

wheren1 andn2 are the unit vectors in the direction ofx0 −x1 andx0 −x2, respectively, andθ is the angle
betweenn1 andn2.

x

x
2

Ω
1

y

Ω
2

y’

θ
n

2 n
1

x
1

x
0

Proof. Given x ∈ Ω1 and its nearest neighborx0 in Ω1 ∩ Ω2, recall thatx1 and
x2 are the orthogonal projection ofx onto the tangent spaceTx0,Ω1 of Ω1 at x0,
and onto the tangent spaceTx0,Ω2 of Ω2 at x0, respectively. For anyy ∈ Ω2, let y′

denote its orthogonal projection onto the tangent spaceTx0,Ω2. See the right figure
for an illustration. By the definition ofLt, we haveLtf(x) = 1

t

∫

Ω Kt(x, y)(f(x) −
f(y))p(y)dy. SinceΩ = Ω1 ∪ Ω2, this can then be decomposed as

Ltf(x) =
1

t

∫

Ω1

Kt(x, y)(f1(x) − f1(y))p(y)dy +
1

t

∫

Ω2

Kt(x, y)(f1(x) − f2(y))p(y)dy (7)

The first term above, which is the integral overΩ1, is exactly the graph Laplacian
of f1 at an interior pointx of Ω1. Thus, it is bounded byO(1). We now focus on the second integral over
Ω2. Let B(x) denote the ball inRN center aroundx with radiust

1
2
−ε for a sufficiently small constantε > 0.

In the derivation below, we will approximate the integral over the manifoldΩ2 by an integral over the region
B(x) ∩ Ω2 ⊆ Ω2. The error term induced isO(e−t−ε

) = o(1) for small t; see Appendix B in [11]. Using
the fact thatf1(x0) = f2(x0), we have:

1

t

∫

Ω2

Kt(x, y)(f1(x) − f2(y))p(y)dy =
1

t

∫

B(x)∩Ω2

Kt(x, y)(f1(x) − f2(y))p(y)dy + o(1)

=
1

t

∫

B(x)∩Ω2

Kt(x, y)(f1(x) − f1(x0))p(y)dy +
1

t

∫

B(x)∩Ω2

Kt(x, y)(f2(x0) − f2(y))p(y)dy + o(1)

=
1

t
(f(x) − f(x0))

∫

B(x)∩Ω2

Kt(x, y)p(y)dy +
1

t

∫

B(x)∩Ω2

Kt(x, y)(f(x0) − f(y))p(y)dy + o(1). (8)

Since‖x−x0‖ = r
√

t, it follows from Eqn (2) that‖x0−x1‖ = r
√

t+O(t3/2).
It can then be shown that‖x − x2‖ = r

√
t · sin θ + O(t) and‖x0 − x2‖ = r

√
t · | cos θ| + O(t). For

simplicity, let Õ(tβ) denoteO(tβ−ǫ) for a sufficiently small positive constantǫ. For a pointy ∈ B(x) ∩ Ω2

and its projectiony′ in Tx0,Ω2 , we have that‖x−y‖ = Õ(t
1
2 ) and‖x0−y‖ ≤ ‖x0−x‖+‖x−y‖ = Õ(t

1
2 ).

This implies that‖y−y′‖ = Õ(t) and‖x−y′‖ = Õ(t
1
2 ) by Eqn (2). Using these distance bounds, we have:

Kt(x, y) =
1

td/2
e−‖x−y‖2/t =

1

td/2
e−‖x−y′+y′−y‖2/t =

1

td/2
e−‖x−y′‖2/t · e−‖y′−y‖2/t · e

O(‖x−y′‖·‖y′−y‖)
t

=
1

td/2
e−‖x−y′‖2/t · (1 + Õ(t)) · (1 + Õ(t1/2)) =

1

td/2
e−‖x−y′‖2/t · (1 + Õ(t1/2))

=
1

td/2
e−

‖x−x2‖
2

t
+

‖x2−y′‖2

t · (1 + Õ(t1/2)) =
1

td/2
(e−r2 sin2 θ · eO(t

1
2 ))e−

‖x2−y′‖2

t · (1 + Õ(t1/2))

=
1

td/2
e−r2 sin2 θe−‖x2−y′‖2/t(1 + Õ(t1/2)) = e−r2 sin2 θKt(x2, y

′)(1 + Õ(t1/2)). (9)
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Now consider the first term in Eqn (8). Letπx0 denote the projection map from
Ω2 ontoTx0,Ω2 andπ−1 its inverse. Denote byB := πx0(B(x)∩Tx0,Ω2) to be the projection ofB(x)∩Tx0,Ω2

on the tangent spaceTx0,Ω2. By applying Taylor expansion tof(x) atx0 andp(y) atx0, and combining Eqn
2 and 3, we have that:

1

t
(f(x) − f(x0))

∫

B(x)∩Ω2

Kt(x, y)p(y)dy =
1

t
(〈∇f(x0), x1 − x0〉 + Õ(t))

∫

B(x)∩Ω2

Kt(x, y)p(y)dy

=
1

t
d+1
2

(r · 〈∇f(x0), n1〉 + Õ(t
1
2 ))

∫

B

[

(e−r2 sin2 θe−
‖x2−y′‖2

t (1 + Õ(t
1
2 )))(p(x0) + Õ(t

1
2 ))

]

Jπ−1|y′dy′

=
1

t
d+1
2

(r∂n1f1(x0) + Õ((t
1
2 ))e−r2 sin2 θ(1 + Õ((t

1
2 ))(p(x0) + Õ((t

1
2 ))

∫

B
e−‖x2−y′‖2/tdy′

=
1

t
d+1
2

(r∂n1f1(x0) + Õ(t
1
2 ))e−r2 sin2 θ(1 + Õ(t

1
2 ))(p(x0) + Õ(t

1
2 ))(

∫

Tx0,Ω2

e−
‖x2−y′‖2

t dy′ + O(1))

=
1√
t
C3p(x0)re

−r2 sin2 θ∂n1f1(x0) + o

(

1√
t

)

, (10)

whereC3 =
∫

Tx0,Ω2
e−‖u‖2

du =
∫

Rd e−‖u‖2
du = πd/2. Note that we use the fact that1√

t
Õ(

√
t) =

O
(

1
tε

)

= o
(

1√
t

)

in the above derivation. From the first line to the second linewe perform a change of

variable. From the third line to the fourth line in the above derivation, we relax
∫

B e−‖x2−y′‖2/tdy′ to be
∫

Tx0,Ω2
e−‖x2−y′‖2/tdy′ + O(e−t−ε

) =
∫

Tx0,Ω2
e−‖x2−y′‖2/tdy′ + O(1) based on the result from Appendix

B in [11].
For the second item in Eqn (8), we have

1

t

∫

B(x)∩Ω2

Kt(x, y)(f(x0) − f(y))p(y)dy

=
1

t

∫

B(x)∩Ω2

Kt(x, y)(f(x0) − f(x2) + f(x2) − f(y))p(y)dy

=
1

t
[f(x0) − f(x2)]

∫

B(x)∩Ω2

Kt(x, y)dy +
1

t

∫

B(x)∩Ω2

Kt(x, y)(f(x2) − f(y))dy

=
1√
t
C3p(x0)r cos θ · e−r2 sin2 θ∂n2f2(x0) + o

(

1√
t

)

(11)

Intuitively, the first term in the third line is bounded by thequantity in the last line by a similar argument
as the one carried out in Eqn (10) above. For the second term inthe third line, observe that if we replace
the kernelKt(x, y) to beKt(x2, y), then1

t

∫

B(x)∩Ω2
Kt(x2, y)(f(x2)− f(y))dy roughly corresponds to the

standard weighted graph Laplacian of functionf2 at an interior pointx2 in Ω2. Furthermore, by a derivation
similarly to the one in Eqn (9), replacingKt(x, y) by Kt(x2, y) only changes the integral by a factor of
e−r2 sin2 θ. Hence the second term can be bounded byo( 1√

t
). See Appendix A.2 for detials5.

The theorem then follows from Eqn 10 and 11.
From the theorem, we can see that for a pointx on the intersection or near intersection,Ltf(x) is of

the form 1√
t
Cre−r2

where the coefficientC is determined by the derivatives off and the position ofx.

Furthermore, for a pointx on the intersection, we haver = 0. Hence it follows that the order ofLtf(x) at
an intersection point isthe sameas those at regular points, i.e.,O(1), instead of orderO(1/

√
t) as for points

nearsingularities.

5Notex2 is in Tx0,Ω2
. In Eqn (11), to illustrate the intuition behind the derivation, we abuse the notation slightly and usef(x2)

to refer tof(π−1(x2)), whereπ−1(x2) is the point fromΩ2 whose projection inTx0,Ω2
is x2.
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3.3 Edge-type: Gluing Boundaries

We now consider the case where two manifolds are glued along (a part of) their boundaries. The behavior
of graph Laplacian for edge-type points is in some sense the combination of that for boundary-type and
for intersection-type points: locally, a point can both “see” the boundary (thus will have terms arised from
boundary effect) and the other manifold (which has effects similar to those produced by Eqn (8)). See
Appendix A.3 for the proof of the following theorem.

Theorem 3. LetΩi (i = 1, 2) be twod-dimensional smooth manifolds inRN with interior Ωi and nonempty
boundary∂Ωi. Assume their shared boundary∂Ω1∩∂Ω2 is ad−1-dimensional smooth manifold. Letf be
a continuous function overΩ = Ω1 ∪ Ω2 whose restrictionfi := f |Ωi

, i = 1, 2 is C2-continuous. Given a

pointx ∈ Ω1 near the glued boundary, letx0 be its nearest neighbor in∂Ω1∩∂Ω2, and put‖x−x0‖ = r
√

t.
Then for a sufficiently smallt, we have that

Ltf(x) = − 1√
t
p(x0)[α(r, θ)∂n1f(x0) + β(r, θ)∂n2f(x0)] + o

(

1√
t

)

, (12)

whereθ is the angle between the two inward boundary normaln1 andn2 of ∂Ω1 and∂Ω2 at x0 respectively,
α(r, θ) = 1

2π(d−1)/2e−r2 − rπd/2Φ(
√

2r cos θ)e−r2 sin2 θ,

β(r, θ) = 1
2π(d−1)/2e−r2

+ rπd/2Φ(
√

2r cos θ) cos θe−r2 sin2 θ,
andΦ(x) is the cumulative distribution function of the standard normal distribution.

Furthermore, ifx is on the edge, i.e.,r = 0, then we have

Ltf(x) = − 1

2
√

t
p(x)π(d−1)/2[∂n1f(x) + ∂n2f(x)] + o

(

1√
t

)

.

The theorem indicates that for a pointx near∂Ω1 ∩ ∂Ω2, the limit of Ltf(x) is close to the weighted
sum of two normal gradients. Asx moves to the set∂Ω1 ∩ ∂Ω2, the weights for the two normal gradients
will be equal. Finally, for a pointx on the boundary∂Ω1 ∩ ∂Ω2, the behaviorLtf(x) is equivalent to the
addition of the two boundary effects fromΩ1 andΩ2 together.

Intersection-type singularity again. Notice that for the case of two manifoldsΩ1 andΩ2 intersect at
Ω1 ∩ Ω2 of co-dimension1, we can actually regard this scenario as four pieces of manifolds,Ω+

1 ,Ω−
1 ,Ω+

2

andΩ−
2 , glued together byΩ1 ∩ Ω2. Here, we useΩ+

i andΩ−
i to denote the two pieces ofΩi but on the

different side ofΩ1 ∩ Ω2. The advantage of taking this view is that we allow the functions on manifolds
Ω1 andΩ2 to be onlyC0-continuous at the intersectionΩ1 ∩ Ω2, instead ofC2-continuous as required
in Theorem 2. (However, note that Theorem 2 also holds for thecases when the co-dimension of the
intersection is higher than1.) Using the same argument as in the proof of Theorem 3 to this case of gluing
4 d-manifolds along a commond − 1-boundary, we obtain the following corollary.

Corollary 4. Let Ω1 and Ω2 be twod-dimensional smooth manifolds inRN potentially with boundaries,
and their intersectionΩ1 ∩ Ω2 is a smooth manifold of dimension1. Let f be a continuous function over
Ω = Ω1 ∪ Ω2 whose restrictionfi := f |Ωi

on Ωi, i = 1, 2, is C2-continuous at any regular point andC0-
continuous at points inΩ1 ∩ Ω2. Given a pointx ∈ Ω1 near the intersection, letx0 be its nearest neighbor
in Ω1 ∩ Ω2, andx1 (resp.x2) be its projection in the tangent space ofΩ1 at x0 (resp. in the tangent space
of Ω2 at x0). For a sufficiently smallt, we have

Ltf(x) = −π(d−1)/2

2

1√
t
p(x)[∂n1f

+
1 (x0)+∂(−n2)f

−
1 (x0)+∂n2f

+
2 (x0)+∂(−n2)f

−
2 (x0)]+o

(

1√
t

)

(13)

where∂n1f
+
1 (x0), ∂(−n1)f

−
1 (x0) are the directional derivatives off1 on two sides ofΩ1 ∩ Ω2, same for

∂n1f
+
2 (x0), ∂n1f

−
2 (x0).
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Interestingly, it appears the eigenfunctions for a singular manifold with intersection-type singularity can
be onlyC0-continuous across the intersection (instead ofC2-continuous) within each piece of manifold.
Hence the above Corollary will be useful in analysing the eigenfunctions around intersection singularities
(or co-dimension 1).

4 Finite Sample Complexity and Convergence Rate

Theorem 5. Let x1, · · · , xn, be i.i.d. random variables inRN sampled from a probability distribution on
Ω with the intrinsic dimensiond with densityp(x), 0 < a ≤ p(x) ≤ b < ∞, defined on the manifold onΩ
with the intrinsic dimensiond. Letf be a bounded function,|f(x)| < M . Then for anyx ∈ Ω we have

P (|Ln,tf(x) − Ltf(x)| > ǫ) ≤ 2n exp

(

− ntd/2+2ǫ2

2Cv + 2Cmǫt/3

)

(14)

whereCv andCm are constants depending on the manifold.

The proof is based on an application of the Bernstein inequality and the union bound and can be found
in Appendix B.
The immediate corollary is that to get an asymptotic convergence for an arbitrary fixed point (that is an
error of the order ofo(1)), we need to selectt so thatntd/2+2/ log(n) → ∞. That is, we can choose

t = (log(n)/n)
2

d+4 g(n), whereg(n) is an arbitrary function such thatlimn→∞ g(n) = ∞.
On the other hand, for points near the singular set the scaling of the operatorLn,t changes. While inside

the domainLn,tf(x) = O(1) for a smooth (fixed) functionf , for x on the singular set or sufficiently close
to it (within

√
t distance),Ln,tf(x) = O( 1√

t
). Thus an accurate estimate for the appropriately rescaled

operator requires thatntd/2+1/ log(n) → ∞ leading tot = (log(n)/n)
2

d+2 g(n). This may seem counter-
intuitive as fewer points are required on the singularity than inside the domain to obtain an accurate estimate.
One explanation is that near a singularity we are effectively estimating a degree one differential operator,
while inside the domain we are estimating the Laplace-Beltrami operator, which is degree two.

5 Discussion of Impact on Laplacian Eigenfunctions

Eigenfunctions of graph Laplacians obtained from data playan important role in a variety of applications
from spectral clustering to dimensionality reduction and semi-supervised learning. While full proof of their
convergence is likely to be very subtle and is beyond the scope of this paper (see [5] for the proof of
eigenfunction convergence for the smooth case), we would like to discuss the implications of our results for
eigenfunctions under the assumption that such convergencetakes place. Letφt be an eigenfunction ofLt

(normalized to norm1 in L2). We putλ = limt→0 λt andφ = limt→0 φt (with the functions converging in
L2 norm). We will also assume that the necessary derivatives exist.

Below, we briefly discuss the impact of each type of singularity. Some numerical experiments are
provided in Appendix C.3. For simplicity, we will assume thesamples to be infinite and the multiplicity of
each eigenfunction to be one.

Boundary singularity: For a pointx on or near (within
√

t of) the boundary our results indicate

λtφt(x) = Ltφt(x) = C
1√
t
∂nφ(x) + o

(

1√
t

)

10



whereC is a constant independent oft. Thus, for small values oft, andλtφt(x) = O( 1√
t
)∂nφ(x), which

is clearly impossible unless∂nφt(x) = O(
√

t). Passing to the limit6 we see that forx on the boundary,
∂nφ(x) = 0, meaning that the limit eigenfunctions of the graph Laplacian automatically satisfy the Neumann
boundary conditions. The experimental results in AppendixC.3 are consistent with this finding.

Edge singularity: Consider now a pointx at the edge where two ”sheets”Ω1 andΩ2 come together. From
Theorem 3 we have

Ltφt(x) =
C√
t
(∂n1φt(x) + ∂n2φt(x)] + o

(

1√
t

)

.

wheren1 andn2 are the two directions normal to the singular set atx. By an argument following the one
above, we have∂n1ϕt(x) + ∂n2ϕt(x) = O(

√
t). and hence

∂n1ϕ(x) + ∂n2ϕ(x) = 0

In other words the directional derivatives for the limit eigenfunction must cancel each other. This is quite
surprising for the following reason: suppose, that the edgesingularity is obtained by folding a smooth
manifold (imagine folding a sheet of paper, creating an edge). Then the above condition means that the
eigenfunctions of the original surface are invariant underthis ”folding”, despite the fact that the graph
Laplacian operator is very different near the singular set!In other words if a singular surface is isometric to
a smooth manifolds, the spectral structure appears to be preserved, even though the distances computed for
points near the edge are very far from the intrinsic distances on smooth and the operator near the edge is not
the Laplace-Beltrami operator.

Some numerical illustrations of this phenomenon are given in the Appendix C.3.

Intersection singularity: For the intersection singularity the analysis follows thatof the edge case, but
the implications for the shape of eigenfunctions are not completely clear, and warrents further investigation.
One intriguing observation is that if the co-dimension of the singularity is greater than one, it has only a local
effect on the shape of eigenfunctions. The situation is analogous to the disjoint union of manifolds. The
reason is easy to see – the volume of

√
t-neighborhoodB around the singular set of co-dimension at least

two, will be at mostO((
√

t)2) = O(t). Recall that an eigenfunction minimizes the quantity〈Ltφt, φt〉L2(p)

under orthogonality conditions. We see that the contribution of the points around the singular set is bounded
by O(t)O( 1√

t
) = O(

√
t) and vanishes ast → 0.

6There are additional subtleties related to convergence inL2, which are ignored since we are not aiming to provide a full proof
of convergence.
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A Proofs for Theorems on Graph Laplacian Limit

A.1 Sketch of Proof for Theorem 1

For a sufficiently smallt, let Ωbd be the set of points that are within distancet1/2−ǫ from the boundary∂Ω
(a thin layer of “shell”), whereǫ is any sufficiently small positive constant. SetΩin = Ω/Ωbd. We will show
that for a smallt, Ltf(x) is approximated by two different terms onΩdb andΩin, and more importantly they
have different orders oft.

Points away from boundary. Given a pointx ∈ Ω, let B(x) denote the ball of radiust1/2−ǫ centered at
x, whereǫ is any sufficiently small positive constant. First, we approximate the integral in Eqn (1) when the
integral is taken inside the ballB(x). By results from Appendix B of [11], the error induced by constraining
the integral to withinB(x) ∩ Ω is only O(e−t−ǫ

).
Now given a pointy ∈ B(x), let u be the projection ofy onto the tangent spaceTx,Ω of Ω atx. Choose

x to be the origin ofTx,Ω. We have the following approximations for each of the three terms in the integral
in Eqn (1) (see e.g, [2, Chapter 4.2] and [11, Appendix B]). HereK(a) denotesK(a) = e−

a
t . N andd are

the dimension of the ambient space and of the tangent space, respectively.

K(‖x − y‖2
RN ) = K(‖u‖2

Rd) + O(‖u‖4
Rd)

f(x) − f(y) = −uT∇f(x) − 1
2uT H(x)u + O(‖u‖3

Rd)

p(y) = p(x) + uT∇p(x) + O(‖u‖2
Rd)

(15)

whereH(x) is the Hessian off(x) atx.
Now for simplicity let Õ(tβ) denoteO(tβ−ǫ) for any sufficiently small positive constantǫ > 0. Let

πx : Ω → Tx,Ω be the projection fromΩ onto the tangent spaceTx,Ω, and setR := πx(B(x) ∩ Ω).
Obviously,R ⊂ Tx,Ω. Combing the above approximations together with the fact that y ∈ B(x) and thus
‖x − y‖ = Õ(t), and using a change of variableu →

√
tw, we obtain the following:

Ltf(x) = 1
t

∫

Ω Kt(x, y)(f(x) − f(y))p(y)dy

= 1
t

∫

B(x)∩Ω Kt(x, y)(f(x) − f(y))p(y)dy + O(e−t−ǫ
)

= − 1
td/2

∫

R
1
t K(‖u‖2

Rd)[(
√

tuT∇f(x) + t
2uT H(x)u)×

(p(x) +
√

tuT∇p(x))]td/2Jπ−1|udu + 1
t · Õ(t1/2)

= −
∫

Tx,Ω
e
−‖w‖2

Rd{ 1√
t
[p(x)(wT∇f(x))]+

[wT∇f(x) × wT∇p(x) + 1
2p(x)wT H(x)w]}dw + o( 1√

t
)

(16)

From the first line to the second line, we replace the integralover Ω with ball B(x), generating an expo-
nentially small error for sufficiently smallt [11, Appendix B]. From the second line to the third line, by
changing the variable fromy to πx(y) = u, this integral can be rewritten as an integral over the region
R ⊂ Tx,Ω. In the fourth line, we relax this integral overR to be the integral over the entire tangent space
Tx,Ω, plus another exponentially small errorO(e−t−ǫ

) which is consumed byo( 1√
t
).

For an interior pointx ∈ Ωin, Tx,Ω is ad-dimensional linear space, and the functione
−‖w‖2

Rd is an even

function onTx,Ω. When taking the integral, the first term in the last integralin Eqn (16) with orderO
(

1√
t

)

is odd and therefore vanishes. The remaining three terms in the last line of Eqn (16) are of orderO(1) inside
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the integral, and they are exactly the weighted Laplacian atx as previously studied in the literature, and
henceLtf(x) = o( 1√

t
). The kernel is however not symmetric for points on or near theboundary, which are

studied next.

Ω

−z 0 x n

Figure 1: Gaussian weight atx near the boundary.

Points near boundary. We now considerx ∈ Ωbd (the “shell”) near the boundary. See Figure 1, where
we show the local neighborhood aroundx projected inTx,Ω. Let x0 be the nearest boundary point on∂Ω to
x. Choose a local coordinate system ofTx,Ω with x at the origin, and assume the projection ofx0 in Tx,Ω

is at−z. Let n the unit direction alongx − z. Whenx is close to the boundary, the kernelKt(x, y) is no
longer symmetric. In particular, consider an orthonormal coordinate system aroundx, the Gaussian kernel
is symmetric in all coordinate-axis other than alongx − z. Along the directionn, the Gaussian convolution
is from−z/

√
t (as we have changed variable fromu →

√
tw) to +∞, which is not symmetric. Therefore,

e
−‖w‖2

Rd is not an even function in the normal directionn, and the integral of the highest order term (i.e, the

first term ofO
(

1√
t

)

) in the last integral of Eqn (16) will not vanish.

Specifically, letu = (u1, u2, . . . , ud) be the coordinate ofu in the aforementioned coordinate system
of Tx,Ω. Assume thatu1 is the coordinate along the normal directionn. Recall that we have applied the
change of variableu →

√
tw. So letw = (w1, w2, . . . , wd) be the coordinate ofw. Since we have assumed

in the theorem that‖x − x0‖ = r
√

t, we have thatz√
t

= r + O(r3). When we integrate the last integral
in Eqn (16), all the odd terms ofui still vanish in all directions except the normal directionn, and the most

important point is that the leading term along the normal direction is of orderO
(

1√
t

)

, different fromO(1)

for the interior points. In particular, we have:

Ltf(x) = − 1√
t
p(x)∂nf(x)

∫ +∞

−∞
· · ·
∫ +∞

−∞

∫ ∞

−z/
√

t
e
−‖w‖2

Rd w1dw1dw2 · · · dwd + o

(

1√
t

)

= − 1√
t
· 1

2
π

d−1
2 e−r2

∂nf(x) + o(
1√
t
).

The theorem follows from further performing the Taylor expansion off(x) atx0.

A.2 Details for the Intersection Case

Our goal is to bound the integral1t
∫

B(x)∩Ω2
Kt(x, y)(f(x0) − f(y))p(y)dy as in Eqn (11). First, recall

thatπx0 : Ω2 → Tx0,Ω2 is the projection map fromΩ2 to the tangent space ofΩ2 at x0. For points onΩ2
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sufficiently close tox0, this map is in fact a bijection and its inverseπ−1 exsits. Hence fort sufficiently
small (and thusx2 is close enough tox), π−1(x2) exists and we set it to bex3 := π−1(x2) ∈ Ω2. Since
‖x0 − x2‖ = r cos θ

√
t + O(t), we have‖x2 − x3‖ = O(t) by Eqn (2). It follows from triangle inequality

that‖x− x3‖ = ‖x− x2‖+ O(t) = r sin θ
√

t + O(t). We can then apply a similar derivation as in Eqn (9)
to show that

Kt(x, y) = e−r2 sin2 θKt(x3, y) · (1 + Õ(
√

t)); and Kt(x, y) = e−r2 sin2 θKt(x3, y
′) · (1 + Õ(

√
t)), (17)

wherey′ is the projection ofy onTx0,Ω2 as defined in Section 3.2. We now have

1

t

∫

B(x)∩Ω2

Kt(x, y)(f(x0) − f(y))p(y)dy

=
1

t
(f(x0) − f(x3))

∫

B(x)∩Ω2

Kt(x, y)p(y)dy +
1

t

∫

B(x)∩Ω2

Kt(x, y)(f(x3) − f(y))p(y)dy (18)

Following the same derivation as in Eqn (10), and combining with ‖x0 − x2‖ = r cos θ
√

t + O(t), the first
term can be bound by:

1

t
(f(x0) − f(x3))

∫

B(x)∩Ω2

Kt(x, y)p(y)dy

=
1√
t
(‖x0 − x2‖∂n2f2(x0) + Õ(t

1
2 ))e−r2 sin2 θ(1 + Õ(t

1
2 ))(p(x0) + Õ(t

1
2 ))

∫

Tx0,Ω2

Kt(x2, y
′)dy′

=
1√
t
C3p(x0)r cos θ · e−r2 sin2 θ∂n2f2(x0) + o(

1√
t
). (19)

By using Eqn (17), the second term in Eqn (18) is:

1

t

∫

B(x)∩Ω2

Kt(x, y)(f(x3) − f(y))p(y)dy

=
1

t

∫

B(x)∩Ω2

e−r2 sin2 θ(1 + Õ(
√

t)) · Kt(x3, y)(f(x3) − f(y))p(y)dy

=e−r2 sin2 θ(1 + Õ(
√

t)) · 1

t

∫

B(x)∩Ω2

Kt(x3, y)(f(x3) − f(y))p(y)dy + o(
1√
t
). (20)

Now observe that since the radius ofB(x) is Θ(t
1
2
−ε) for a sufficiently small positiveε, and since the

distance fromx to x3 is O(t1/2), we have that there exists some ballB
′(x3) of radius still in the asymptotic

order ofΘ(t
1
2
−ε) aroundx3 such thatB′(x3) is contained insideB(x). This implies thatB′(x3) ∩ Ω2 ⊆

B(x) ∩ Ω2. Hence by results from Appendix B of [11],
∫

B′(x3)∩Ω2

Kt(x3, y)(f(x3) − f(y))p(y)dy =

∫

B(x)∩Ω2

Kt(x3, y)(f(x3) − f(y))p(y)dy + O(e−t−ε
).

On the other hand,1t
∫

B′(x3)∩Ω2
Kt(x3, y)(f2(x3) − f2(y))p(y)dy is simply an approximation of the func-

tional LaplacianLtf2(x3) of the functionf2 at an interior pointx3 over a manifoldΩ2. Hence by Eqn
(5),

1

t

∫

B′(x3)∩Ω2

Kt(x3, y)(f(x3) − f(y))p(y)dy = −1

2
πd/2p(x3)∆p2f2(x3) + o(1).
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It then follows from Eqn (20) that

1

t

∫

B(x)∩Ω2

Kt(x, y)(f(x3) − f(y))p(y)dy

=e−r2 sin2 θ 1

t

∫

B(x)∩Ω2

Kt(x3, y)(f(x3) − f(y))p(y)dy + o(
1√
t
)

= − 1

2
πd/2p(x3)∆p2f2(x3) + o(

1√
t
) = o(

1√
t
). (21)

Putting Eqn (18), (19) and (21) together, we conclude that

1

t

∫

B(x)∩Ω2

Kt(x, y)(f(x0) − f(y))p(y)dy =
1√
t
C3p(x0)r cos θ · e−r2 sin2 θ∂n2f2(x0) + o(

1√
t
),

which is what we claimed in Eqn (11).

A.3 Proof for Edge-type Points

x
1

x

x
2

Ω
1

x
0

y’

y

Ω
2

Figure 2: Edge case.

Suppose we have two manifolds forming the “edge”, denote them by Ω1 andΩ2. We use the same
notation as in the proof for the intersection case; see the illustration in Figure 2. In particular, letx0 denote
the closest point from∂Ω1 ∩ ∂Ω2 to a pointx ∈ Ω1. Let x1 andx2 be the projection ofx on the tangent
spaceTx0,Ω1 andTx0,Ω2 at x0, respectively. Note that‖x − x0‖ = r

√
t. Let f1, f2 be the restriction off

onΩ1 andΩ2 respectively; we know thatf1(x0) = f2(x0). Again,B(x) denotes the ball centered atx with
radiust

1
2
−ε. Then we have

1

t

∫

Ω
Kt(x, y)(f(x) − f(y))p(y)dy =

1

t

∫

B(x)∩Ω
Kt(x, y)(f(x) − f(y))p(y)d + o(1);

and

1

t

∫

B(x)∩Ω
Kt(x, y)(f(x) − f(y))p(y)dy

=
1

t

∫

B(x)∩Ω1

Kt(x, y)(f1(x) − f1(y))p(y)dy +
1

t

∫

B(x)∩Ω2

Kt(x, y)(f1(x) − f2(y))p(y)dy (22)
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The first integral in Eqn (22) onB(x)∩Ω1 is exactly what we had before for the boundary singularity (recall
the second line in Eqn (16)), which we have shown to be the following in Appendix A.1:

− 1√
t
· 1

2
π(d−1)/2p1(x0)e

−r2〈∇f1, n1〉 + o

(

1√
t

)

. (23)

Now consider the second integral in Eqn (22) onB(x) ∩ Ω2:

1

t

∫

B(x)∩Ω2

Kt(x, y)(f1(x) − f2(y))p(y)dy

=
1

t

∫

B(x)∩Ω2

Kt(x, y)(f1(x) − f2(x0) + f2(x0) − f2(y))p(y)dy

=
1

t

∫

B(x)∩Ω2

Kt(x, y)(f1(x) − f1(x0))p(y)dy +
1

t

∫

B(x)∩Ω2

Kt(x, y)(f2(x0) − f2(y))p(y)dy

=
1

t
(f1(x) − f1(x0))

∫

B(x)∩Ω2

Kt(x, y)p(y)dy +
1

t

∫

B(x)∩Ω2

Kt(x, y)(f2(x0) − f2(y))p(y)dy (24)

Let πx denote the projection fromΩ2 to Tx0,Ω2 , and sety′ = πx(y) for any pointy ∈ Ω2. Since the
notation is the same with intersection case, we have by Eqn (9)

Kt(x, y) =
1

td/2
(e−r2 sin2 θe−‖x2−y′‖2/t(1 + Õ(t1/2))).

SetB := πx(B(x) ∩ Ω2) as the image ofB(x) ∩ Ω2 in the tangent spaceTx0,Ω2. Let T+
x0,Ω2

denote the
half-space of the tangent spaceTx0,Ω2 that containsR. Combing the bounds in Eqn (2) and (3), for the first
integral in Eqn (24), we have

1

t
(f1(x) − f1(x0))

∫

B(x)∩Ω2

Kt(x, y)p(y)dy =
1

t
(f1(x) − f1(x0))

∫

B
Kt(x, y)p(y)Jπ−1

x |y′dy′

=
1

t
d
2
+1

(f1(x) − f1(x0))e
−r2 sin2 θ

∫

B
e−‖x2−y′‖2/t(1 + Õ(t1/2))(p(x0) + Õ(t1/2))dy′

=
1

t
d
2
+1

(f1(x) − f1(x0))e
−r2 sin2 θ(1 + Õ(t1/2))(p(x0) + Õ(t1/2))

(

∫

T+
x0,Ω2

e−‖x2−y′‖2/tdy′ + O(e−t−ε
)

)

=C(r, θ)
1√
t
p2(x0)re

−r2 sin2 θ〈∇f1(x0), n1〉 + o

(

1√
t

)

, (25)

whereC(r, θ) =
∫

T+
x0,Ω2

e−‖x2−y′‖2/tdy′ =
∫

Rd,yd>−r cos(θ) e−‖y‖2
dy = πd/2Φ(

√
2r cos θ), andyd is the

d-th entry of coordinate ofy in thed-dimensional tangent space. The last step above also involves applying
the following formula:

f1(x) − f1(x0) = 〈∇f1(x0), x1 − x0〉 + Õ(‖x − x0‖2) = r
√

t〈∇f1(x0), n1〉 + Õ(t).

Now for the second integral in Eqn (24), we have:

1

t

∫

B(x)∩Ω2

Kt(x, y)(f2(x0) − f2(y))p(y)dy

=
1

t

∫

B(x)∩Ω2

Kt(x, y)〈∇f2

∣

∣

x0
, x0 − y〉p(y)dy

=
1

t

∫

B(x)∩Ω2

Kt(x, y)〈∇f2

∣

∣

x0
, x0 − x2〉p(y)dy +

1

t

∫

B(x)∩Ω2

Kt(x, y)〈∇f2

∣

∣

x0
, x2 − y〉p(y)dy (26)
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The second term from the above equation is exactly the same asif we were considering a pointx2 nears the
boundary ofΩ2. Hence using the results from Appendix A.1, we have that

1

t

∫

B(x)∩Ω2

Kt(x, y)〈∇f2

∣

∣

x0
, x2 − y〉p(y)dy

=
1

t
d
2
+1

e−r2 sin2 θ

∫

B
e−‖x2−y′‖2/t〈∇f2

∣

∣

x0
, x2 − y〉(p(x0) + Õ(t1/2))dy

=
1

t
d
2
+1

e−r2 sin2 θ(p(x0) + Õ(t1/2))〈∇f2

∣

∣

x0
,

∫

B
e−‖x2−y′‖2/t(x2 − y)dy〉

=
1

t
d
2
+1

e−r2 sin2 θ(p(x0) + Õ(t1/2))〈∇f2

∣

∣

x0
,

∫

T+
x0,Ω2

e−‖x2−y′‖2/t(x2 − y)dy〉

=
1

t
d
2
+1

e−r2 sin2 θ(p(x0) + Õ(t1/2))(− td/2

2
π

d−1
2 e−r2 cos2 θ∂n2f2)

= − 1√
t
· 1

2
π

d−1
2 e−r2

∂n2f2(x0) + o(
1√
t
). (27)

For the first term from Eqn (26), we have:

1

t

∫

B(x)∩Ω2

Kt(x, y)〈∇f2

∣

∣

x0
, x0 − x2〉p(y)dy

=
1

t
d
2
+1

e−r2 sin2 θ

∫

B
e−‖x2−y′‖2/t(1 + Õ(t1/2))〈∇f2(x0), x0 − x2〉(p(x0) + Õ(t1/2))dy′

=
1

t
d
2
+1

e−r2 sin2 θ(1 + Õ(t1/2))(p(x0) + Õ(
√

t))

∫

B
e−‖x2−y′‖2/t〈∇f2(x0), x0 − x2〉dy′

=
1

t
d
2
+1

e−r2 sin2 θp(x0)〈∇f2(x0), x0 − x2〉
∫

R
e−‖x2−y′‖2/tdy′

=
1

t
d
2
+1

e−r2 sin2 θp(x0)〈∇f2, x0 − x2〉
(

∫

T+
x0,Ω2

e−‖x2−y′‖2/tdy′ + O(e−t−ε
)

)

=
1√
t
p(x0)C(r, θ) · r cos θe−r2 sin2 θ〈∇f2(x0), n2〉 + o

(

1√
t

)

, (28)

whereC(r, θ) is defined earlier. Letx′ be the projection ofx1 on the tangent spaceTx0,Ω2. The last step in
Eqn (28) uses the fact that‖x0 − x2‖ = r

√
t · | cos θ| + O(t). Combining all the results in (23), (25), (26),

(27), and (28), we prove Theorem 3.

B Proof for Convergence Rate

Lemma 6. Let X1, · · · ,Xn, Z be i.i.d. random variables ofRN from densityp(x) ∈ C∞(Ω), 0 < a ≤
p(x) ≤ b < ∞, Kt(x, y) be a Gaussian weight function and|f | < M , then for anyx ∈ Ω

P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

Kt(x,Xi)f(Xi) − EZ [Kt(x,Z)f(Z)]

∣

∣

∣

∣

∣

> ǫ

)

≤ 2 exp

(

− ntd/2ǫ2

2Cv + 2Cmǫ/3

)

(29)

whereCv andCm only depend ond andK(·, ·), f(·), p(·).
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Proof. Let Wi(x) = Kt(x,Xi)f(Xi), andYi(x) = Wi(x) − EXi [Wi(x)]. We haveEXi [Yi(x)] = 0, and

|Yi(x)| ≤ |Wi(x)| + |EXi [Wi(x)]|
= |Kt(x,Xi)f(Xi)| + |

∫

Ω Kt(x, y)f(y)p(y)dy|
≤ 1

td/2 M + Mb
∫

Ω Kt(x, y)dy

≤ M
td/2 + MbCg = (Cm + MbCgt

d/2)/td/2

(30)

whereCg =
∫

Ω Kt(x, y)dy < ∞, andCm = M . For Var[Yi(x)],

Var[Yi(x)] = EXi [W
2
i (x)] − {EXi [Wi(x)]}2

≤
∫

Ω K2
t (x, y)f2(y)p(y)dy + [

∫

Ω Kt(x, y)f(y)p(y)dy]2

≤ 1
td/2 M2b

∫

Ω Kt(x, y)dy + M2b2C2
g

≤ 1
td/2 M2bCg + M2b2C2

g = (Cv + M2b2C2
g td/2)/td/2

(31)

whereCv = M2bCg. By the Bernstein’s inequality

P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

Yi(x)

∣

∣

∣

∣

∣

> ǫ

)

≤ 2 exp

(

− ntd/2ǫ2/2

(Cv + M2b2C2
g td/2) + (Cm + MbCgtd/2)ǫ/3

)

(32)

Proof of theorem 5: Forx ∈ Ω, we putf(x) − f(Xi) into Lemma 6, obtaining:

P (|Ln,tf(x) − Ltf(x)]| > ǫ)

=P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Kt(x,Xi)(f(x) − f(Xi)) − EZ [Kt(x,Z)(f(x) − f(Z))]

∣

∣

∣

∣

∣

> tǫ

)

≤2 exp

(

− nt(d+4)/2ǫ2

2Cv + 2Cmtǫ/3

)

The proof of theorem 5 is done.

C Experimental results

Below we provide some numerical results validating theoretical analysis, some experiments with real datasets
and several numerical experiments in support of our conjectures on the eigenfunction behavior.

C.1 A numerical example

In this section, we illustrate the behavior of graph Laplacian on or near the singularity points through a
simple numerical example. In order to explore different cases, we consider the union of 1-dimensional
manifoldsΩ as shown in Figure 3 (a), which is a combination of three linear intervals,Ω1, Ω2, andΩ3 in R

2.
We take 2500 point uniformly spaced over the singular manifold and choosef(x1, x2) = (x1 + 0.2)2 + x2

2

(restricted to the manifold).
Shape and Scaling Behavior:The value ofLn,tf(x) over all points inΩ1 is shown in Figure 3 (b). We

can see thatLn,tf(x) near the boundary is approximately half a Gaussian function, while the function near
the intersection is similar to a function of the formϕ(x) = axe−bx2

, as predicted by Theorem 2. The shape
of Ln,tf(x) near the corner is also what we expect from Theorem 3.

To explore the scaling effects, in Figure 3 (c) we plot valuesof log |Ln,tf(x)| againstlog(t) for different
values oft. Each graph corresponds to a fixed pointx chosen near a boundary, intersection or edge singu-
larity. Our theoretical results predict a linear curve withslope−1

2 in log-log coordinates (corresponding to
1/
√

t, which is consistent with our experimental results as shownin (c).
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Figure 3:Ln,tf(x) with f(x1, x2) = (x1 + 0.2)2 + x2
2 overΩ. In (c), x axis islog(|Ln,tf(x)|) andy axis

is log t. The three curves are for three points near each type of singularity.

C.2 Singularity Detection and Estimation
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(a) Data set (b) Values ofLn,tf
on Bunny whenf(x, y, z) = y.

Bunny Model: In the following exam-
ple, we use the union of the Stanford bunny
dataset (in blue) and a planey = 0 (in
red), which intersects the bunny in the mid-
dle as shown in panel (a). We have take
10000 points for both the bunny and the
plane in the point cloud, and choose the
function f = y. The values ofLn,tf on
the bunny are shown in panel (b). We can
see that the values ofLn,tf at the intersection are0 and values near the intersection go up (in yellow) and
down (in blue) as expected from the theoretical analysis of the intersection singularity.

MNIST Data: From the scaling behavior of the graph Laplacian near singularities, it is potentially pos-
sible to detect certain such singularities on real world data sets. We use the example of the MNIST digit
images. The image of each digit can be thought of as a sample from a low-dimensional manifold embedded
in the high-dimensional pixel space. We choose functionf(x) to be the summation of the pixel intensity
of each image. We take the images corresponding to the top2% of the highest value ofLn, tf(x) as the
“near singularity/boundary” images, which are compared tothe “average” images of each digit. The results
are shown in Figure (7). We see that the images on the right aresignificantly larger (and systematically
different) from average, suggesting that they may belong tothe part of the boundary, which can be detected
through the sum-of-pixel-intensity function.

C.3 Laplacian Eigenfunctions on Singular Manifolds

In this section, we will provide two numerical examples to validate our to conjectures about the Laplacian
eigenfunctions on the singular manifolds.

Folded Rectangle: In this example, we consider two manifolds: (1) the rectangular regionΩ1, (−0.3, 0.3)×
(−0.5, 0.5) × {0}, in R

3 and (2) the ”folded” rectangleΩ2, obtained by transforming the positivey part of
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Ω1, i.e. {(x, y, z) ∈ Ω1 : y > 0}, by applying the linear transformation given by the matrix





1 0 0
0 cos(π/4) − sin(π/4)
0 sin(π/4) cos(π/4)





and keeping the rest ofΩ1 fixed as showing in Fig. 4. We seeΩ1 andΩ2 are intrinsically isometric, yetΩ2

has an edge singularity.
We choose6000 uniformly-spaced points in bothΩ1 andΩ2.
With this two data sets, we construct their graph Laplace matrices respectively, and calculate their eigen-

values and eigenvectors using the Gaussian kernel witht = 10−4. Figure 5 shows the first 16 nontrivial
eigenvectors of two graph Laplace matrices. We can see that the corresponding eigenvectors match nearly
perfectly. It can be easily verify that they also match eigenfunctions of the rectangle with Neumann bound-
ary conditions.

To give some precise numerical results we measure the relative difference between the sets of eigen-
values. Letλ1

k andλ2
k be the two vectors of firstk eigenvalues forΩ1 andΩ2 respectively. We define the

(relative) difference as

diffk =
‖λ1

k − λ2
k‖

‖λ1
k‖

The table below shows the difference for various values ofk. We observe that the approximation appears
quite precise with difference of the order of0.1%, thus providing further evidence in support of our conjec-
ture on the behavior of eigenfunctions.

k 10 50 100
diffk 0.0014 0.0012 0.0011

Sliced and flipped sphere: To give a more interesting non-flat example, we consider two spaces shown
in Fig. 6: the standard unit sphere inR

3 and the ”sliced and flipped” sphere, where the top of the sphere is
sliced off and glued in the opposite direction. More precisely, (1) S1 = {(x, y, z) ∈ R

3 : x2+y2+z2 = 1.};
(2) S2 is the set of points inS1 except that the points above the planez = 0.75 are moved to their mirror
reflection on the other side of the planez = 0.75. We see thatS1 andS2 are intrinsically isometric. To
construct the Laplacian we sample10000 points from each space and chooset = 5×10−4. In this example,
it is not easy to visualize the eigenvectors due the multiplicity of eigenvalues. However, from the table below
we observe that the spectra of the graph Laplacian on those manifolds are very similar.

k 10 50 100
diffk 0.0099 0.0182 0.0148
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Figure 4: Rectangle and folded rectangleΩ1 andΩ2.
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(a) Ω1
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(b) Ω2

Figure 5: 2nd-17th eigenvectors of the graph Laplace matrices of the two manifoldsΩ1 andΩ2.
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(b) S2

Figure 6: Unit sphereS1 (left), and unit sphere with the top “sliced and flipped”S2 (right).
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(a) (b)

(c) (d)

Figure 7: An averaged image of digits ”1” and ”8” (left panels) vs an averaged image with a large value of
graph Laplacian constructed from the data set of images, applied to a function defined by the sum of pixel
intensities.
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