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Abstract
Record and replay, which records a multithreaded program’s exe-
cution in one run and reproduces it deterministically in a second
run, is useful for program debugging, fault detection and analy-
sis. The key challenge in multithreaded record and replay is ensur-
ing that conflicting, cross-thread accesses to shared variables are
properly detected, recorded and reproduced. Numerous solutions
have been proposed in both hardware and software to track these
cross-thread accesses, but to date all general-purpose software so-
lutions suffer from high overhead or have serious limitations. This
paper introduces ROCTET, an approach for performing software-
only deterministic record and replay. ROCTET is built on top of a
novel dynamic analysis infrastructure, OCTET, which can detect at
low overhead any cross-thread dependences during execution by
exploiting the fact that most accesses, even of shared objects, are
not part of cross-thread dependences. We implement OCTET and
ROCTET in a JVM and show they add low overhead for several
multithreaded applications. We also show that our implementation
of ROCTET can successfully replay recorded executions when it
can successfully control or ignore extraneous sources of nondeter-
minism in the VM, libraries, and system.

1. Introduction
Finding bugs in multithreaded programs is a notoriously diffi-
cult problem, largely due to the non-deterministic interactions of
threads accessing shared data: the behavior of a program run that
causes a bug to manifest may not be observed during later runs
while tracking down the bug. Offline record and replay has been
proposed to aid this process. While a program runs, its behavior,
including non-deterministic interactions, is recorded; this behavior
can then be deterministically replayed. Any bug that appeared in
the recorded run will be reproduced in the replayed run. Similarly,
online record and replay executes the second, replayed run con-
currently with the recorded run. This approach is useful for fault
tolerance or running dynamic analyses alongside an execution.

Performing record and replay is fairly easy for single-threaded
code: the sources of non-determinism are typically readily identifi-
able and infrequent enough that instrumentation overhead is not
a concern. Record and replay is much more difficult for multi-
threaded code, due to the interactions between threads accessing
shared memory. Nondeterministic interleavings occur due to high-
level races (i.e., races on synchronization variables) and data races
(unsynchronized, conflicting reads and writes). It is relatively in-
expensive to record high-level races because synchronization op-
erations are typically infrequent, but any read or write may poten-
tially be involved in data race. Faithfully recording and replaying
multithreaded programs requires carefully detecting and managing
conflicting accesses by threads to shared data.

Numerous existing approaches provide multithreaded record
and replay. Uniprocessor approaches replay conflicting accesses by
scheduling threads identically between the record and replay runs.
Unfortunately, such approaches do not scale. Multiprocessor record
and replay can be supported efficiently in hardware, by monitoring
cache-coherence transactions to detect and record conflicting ac-
cesses to shared memory. Replay is supported by reproducing those
conflicts [21, 22, 31, 33, 51].

In the absence of hardware support for record and replay, there
has been much interest in software-only approaches. Unfortunately,
all existing approaches suffer drawbacks: high overhead due to
expensive instrumentation to detect conflicting accesses [27]; no
support for offline replay [28]; or only probabilistic guarantees
of replay fidelity [4, 38, 50]. The best-performing fully featured,
software-only record and replay system is DoublePlay [46], which
operates at low overhead when there are extra cores on which to
offload the recording processes, but still incurs 100% overhead
when all cores are utilized during execution.

This paper presents ROCTET, a software-only, low-overhead,
multiprocessor record and replay system that works for all pro-
grams and efficiently supports both online and offline replay.

Outline of approach
If every dependence in a recorded run is faithfully reproduced in
the replayed run, every load in the latter run will return the same
value as the corresponding load of the former run. Hence, mod-
ulo other sources of nondeterminism, the replayed execution will
deterministically reproduce the recorded execution. Our system is
motivated by the following observation: the only dependences that
need to be preserved across runs are cross-thread dependences, de-
pendences where one access is performed on one thread and the
dependent access is on another. Provided that cross-thread depen-
dences are replayed, all other dependences will be enforced by the
compiler and hardware.

According to prior work, detecting all cross-thread dependences
requires synchronization at each read and write to detect interac-
tions between threads, incurring overhead proportional to the num-
ber of memory accesses. However, we present a dynamic analy-
sis framework that can detect conflicting accesses at a cost propor-
tional not to the number of accesses but to the number of conflict-
ing accesses (those that may induce cross-thread dependences). Our
analysis leverages a key insight: most objects exhibit some thread
locality, and hence most accesses do not induce cross-thread de-
pendences, even if the object being accessed is shared.

Our analysis framework, OCTET, associates a state with each
object that records the last accessor of the object, and its permis-
sions (read or write). When a thread accesses an object in a com-
patible state, the access proceeds without synchronization. It is only
when a conflicting access is attempted that a potential dependence



is detected and communication is required. OCTET is optimistic:
it assumes most accesses are not involved in cross-thread depen-
dences, and supports them at low overhead, at the cost of expen-
sive communication when a cross-thread dependence may have oc-
curred. OCTET’s protocols ensure that there is a happens-before re-
lationship between any two cross-thread dependent accesses. Sec-
tion 2 describes OCTET in more detail.

Using OCTET as an underlying analysis, we build a record and
replay system called ROCTET, described in Section 3, that records
dependences detected by OCTET by noting where the conflicting
threads are when a dependence is detected (hence establishing the
timing of the dependence). On replay, ROCTET manipulates the ex-
ecution of threads to ensure that all dependences are replayed in the
same order as in the recorded run, preserving the recorded happens-
before relationships and providing deterministic replay. Note that
while our current implementation of ROCTET correctly avoids non-
determinism due to shared-memory accesses, it does not control for
certain other sources of nondeterminism (allocation, nondetermin-
istic runtime compilation, etc.), so our replay environment does not
provide determinism for these behaviors (e.g., allocation-address
based hash codes will not return the same value).

We implement OCTET and ROCTET as dynamic analyses in a
high-performance JVM. Across multithreaded benchmarks from
the DaCapo Benchmarks and SPEC JBB2000 [10, 45], we show
that OCTET can detect conflicting accesses at low overhead (ge-
ometric mean: 28%), and that recording a run with ROCTET adds
low additional overhead (∼7%). This is significantly lower than the
recording overheads of prior software-based full-featured record
and replay systems. We argue that ROCTET can replay executions
with overhead similar to the recorded execution. However, because
our implementation does not control many sources of nondetermin-
ism beyond shared-memory accesses, it can only replay programs
with significant limitations that control or ignore nondeterminism
and that add high overhead to both record and replay.

2. Tracking Cross-Thread Dependences
Our approach to efficient software record and replay relies on the
ability to accurately, and with low overhead, detect cross-thread de-
pendences on shared objects: data dependences involving accesses
to same variable by different threads.

Capturing cross-thread dependences will allow us to provide
deterministic replay of recorded executions, as described in Sec-
tion 3. This approach to record and replay has typically been taken
by hardware techniques that rely on cache coherence to detect and
record conflicting accesses [21, 22, 31, 33, 51]. Unfortunately, do-
ing the same in software has proven difficult. Because any poten-
tially shared memory might be involved in a cross-thread depen-
dence, prior approaches have used synchronization at essentially
every read and write [27].

Our approach to detecting cross-thread dependences with low
overhead is based on a key insight: the vast majority of accesses,
even to shared objects, are not involved in a cross-thread depen-
dence. If we can detect efficiently whether an access cannot create
a cross-thread dependence, we can perform synchronization only
when conflicting accesses occur, and dramatically lower the over-
head of detecting cross-thread dependences.

To achieve this goal, we associate a thread-locality state with
each potentially shared object that captures which accesses will not
cause cross-thread dependences. Accesses consistent with the ob-
ject’s state proceed without synchronization, while attempted ac-
cesses in violation of that state imply that a cross-thread depen-
dence might exist. Such accesses trigger a state change and require
synchronization. Hence, our technique’s costs are proportional to
the number of conflicting shared memory accesses in a program,
rather than the total number of accesses or shared accesses.

We have built a framework implementing this approach called
OCTET (optimistic cross-thread explicit tracking). OCTET is “opti-
mistic” because it assumes that most accesses do not create depen-
dences and supports them at low overhead, at the cost of more ex-
pensive synchronization when accesses conflict. OCTET’s primary
function is to detect potential cross-thread dependences in paral-
lel execution and ensure that a happens-before relationship exists
between the dependent accesses (even if the original program per-
forms the accesses in a racy manner).

2.1 OCTET states
A thread-locality state for an object tracked by OCTET captures
what accesses can be made by that object without synchronization;
that is, which accesses can be made to that object that definitely do
not create any new cross-thread dependences. The possible OCTET
states for an object are:
WrExT: Write exclusive for thread T. T may read or write the

object without synchronization. Newly allocated objects start
in the WrExT state, where T is the allocating thread.

RdExT: Read exclusive for thread T. T may read (but not write)
the object without synchronization.

RdSh: Read shared. Any thread may read the object without syn-
chronization.

Each object’s header stores its state. Note the similarity of the
thread-locality states to coherence states in the standard MESI
cache-coherence protocol [37]. Modified corresponds to WrExT,
Exclusive corresponds to RdExT, and Shared corresponds to RdSh.
Invalid corresponds to the state for threads other than T when an
object has state WrExT or RdExT.

Any access by a thread to an object in an incompatible state
implies that there may be a cross-thread dependence.1 If such an
access is performed, OCTET performs synchronization to safely
change an object’s state to one compatible with the access.

Figure 1 shows OCTET’s states and the program accesses that
cause transitions between them. Some transitions are conflicting
transitions, as they require coordination with other threads to re-
solve (as described next), while others are upgrading transitions,
as they can be done without coordination (though they require syn-
chronization).

2.2 Detecting and managing conflicting accesses
OCTET’s instrumentation inserts read- and write-barriers before
every access of a potentially shared object to ensure that the access
is compatible with the object’s state, as shown in Figure 2. Low
overhead is achieved because when an access is compatible with
the object’s state, the barrier overhead is merely the cost of the state
check; it is only when a conflicting access is detected that a slow
path, involving synchronization, is entered to allow the conflicting
thread to gain access to the object. What does this slow path entail?

2.2.1 Handling conflicting accesses
When a conflict is detected by an OCTET barrier, the state of the
object must be changed so that the conflicting thread may access
it. However, the object state cannot simply be changed at will. If
thread T changes the state of an object while another thread S that
has access to the object is between its state check and its access,
then S and T may perform conflicting accesses without being de-
tected. OCTET thus requires a roundtrip communication (and the
attendant happens-before relationship) between conflicting threads
before allowing the conflicting thread to proceed. The protocol for
handling conflicting accesses is shown in Figure 3.

1 OCTET states are maintained at object granularity, so a conflicting access
may not actually imply a dependence at the field level.
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Figure 1. State diagram for OCTET. Before a program accesses an object, dynamic analysis checks that the object’s state is compatible with the access
(Figure 2). If so, the state stays the same (dotted self-loops). Otherwise, the state changes (upgrading and conflicting transitions). Note that to simplify the
state diagram, we do not draw the Int state.

if (obj.state /∈ {WrExT, RdExT,
RdSh})

Slow path: change obj’s state

... = obj.f; // read

if (obj.state 6= WrExT)
Slow path: change obj’s state

obj.f = ...; // write

Read barrier Write barrier

Figure 2. OCTET instrumentation at a program read and write. T
is the current thread.

At safe points:
curRequest ← request
if (curRequest > response) // request seen

memfence // ensure happens-before
response ← curRequest

(a) Responding thread (thread A)

To move obj from WrExA or RdExA to WrExB:
currState ← obj.state // WrExA or RdExA expected
if (currState 6= Int∗ ∧ !CAS(obj.state, currState, IntB))

// obj.state ← IntB failed
check for and respond to requests, restart protocol;

expectedResp ← ++A.request // atomic increment
while (A.response < expectedResp)

check for and respond to requests;
memfence // ensure happens-before
obj.state ← WrExB

proceed with access
(b) Requesting thread (thread B)

Figure 3. Conflicting access protocol for conflicting accesses.

Consider two threads, A and B, where A, called the responding
thread, has access to object obj in WrExA or RdExA state, and B,
called the requesting thread, wants to write it. Every thread main-
tains two counters, a request counter and a response counter. The
counters correspond to the number of requests for communication
and the number of responses to communication requests, respec-
tively. An invariant is maintained that request ≥ response. To gain
access to obj, B places obj into an intermediate state, IntB, using
compare-and-swap (CAS). This ensures that other threads attempt-
ing to access obj will wait until the conflict is resolved before pro-
ceeding, avoiding races in the protocol. Then, B notifies A of a re-
quest by atomically incrementing A’s request counter, and saving
its value locally.

Whenever A is at a safe point (a point known not to be in
between a state check and an access), it examines its request and
response counters. If request > response, A knows at least one
request was made to an object it has access to. At this point, A issues
a fence and sets response = request. B spins on A’s response
counter until it matches or exceeds its cached value, at which point
it issues a fence, changes obj’s state to WrExB, and makes its access.

This protocol establishes two happens-before relationships: one
between B’s initial request for access to obj and any subsequent
attempt by A to access obj (at which point A will find obj in IntB
state), and another between A’s response to B and B’s access to obj.
The protocol is deadlock free: threads requests access to one object
at a time, and while a requesting thread is awaiting a response it
can respond to other requests itself. There is one complication: if
a requesting thread finds an object in RdSh state, then any other
thread may have read the object, which we address below.

2.2.2 Handling RdEx and RdSh states
If the only state in OCTET was WrEx, then all cross thread ac-
cesses to an object would appear to be conflicting accesses, and the
roundtrip communication protocol outlined above would suffice to
provide the necessary conflict detection and happens-before rela-
tionships. However, many shared objects are only or mostly read,
not written, so treating every access as a conflicting access will
result in significant unnecessary communication. OCTET uses the
RdEx and RdSh states to mitigate this. The former state grants one
thread read access to an object, while the latter allows any thread
to read the object without synchronization.

If a thread A wants to write an object in RdExA state, it upgrades
the state to WrExA with a CAS and proceeds (the CAS avoids races
with threads moving the object to Int). If a thread A performs a
conflicting read access to an object in WrEx state, it uses the round-
trip communication protocol to obtain the object in RdExA state. If
A performs a conflicting write access to an object in RdSh state,
OCTET requires that A perform roundtrip communication with all
active threads, as any of them may have read the object.

To handle the remaining two transitions in Figure 1 (RdEx →
RdSh and a thread reading a RdSh object for the first time), we
introduce a global counter, gRdShCount, which tracks how many
objects have been moved into RdSh state throughout the execution,
and a local counter for each thread T, T.rdShCount.

When A wants to read an object that thread B has in RdExB,
A atomically increments gRdShCount and computes a RdSh state
incorporating the new value of gRdShCount, CASing the object’s
state to this computed state. A then updates A.rdShCount with the
new value of gRdShCount. Note that this protocol does not establish
a happens-before relationship between A’s and B’s reads of the
object. However, there is no dependence, so no relationship is
necessary. The CAS does establish a happens-before relationship
between B’s changing the state to RdExB and A’s read.

If a thread C wants to access an object in RdSh state, it extracts
the counter value stored in the object’s RdSh state, c, and checks if
C.rdShCount ≤ c. If so, C issues a fence and updates C.rdShCount
to c before proceeding with its read. This ensures that C’s read
happens after the object was placed into RdSh state.



2.3 Correctness of OCTET

We now show that OCTET creates happens-before relationships be-
tween all cross-thread dependences. Note that OCTET does not con-
cern itself with non-cross-thread dependences as they are enforced
by the hardware and compiler.

We will assume, without loss of generality, that there is only one
shared object, obj, and all cross-thread dependences arise through
accesses to obj (interactions between multiple shared objects must
happen within a single thread, and dependences between them will
be preserved by the compiler’s and hardware’s reordering con-
straints). We also assume that OCTET’s instrumentation behaves
as expected, and hence OCTET ensures that an object is in a valid
state before a thread performs its access (e.g., for thread A to write
obj, the object must be in state WrExA).

Notation We denote a read by thread A as rA, and a write by
A as wA. A dependence between two accesses is denoted with
→. Hence, flow (true) dependences are written w → r, anti-
dependences, r → w, and output dependences, w → w. A cross-
thread dependence is a dependence whose source access is on one
thread and whose dependent access is on another.

We will also use special notation for certain actions performed
by threads when interacting with OCTET. S↓A means that thread A
put an object into OCTET state S. respA means that thread A issued
an OCTET response (i.e., updated its response counter).

Lemma 1. OCTET creates a happens-before relationship to estab-
lish the order of every cross-thread dependence.

Proof. We need only concern ourselves with cross-thread depen-
dences that are not transitively implied by other dependences (cross
thread or otherwise). We thus break the proof into several cases:

wA → wB: OCTET’s barriers enforce that when A writes obj, the
object must be in WrExA state. When B attempts to perform its
write, it will still find obj in WrExA (because the dependence
is not transitively implied, no other conflicting access to obj
could have happened in the interim). B will put obj into IntB
make a request to A. When A receives the request, it establishes
IntB↓B→hb respA and ensures that A will now see obj in state
IntB (preventing future reads and writes by A to obj). When B
sees the update of A’s response counter, it issues a fence, moves
obj to state WrExB and proceeds with its write, establishing
wA →hb wB .

rA → wB: There are two cases to deal with for this dependence.
Case 1: B finds the object in an exclusive state (either RdExA
or WrExA). rA →hb wB is established by the same roundtrip
mechanism as in the prior scenario.
Case 2: B finds the object in RdSh state. In this case, the pro-
tocol for dealing with RdSh objects, described above, requires
that B perform a roundtrip communication with all threads, es-
tablishing rA →hb wB .

wA → rB: For thread A to write to obj, the object must be in
WrExA state. Then there are three scenarios by which this de-
pendence could occur.
Case 1: B is the first thread to read obj after the write by
A, so it will find obj in WrExA state. This triggers roundtrip
communication and establishes wA →hb rB .
Case 2: B is the second thread to read obj after the write by A.
This means that there was some thread, C, that left the object in
state RdExC. By the previous case, we know wA →hb RdExC↓C,
with a fence between respA and RdExC ↓C. Hence, when B
uses a CAS to move the object to state RdSh, it establishes
respA →hb RdSh↓B, enforcing wA →hb rB transitively.
Case 3: B finds obj in RdSh state upon reading it. Note that by
the previous case, there must be some thread C that placed obj

Thread A Thread B

wr x

rd x

request

response
t

s

Figure 4. A simple program illustrating the behavior of record and
replay using OCTET

in RdSh (establishing wA →hb RdSh↓C). To access obj in RdSh
state, B accesses B.rdShCount and the counter value stored as
part of the obj’s state as described in Section 2.2.2, ensuring
that B last saw the value of gRdShCount no earlier than when C
put obj in RdSh. Hence, we have RdSh↓C→hb rB , establishing
wA →hb rB transitively.

Thus, OCTET establishes a happens-before relationship between
the accesses of every cross-thread dependence.

Note that by synchronizing on all conflicting shared-memory ac-
cesses, OCTET provides sequential consistency [26] with respect
to the compiled program, even on weak hardware memory mod-
els [1].

3. Record & Replay
This section presents ROCTET, a system for record and replay
built on top of OCTET. The basic idea behind the approach is to
record the timing of all cross-thread dependences by noting where
in their respective executions two threads are when OCTET detects
cross-thread interactions. We can then replay the execution by
manipulating threads’ execution so that all the dependences logged
during the record phase occur in the same order during replay.

3.1 A simple example
To understand the intuition behind our approach to record and
replay, consider the simple program shown in Figure 4, with two
threads, A and B. Among other operations, A and B have one cross-
thread dependence through object obj: A writes to obj and later B
reads from it. Since obj is being tracked by OCTET, it must be
in state WrExA at A’s write. When B wants to read obj, it sends
a request to A at time s (the solid “request” line) and A responds
at time t (the solid “response” line), allowing B to move obj into
RdExB. OCTET’s protocols ensures that a happens-before relation
exists between A’s write and B’s read.

To correctly replay this behavior, ROCTET records the time s at
which B made its request and the time t at which A responded. On
replay, when B reaches s, B pauses its execution until A has passed
point t, guaranteeing that A has already performed the write to obj.
We can then let B proceed, reading obj and observing the proper
value.

This approach generalizes to multiple threads accessing multi-
ple shared objects: ROCTET records the request and response times
of all communicating threads during the record phase, and during
replay delays requesting threads until responding threads pass the
appropriate response point before continuing.

We now answer two key questions. First, how does ROCTET
determine thread timings during record runs (i.e., what information
makes up the s and t time points from Figure 4)? Second, how does
ROCTET ensure that dependences are preserved during replay?



3.2 Recording execution
During recording, each thread needs to keep track of the commu-
nication it has performed. For any (round-trip) communication, a
thread can either be a requesting thread (it needs access to an ob-
ject that other threads have read/written last) or a responding thread
(it has access to an object, and it must release that object to another
thread). Following the lead of Figure 4, we will assume the request-
ing thread is named B and the responding thread, A. Let us consider
the behaviors separately:

The requesting thread: If thread B requests an object from an-
other thread, A, it must record two pieces of information in a re-
quest log: where it is in its execution (i.e., the dynamic program
location) and where A is in its execution. The first piece of infor-
mation can be tracked in many ways. For example, we could track
the program counter (static program location) as well as a thread-
local counter that tracks how many loop back edges and function
calls have been encountered. Section 4 discusses our approach to
tracking dynamic program location.

Tracking where A is requires more care. A’s dynamic program
counter is thread local and updated without synchronization, so
racy reads of that information may produce spurious values. In-
stead, we note that OCTET’s communication protocol requires that
B calculate A’s expected response counter, which reflects the total
number of responses A will have made (including this one) by the
time it responds to B, and captures sufficient information about A’s
location. Hence, in addition to its dynamic program count, B stores
A’s identity and its current request counter (which is a lower bound
on the eventual value of A’s response counter) in the request log.

The responding thread: If thread A responds to another thread,
it records its dynamic program counter in a response log, cap-
turing where it is when it responds. In addition, because request-
ing threads will need to know where A was when it responded, A
records its current response counter in the response log. A’s log-
ging of its response counter is the counterpart to the requesting
thread’s logging of A’s request counter, and allows the requests and
responses to be aligned.

The above protocol addresses threads’ behavior during state tran-
sitions that trigger roundtrip communication However, there are
two state transitions that imply interaction between threads but do
not perform roundtrip communication: transitions to RdSh and ac-
cesses to objects that are already in RdSh. What information must
be recorded to ensure the order of these accesses is captured?

Recall that if thread B moves an object obj from RdExA to RdSh,
it updates the global read-shared counter, gRdShCount, and per-
forms a simple compare-and-swap on the object state. By recording
the update to gRdShCount in the log, we can ensure that this transi-
tion to RdSh happens according to a fixed total order with all other
transitions to RdSh. However, we must also track where thread A
is. Logging A’s response counter is insufficient, as its value may be
from before A read obj (and hence may not ensure that A is past
its read). To address this problem, we introduce a new thread-local
counter, RdExTransA, that keeps track of how many times a thread
A has moved an object into RdEx state. Thus, when A moves obj
into RdExA, it atomically updates its value of RdExTransA. When
moving obj to RdSh, B logs A’s value of RdExTransA as its estimate
of where A is.

When a thread reads from an object obj that is already in RdSh
state, if OCTET requires an update of the thread’s local read-shared
counter, .rdShCount, then that counter value is recorded in the
request log. This data provides enough information to ensure that
this read happens after obj was moved to RdSh state. If the read-
shared counter was not updated, then other entries in the log will
already capture that this read happens after obj was moved to RdSh.

3.3 Replaying execution deterministically
To replay an execution recorded using the above strategy, we must
make sure that the threads’ execution interleaves such that the order
of each event we recorded in the logs is preserved. Interestingly,
we do not need to replay the order of synchronization events (lock
acquires and releases, waits, notifies, etc.); merely respecting the
original dependences of the program suffices. Indeed, replaying
high-level synchronization may result in deadlock as high level
races (acquiring locks in a different order) may preclude achieving
the proper interleaving of memory accesses within critical sections.
Hence, we elide all synchronization events from the replayed run.
We also no longer need to track cross-thread interactions, as we
are replaying them, so OCTET is turned off, and object state is
no longer maintained. The only information we need concerns the
progress of the threads: we track each thread’s dynamic program
counter, response counter and RdExTrans counter as well as the
global read-shared counter.

Replaying a thread’s execution involves reading back the thread’s
request and response logs to ensure that its progress lines up cor-
rectly with other threads’ progress. As a thread executes, it checks
its dynamic program counter and performs an action whenever an
entry from its logs matches the program counter.

Consider the behavior of a particular thread, A. An entry in A’s
response log where it changed its response counter indicates that
A responded to a communication request from another thread. A
merely executes a memory fence and updates its response counter
as specified. The fence ensures that any thread reading A’s response
counter can use it as an accurate gauge of A’s progress. A similarly
updates its value of RdExTransA as specified by the response log.

An entry in A’s request log indicates that A is about to access
an object and needs to coordinate with one or more other threads.
If the log entry contains the ID of a second thread, B, and the
value of B’s request counter, A pauses until B’s response counter
matches or exceeds the specified value. A then executes a fence and
proceeds, correctly performing its access after B performed its prior
conflicting access. If the entry specifies that gRdShCount should
be changed (because, at this point during recording, A moved an
object from RdEx to RdSh), A waits until gRdShCount reaches the
appropriate prior value (indicating that all prior RdSh changes have
occurred), then atomically updates gRdShCount before proceeding
with its read. Finally, if the entry is simply a value of gRdShCount
(because of a fenced read to a RdSh object during recording), A
waits until gRdShCount reaches or exceeds the specified value,
issues a fence, and continues.

While the specific manipulations performed by the threads’
processing their request logs seem complicated, we note that their
entire purpose is to ensure that a happens-before relationship is es-
tablished between one thread’s access to an object and any later
thread’s dependent access to that same object. Moreover, this
happens-before relationship enforces exactly the same order of
conflicting accesses as occurred in the original recorded execution,
providing deterministic replay.

Because replay performs essentially the same operations as
record, the primary overhead of replay is threads’ waiting at com-
munication points. Hence, we expect replay to have similar perfor-
mance and scalability as record.

3.4 Soundness of Record & Replay
ROCTET’s correctness relies on the observation that value deter-
minism (all reads performed by a replayed program produce the
same results as the original recorded program) is achieved if all
dependences in the recorded run are mimicked in the replayed run.

To preserve all dependences between a recorded execution and
its replay, it suffices to preserve only cross-thread dependences.
Other dependences, which occur entirely on a single thread, will



be enforced by the reordering restrictions of the compiler and
hardware. As before, we assume without loss of generality that
there is a single shared object obj, and all cross-thread dependences
arise through accesses to obj.

We have already shown that OCTET creates happens-before
relationships between all cross-thread dependences in the recorded
run (Lemma 1). We now show that the information ROCTET logs
during a recorded run is sufficient to allow the replayed run to
deterministically replay the recorded execution.

Theorem 1. Given logs recorded during an execution, ROCTET is
able to deterministically replay that execution.

Proof. We proceed by showing that every cross-thread dependence
in the recorded run (hereafter referred to as rec) is respected by
the replayed run (referred to as rep). We need only account for
cross-thread dependences that are not transitively implied by other
dependences. We consider each type of dependence in turn.

wA → wB In rec, this write dependence is captured by OCTET as a
transition from WrExA to WrExB, with B as the requesting thread
and A as the responding thread. A’s response log notes the
recorded value of its response counter, rca, with a precise count
of how many responses A had made prior to this point, as well
as its dynamic program location, while B’s request log notes the
expected value of A’s response counter, rcb, with rcb > rca. As
A runs rep, it maintains a response counter, rc. When A reaches
the dynamic program point where the communication occurred,
rc = rca. It then increments rc by the number of responses it
made at this point, so rc ≥ rcb. When B reaches the point
where it made the request, it compares rcb to rc. If rc ≥ rcb,
B can be sure that A has already performed its write, and hence
B’s write will happen later, preserving the dependence.

rA → wB In rec, prior to performing wB , B will find obj in either
state RdExA or RdSh. In either case, OCTET initiates roundtrip
communication between A and B. This scenario is therefore
analogous to that of the previous case, and wB will occur after
rA in rep, preserving the dependence.

wA → rB There are three possible types of OCTET state tran-
sitions in rec that might arise due to this dependence. (i)
WrExA → RdExB requires roundtrip communication, and
would be enforced as in the previous cases. (ii) If WrExA →
RdExC → RdSh, B reads obj after some third thread put it
into RdExC. In this case, replay uses a similar mechanism as
above to ensure that C has moved past the point where it put
obj into RdExC, but using the RdExTransC counter instead of the
response counter. (iii) rB could happen when obj was already
in RdSh state. In this case, we note that updates to gRdShCount
are replayed at the correct times, and that B would record, in its
request log, what the value of gRdShCount was before it per-
formed rB in rec. Before performing rB in rep, B ensures that
gRdShCount has at least the recorded value. This ensures that
all RdEx → RdSh transitions that happened before rB in rec
have happened in rep, again preserving the dependence.

All other dependences in the program are transitively implied
by some combination of these cross-thread dependences and intra-
thread dependences, which are maintained by the reordering rules
of the compiler and hardware. Hence, all dependences in rec are
preserved in rep, providing value determinism.

4. Implementation
We have implemented OCTET and ROCTET in Jikes RVM, a high-
performance Java-in-Java virtual machine [2, 3].2

2 http://www.jikesrvm.org

4.1 OCTET instrumentation and metadata
Adding OCTET’s instrumentation. Jikes RVM uses two dy-
namic compilers to transform bytecode into native code. The base-
line compiler compiles each method when it first executes, con-
verting bytecode directly to native code. The optimizing compiler
recompiles hot (frequently executed) methods at increasing levels
of optimization [5]. We modify both compilers in order to add in-
strumentation (cf. Figure 2) at every operation that reads or writes
an object field, array element, or static field.

The implementation adds instrumentation to application meth-
ods and Java library methods (e.g., java.*). A significant fraction
of OCTET’s overhead comes from instrumentation in the libraries,
which must be instrumented in order to properly replay conflicting
dependences that occur within them.

OCTET metadata. In order to store OCTET state, the implemen-
tation adds one metadata word per (scalar or array) object by adding
a word to the header, and one word per static field by inserting an
extra word per field into the global table of statics. The implementa-
tion represents WrExT and RdExT by storing the address of a thread
object T, using one low bit to distinguish WrExT from RdExT. Jikes
RVM reserves a register that always holds the current thread ob-
ject, so checking whether a state is WrEx or RdEx is extremely
fast. To represent RdSh, the implementation simply uses the ob-
ject’s RdSh counter, using a number range that cannot overlap with
thread addresses. To check whether a state is RdSh and the thread’s
.rdShCount counter is up-to-date with the object’s RdSh counter,
the instrumentation compares the metadata word with .rdShCount.

The implementation initializes the OCTET state of newly allo-
cated objects and newly resolved static fields to the WrExT state,
where T is the allocating/resolving thread. Since the Java Memory
Model does not provide a happens-before edge between object al-
location and another thread’s use of the object [30], OCTET instru-
mentation might see an uninitialized metadata word (guaranteed to
be zero), which will trigger the instrumentation slow path, which
will wait for the value to become initialized.

Optimization potential. OCTET adds instrumentation at nearly
every access, except those to objects and fields that Jikes RVM’s
escape analysis determines are thread local and thus cannot be in-
volved in a conflicting access. While this simple optimization has
a modest effect on performance (improving it by 5% on average),
more advanced escape analyses could be more aggressive at ex-
cluding accesses from instrumentation. Furthermore, if the code
accesses the same object or static field twice without an interven-
ing safe point, the compiler could elide instrumentation from the
second access, as it cannot trigger a conflicting access.

To some extent, OCTET obviates the need for static optimiza-
tions to identify accesses that cannot conflict, because it adds such
low overhead at non-conflicting accesses. Nonetheless, such opti-
mizations would help lower OCTET’s basic instrumentation over-
head (cf. the Octet w/o comm bar in Figure 5.2).

4.2 OCTET conflicting transitions
Receiving requests at safe points. Threads respond to requests
only when they reach safe points, which must not be between
the state check and use for an access (Section 2.2.1). Safe points
include yield and block points. Yield points are already inserted
into program code by most or all managed-language VMs. Each
yield point checks a thread-local flag indicating whether the thread
should stop, e.g., for garbage collection (GC) and profiling. When a
requesting thread increments a responding thread’s request counter,
the requesting thread also sets the responding thread’s yield point
flag.

Block points occur when a thread enters VM code and might
block for a while (e.g., waiting to acquire a monitor or waiting



for other threads to join a GC), or when a thread is waiting in
OCTET for a communication response as part of a conflicting state
change. We have identified block points in Jikes RVM and modified
these points so they (atomically) set a thread-local “block” flag
while the thread is blocked. If a requesting thread T2 observes
(atomically) a responding thread T1 at a block point, then T1 has
implicitly responded, and T2 can proceed immediately to change
the object’s state. Avoiding explicit communication with threads
at block points is especially useful when threads outnumber cores,
since unscheduled threads are often at block points.

Waiting for responses. Unless a requesting thread finds its com-
municating partner in the blocked state (and can observe an implicit
response, as described above), the requesting thread must wait for
the responding thread to respond. As most responses occur quickly,
but some take much longer, the requesting thread first uses spin-
waiting, then switches to thread yielding, and finally waits on a
pthread monitor. A responding thread always broadcasts on the re-
questing thread’s monitor, in case the requesting thread is waiting.

4.3 Implementing ROCTET

This section describes our implementation of ROCTET for pro-
viding high-performance record and replay. Note that due to the
difficulty of controlling various sources of nondeterminism, we
do not demonstrate replay of the high-performance execution (in-
stead, Section 5.3 demonstrates record and replay in a more con-
trolled environment). Here we describe changes specific to high-
performance recording, which also apply to high-performance re-
play (though we do not evaluate the latter).

Our ROCTET implementation makes two main changes on top
of OCTET. First, it tracks the dynamic program location by incre-
menting a thread-local counter at every yield point (method entries
and loop back edges). Second, the implementation records and re-
plays events needed to enforce the same happens-before relation-
ship in both exections. It records conflicting transition requests and
responses, as well as RdEx→RdSh transitions and RdSh→RdSh
transitions that need fences, in request and response logs, as de-
scribed in Section 3. Each log entry includes the value of dynamic
program location counter, as well as information specific to the type
of event being recorded.

During replay, the compiler removes most synchronization op-
erations, as their effects are provided by replay’s behavior. The
compiler removes lock acquires and releases (corresponding to Java
synchronized blocks) from application and library methods. When
the program executes a wait or notify operation without holding the
corresponding lock, it ignores the operation. Fork–join synchro-
nization is preserved.

5. Evaluation
Experimental setup. To account for run-to-run variability due to
dynamic optimization guided by timer-based sampling, we execute
15 trials for each performance result and take the median. We build
a high-performance configuration of Jikes RVM (FastAdaptive) that
optimizes the VM and adaptively optimizes the application as it
runs. We use Jikes RVM’s high-performance generational Immix
collector [11] and let the VM choose its own heap size adaptively.

Benchmarks. In our experiments, our modified Jikes RVM ex-
ecutes the parallel DaCapo Benchmarks [10] (version 2006-MR2)
and a fixed-workload version of SPEC JBB2000 called pseudo-
jbb [45]. We omit the parallel DaCapo benchmark lusearch because
we could not get it to execute correctly with our changes.

Platform. Our experiments execute on a 4-core Intel i5 3.2-GHz
system with 4 GB main memory running 64-bit Linux 2.6.32.
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Figure 5. Performance of OCTET and ROCTET.

5.1 OCTET state transitions
Table 1 shows the number of transitions recorded. We use a pro-
filing configuration of OCTET that adds instrumentation to count
these transitions. The three groups of columns show increasing lev-
els of synchronization that correspond with the transitions shown in
Figure 1. Alloc or same state transitions (dotted lines in Figure 1)
use no synchronization. Upgrading or fence transitions (dashed
lines in the figure) require a compare-and-swap or a fence oper-
ation. Conflicting transitions (solid lines in the figure) require the
request-response protocol.

As seen in the table, the vast majority of accesses do not re-
quire synchronization. Lightweight fast-path instrumentation han-
dles these transitions (Section 2). Upgrading and fence and Con-
flicting transitions occur in similar numbers; the conflicting tran-
sitions are more of a concern because we expect them to be sig-
nificantly more expensive. Conflicting transitions range from fewer
than 0.001% (eclipse) to 0.15% (xalan) of all transitions. These re-
sults provide evidence in support of OCTET’s optimistic approach.

5.2 Performance
Time overhead. Figure 5.2 presents the runtime overhead of
OCTET and ROCTET. The overheads are normalized to unmod-
ified Jikes RVM. Each bar represents the overhead of ROCTET,
with sub-bars representing subsets of functionality. Metadata only
presents the runtime overhead of adding a word to each object’s
header (and static field) and initializing it to WrEx upon allocation,
and is less than 1% on average.

The configuration No comm adds OCTET barriers, but does
not perform the conflicting transition protocol, measuring only
OCTET’s instrumentation overhead. (We still allow state transitions
to occur in this configuration; disabling them actually slows exe-
cution, as many fast-path checks fail since objects are often in a
conflicting state.) OCTET’s instrumentation adds 22% overhead on
average, and almost 40% to xalan, which has a high density of reads
and writes. While this overhead is likely acceptable for many pro-
duction environments, there is significant potential for improving it
with known compiler optimmizations (Section 4.1).

Comm w/o wait performs the conflicting transition protocol, ex-
cept requesting threads do not actually wait to receive responses
before continuing execution, and adds 2% average overhead. When
requesting threads correctly wait for responses (the Octet config-
uration), overhead increases by an additional 4% on average. Un-
surprisingly, xalan, which experiences an above-average fraction of
conflicting transitions (Table 1) adds more communication over-
head than average; and eclipse, which experiences relatively few
conflicting transitions, adds less. Overall OCTET overhead is 28%
on average.



Alloc or same state Upgrading or fence Conflicting
Alloc WrEx RdEx RdSh RdEx→WrEx RdEx→RdSh RdSh WrEx→WrEx WrEx→RdEx RdEx→WrEx RdSh→WrEx

eclipse 14,935,465,758 (99.9985%) 93,553 (0.00063%) 126,917 (0.00085%)
2.2% 87% 2.9% 8.0% 0.000090% 0.00034% 0.00019% 0.000017% 0.00073% 0.000014% 0.000092%

hsqldb 719,986,050 (99.85%) 486,305 (0.067%) 588,114 (0.082%)
3.5% 91.2% 0.41% 4.8% 0.033% 0.015% 0.020% 0.020% 0.054% 0.00053% 0.0070%

xalan 9,661,511,012 (99.74%) 9,884,204 (0.10%) 14,937,309 (0.15%)
1.3% 83% 0.27% 15% 0.10% 0.000029% 0.000070% 0.052% 0.10% 0.0000071% 0.0000067%

pseudojbb 1,846,344,850 (99.90%) 938,914 (0.051%) 936,637 (0.051%)
3.5% 81% 1.6% 14% 0.043% 0.0050% 0.0029% 0.00050% 0.050% 0.0000024% 0.00029%

Table 1. OCTET object and field state transitions, including fast-path executions that do not change the state. The first row for each benchmark
is the transitions for each column group and percentage of all transitions, and the second row shows transitions of each type as a percentage
of all transitions. We round percentages x as much as possible such that x and 100%− x each have at least two significant digits.

Threads Sum of log sizes
Total Max live Requesting Responding

eclipse 16 8 4 MB <1 MB
hsqldb 402 102 19 MB 3 MB
xalan 9 9 204 MB 92 MB
pseudojbb 37 9 14 MB 2 MB

Table 2. The total number of threads executed by each program
and the maximum number that are running at any time (Columns
2 and 3). The sum across threads of the ROCTET requesting and
responding log sizes (Columns 4 and 5).

The Roctet (record) configuration adds instrumentation to
record program execution as described in Section 4.3. On aver-
age, Roctet (record) adds 7% time over Octet—35% over program
execution. Much of ROCTET’s overhead, especially for xalan, is
due to the file I/O involved. ROCTET currently uses synchronous
I/O to maintain the logs, but a more sophisticated, asynchronous
solution could perform significantly better.

Table 2 shows the number of application threads that each pro-
gram executes: the total number of threads executed (Column 1)
and the maximum number of threads that are running at any time
(Column 2). It also reports the total size of all threads’ logs for con-
flicting transition requests and RdSh-related transitions (Columns
3) and responses to conflicting transition requests (Column 4). Log
size is well correlated with number of conflicting transitions and
RdSh-related transitions that create a log entry. We note that our
log entries are not optimally compact, e.g., each entry could save
bits by storing deltas from the last entry’s values, instead of storing
full values.

We note that our prototype implementation cannot currently
replay these recorded executions faithfully, as explained next.

5.3 Testing Record & Replay
ROCTET records enough information about threads’ accesses to
shared memory to control the nondeterminism that arises through
cross-thread dependences. Unfortunately, cross-thread dependences
are not the only source of nondeterminism in a program’s exe-
cution. Jikes RVM has many difficult-to-control sources of non-
determinism, such as timer-based sampling and synchronization
via low-level atomic operations (e.g., compare-and-swap). Paral-
lel garbage collection (GC) threads trace and nondeterministically
reorganize the heap. Different heap layouts lead to different appli-
cation behavior (e.g., different Object.hashcode() values affect the
iteration order of data structures such as HashMap). Other sources
of nondeterminism include I/O in the VM and libraries, and, most
perniciously, timer-based sampling that leads to different JIT com-
pilation decisions.

Prior work has largely been able to address these challenges
for two main reasons. First, most prior work records and replays
native (C/C++) programs, instead of managed-language programs
running in a VM. Second, most work sidesteps the challenge of

recording all sources of multithreaded nondeterminism. For exam-
ple, Respec does not identify nondeterminism resulting from the
behavior of custom synchronization primitives, but instead relies
on checkpointing and rollback if custom synchronization results in
nondeterminism [28].

Methodology. Our implementation supports a “replayable” con-
figuration that aims to provide limited record and replay, despite
the myriad sources of nondeterminism. The changes made to the
replayable configuration can be split into two categories. Those
sources of nondeterminism we control (providing deterministic re-
play with respect to their effects) and those we ignore (allowing
nondeterministic replay with respect to their effects).

Because JIT compilation in Jikes RVM is nondeterministic,
our replayable configuration uses the baseline compiler. While this
means that overhead estimates of the replayable configuration are
not meaningful, we can still test ROCTET’s control of cross-thread
shared memory accesses. We limit nondeterminism due to garbage
collection by (i) using a single-threaded GC, and (ii) recording GC
points and performing GC at exactly those points during replay.
Nondeterminism through java.util.Random is eliminated by using a
fixed (rather than timer-based) seed.

We ignore nondeterminism arising from iteration over un-
ordered data structures such as java.util.HashMap, whose behavior
is dependent on heap layout, by not instrumenting those operations.
We similarly ignore nondeterminism arising from I/O operations
(while I/O could be recorded and replayed by a separate process,
we do not address that in this paper). Class loading also presents
difficulties, as the thread that loads a class is chosen nondetermin-
istically. While a thread performs class loading, a thread local flag
is set that precludes ROCTET from recording execution.

When nondeterministic code executes, it can perturb the value
of the dynamic program counter, making the counter useless during
replay. The replayable configuration thus uses per-site counters.
Each (static) site increments its own counter, so nondeterminism
at one site will not necessarily affect another site’s counter. The
implementation maintains a counter for every read and write. Each
recorded event includes its site and its (per-thread) per-site counter.

Results. Using the methodology described above, we have been
able to replay hsqldb and xalan successfully. We have not been able
to replay eclipse and pseudojbb, as we have not found all sources of
non-determinism to either control or ignore.

For hsqldb and xalan, we found that replay successfully executes
each program based on per-thread logs. Note that each request and
response must be replayed exactly. If requests and responses do
not match up, replay will throw an error, while if nondeterminism
occurs, the site counters may not be accurate and the program may
deadlock. Further, all tracked per-site counters had matching values
after both record and replay, indicating that the program executed
deterministically.



Nevertheless, without logging the value of every read performed
by hsqldb and xalan, we cannot be sure that replay is truly determin-
istic. We may have “gotten lucky,” and replay matched record even
while ROCTET mistakenly allowed nondeterminism.

To gain additional confidence that deterministic replay was use-
fully controlling the nondeterminism of thread accesses, we per-
formed two experiments. In the first, we execute replay but en-
able synchronization. We expect this to cause deadlocks: if a high
level race (e.g., a race in the order of lock acquisition) occurs, then
the “wrong” thread might acquire a lock first, preventing the right
thread from entering a critical section and responding to requests
for an object. Indeed, we find exactly this behavior: both programs
deadlock during replay with synchronization. This result suggests
that these programs have high-level nondeterminism that is sup-
pressed by ROCTET.

The second experiment checks whether the programs will exe-
cute correctly both without synchronization and without ROCTET’s
replay controlling the interleavings. If these programs cannot ex-
ecute correctly without synchronization, that indicates replay is
doing something useful by controlling the ordering of reads and
writes, since replayed execution without synchronization executes
correctly. We find that both programs fail when executed without
synchronization and without replay, suggesting that replay is at
least replaying reads and writes in an order that respects the pro-
gram’s mutual exclusion and high-level ordering requirements.

These experiments demonstrate our record and replay system
to a limited extent, and they provide some confidence in its claims
of record and replay. However, we have not presented a practical
system for record and replay. The main contribution of this paper is
a new approach for tracking conflicting accesses efficiently, which
we demonstrate can be applied to recording conflicting accesses, in
order to replay them later.

6. Related Work
6.1 Record and replay
Record and replay of multithreaded programs may support offline
or online replay, or both. Offline replay allows programmers to re-
produce production failures that may be difficult to reproduce oth-
erwise due to nondeterminism. Online replay allows multiple ma-
chines to execute the same interleavings at the same time, enabling
fault tolerance [13] and offloading of dynamic analysis [15, 28].

Record and replay for uniprocessors is relatively straightfor-
ward: It is sufficient to record context switches and nondeterminis-
tic system events such as I/O and reading the system clock. Record
and replay on multiprocessor systems is harder due to nondetermin-
istic interleavings between threads. These interleavings occur due
to (1) high-level races between synchronization variables (e.g., lock
acquires and releases, wait-notify, fork-join, Java volatile reads
and writes) and (2) data races between unsynchronized reads and
writes. Prior work that records all synchronization operations can
be efficient because synchronization operations are relatively infre-
quent, but this approach does not guarantee replay for racy execu-
tions [41]. Recording data races adds high overhead because every
read and write is a potential data race, and synchronized analysis is
needed to capture dependences correctly [27].

Recent solutions for multiprocessor record and replay do not
record conflicting dependences explicitly. Respec supports online
replay by recording synchronization operations and speculating
that most data races do not lead to external effects [28]. It rolls
back to a prior checkpoint on a misspeculation. It cannot provide of-
fline replay without additional support such as probabilistic search.
Other approaches offer probabilistic offline replay based on repro-
ducing executions from limited recorded information [4, 38, 50],

but do not support online replay, and are not guaranteed to repro-
duce an execution within a bounded number of attempts.

DoublePlay supports both online and offline replay using uni-
parallelism to execute overlapping serial program intervals using
hints from a parallel execution [46]. It records checkpoints in or-
der to roll back in the event of a misspeculation. DoublePlay needs
double the number of cores as the original program in order to pro-
vide low overhead. It is unclear whether this overhead, which is
15% for two worker threads and 28% for four threads, will scale
well with additional threads. Without extra cores, DoublePlay adds
100% overhead.

Hardware support. Custom hardware support can achieve low
overhead record and replay by piggybacking on the hardware cache
coherence protocol [21, 22, 31, 33, 39, 51]. However, manufactur-
ers have been slow to adopt such hardware support, which would
add complexity to already-complex coherence protocols, and pro-
grammers and users are not clamoring for such support. We believe
that manufacturers will add such hardware support if demand for
it grows. ROCTET has the potential to make software-based record
and replay fast enough for widespread use in production systems,
ultimately leading programmers and users to demand—and thus
probably get—even faster support in hardware.

Dunlap et al. achieve record and replay in commodity hardware
by using virtual memory page protection to trigger hardware traps
at potentially conflicting accesses [19]. Because this approach uses
page granularity, it adds high overhead due to false sharing on some
applications.

Static analysis. Static program analysis can identify reads and
writes that cannot be part of a data race [32, 49]. However, prior
work that applies static race detection to dynamic race detection
still add significant overhead because conservative static analysis
still identifies many accesses as potential races [14, 48].

Determinism. An alternative to record and replay is for the
runtime system to execute multithreaded programs deterministi-
cally [8, 9, 16–18, 34, 35]. Runtime determinism approaches face
similar performance challenges as record and replay. They either
do not handle racy programs [34, 35], add high overhead [8, 16],
handle only fork-join parallelism efficiently [9], or require custom
hardware [17, 18].

Languages such as Deterministic Parallel Java and Jade provide
determinism at the language level [12, 40], while Determinator pro-
vides programming model and operating system support to guaran-
tee determinism [6]. Programmers must rewrite their programs to
use these approaches.

6.2 Tracking ownership
Biased locking. Prior work proposes biased locking as an opti-
mistic mechanism for performing lock acquires without atomic op-
erations [23, 36, 42], now implemented in major commercial Java
virtual machines. Each lock is “biased” toward a particular thread
that can acquire the lock without synchronization; other threads
must communicate with the biasing thread before acquiring the
lock. In contrast, OCTET applies an optimistic approach to all pro-
gram accesses, not just locks. OCTET introduces WrEx, RdEx, and
RdSh states in order to support different sharing patterns efficiently.
OCTET’s conflicting transition protocol is lightweight compared to
biased locking’s communication mechanisms, which is important
since regular memory accesses occur more frequently than syn-
chronization operations.

Hindman and Grossman present an approach similar to biased
locking for tracking reads and writes in software transactional
memory [20]. Their approach is not as lightweight as OCTET’s,
so it would be difficult to apply to all reads and writes efficiently,



and it will not handle read-shared access patterns efficiently since
it does not introduce states as OCTET does.

Cache coherence. OCTET’s states correspond to cache coherence
protocol states; its conflicting state transitions correspond to remote
invalidations (Section 2.1). Thus, program behavior that leads to
expensive OCTET behavior already has poor behavior due to re-
mote cache misses.

Cache coherence has been implemented in software in dis-
tributed shared memory (DSM) systems to reduce coherence traf-
fic [7, 24, 25, 29, 43, 44]. Shasta and Blizzard-S both tag shared
memory blocks with coherence states, which instrumentation at
each access checks [43, 44]. A coherence miss triggers a software
coherence requests; processors periodically poll for such requests.

While each unit of shared memory can have different states
in different caches in cache coherence approaches, each unit of
shared memory has one state in OCTET. While cache coherence
provides data consistency, OCTET provides concurrency control for
dynamic analyses that check or enforce correctness properties, such
as record & replay.

Object tracking. Von Praun and Gross describe an approach for
detecting races in shared-memory programs based on tracking the
ownership of objects [47]. Their ownership system is used to dy-
namically identify shared objects, allowing their race detector to
restrict its attention to those shared objects. At a high level, their
approach tracks object states and ownership by threads in a manner
similar to OCTET. While ROCTET could, in principle, be built on
von Praun and Gross’s ownership model rather than OCTET, there
are some drawbacks. Their ownership model allows objects in an
exclusive state to avoid synchronization, but objects in a shared–
modified or shared–read state require synchronization on every ac-
cess; objects that enter shared states cannot return to an exclusive
state. In contrast, OCTET supports transitioning back to exclusive
states, and object accesses require synchronization only on state
changes. OCTET’s more precise tracking of ownership thus requires
less synchronization when used for record & replay.

7. Conclusion
Efficient, software-based record and replay is a useful tool in a de-
veloper’s toolkit. Unfortunately, most software record and replay
approaches incur high overheads due to the cost of accounting for
shared-memory interactions between threads. We presented a novel
dynamic analysis, OCTET, which tracks object states throughout
execution, and can detect cross-thread interactions at an overhead
proportional to the number of conflicting accesses, rather than all
accesses. We demonstrated the utility of OCTET by building a pro-
totype record-and-replay system, ROCTET, on top of it. On four
benchmarks, we found that ROCTET can record sufficient informa-
tion to deterministically replay execution with an average overhead
of 35%. This compares very favorably with the overheads of prior
general-purpose record and replay systems (the best of which has
overheads of 100%, albeit on a different set of benchmarks). We
also showed that ROCTET’s logs contain sufficient information to
successfully replay two applications in a controlled environment.
We have thus demonstrated that general, software-only, record can
be achieved at low overhead.
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