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Abstract – Monaural speech segregation has been a very challenging problem for decades. By

casting speech segregation as a binary classification problem, recent advances have been made

in computational auditory scene analysis on segregation of both voiced and unvoiced speech.

So far, only pitch and amplitude modulation spectrogram have been used as time-frequency

(T-F) unit level features in classification. In this paper, we expand T-F unit features to include

gammatone frequency cepstral coefficients (GFCC), mel-frequency cepstral coefficients, rela-

tive spectral transform (RASTA) and perceptual linear prediction (PLP). Our experiments in

matched and unmatched test conditions show that these newly included features significantly

improve speech segregation performance. Specifically, GFCC and RASTA-PLP are the best

single features in matched and unmatched test conditions, respectively. We also find that

pitch-based features are crucial for good generalization. To further explore complementarity
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in terms of discriminative power, we propose to use a group Lasso approach to combine dif-

ferent features in a principled way. The final combined feature yields very promising results

in both matched and unmatched test conditions.

Index Terms – Computational auditory scene analysis (CASA), monaural speech segregation,

binary classification, feature combination, group Lasso.
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1 Introduction

Speech segregation, also known as the cocktail party problem, refers to the problem of seg-

regating target speech from its background interference. Monaural speech segregation, which

is the task of speech segregation from monaural recordings, is important for many real-world

applications including robust speech and speaker recognition, audio information retrieval and

hearing aids design. However, despite decades of effort, monaural speech segregation still

remains one of the hardest problems in signal and speech processing. In this paper, we are

concerned with monaural speech segregation from non-speech interference.

Numerous algorithms have been developed to attack the monaural speech segregation prob-

lem. For example, spectral subtraction [4] and Weiner filtering [6] are two representative tech-

niques. However, assumptions regarding background interference are needed to make them

work reasonably well. Another line of research relies on source models, e.g., training models

for different speakers. Algorithms such as [16,24,25] can work well if the statistical properties

of the observations correspond well to training conditions. Generalization to different sources

usually needs model adaptation, which is a non-trivial issue.

Computational auditory scene analysis (CASA), which is inspired by Bregman’s account

of auditory scene analysis (ASA) [2], has shown considerable promise in the last decade.

The estimation of the ideal binary mask (IBM) is suggested as a primary goal of CASA

[31]. The IBM is a time-frequency (T-F) binary mask, constructed from premixed target

and interference. A mask value 1 for a T-F unit indicates that the signal-to-noise ratio

(SNR) within the unit exceeds a threshold (target-dominant), and 0 otherwise (interference-

dominant). In this work, we use a 0 dB threshold in all the experiments. A series of recent

experiments [1, 5, 20, 33] shows that IBM processing of sound mixtures yields large speech

intelligibility gains.

The estimation of the IBM may be viewed as binary classification of T-F units. To our

knowledge, the first attempt to formulate speech segregation as a binary classification problem

was made in the binaural domain [23]. Recent studies have applied this formulation in the

monaural domain and achieved good speech segregation results in both anechoic and rever-

berant environments [9, 12, 17, 19, 26]. In [12, 17], the pitch-based feature is used in training

a classifier to separate target and interference dominant units. However, the pitch-based fea-

ture cannot deal with unvoiced speech that lacks harmonic structure. In [9, 19], amplitude

modulation spectrogram (AMS) is used, which makes unvoiced speech segregation possible as

AMS is a characteristic of both voiced and unvoiced speech. Unfortunately, the generalization

ability of AMS is not good [9].

For classification, the use of an appropriate classifier is obviously important. The study

in [9] suggests that support vector machines (SVMs) are more powerful than Gaussian mixture

models (GMMs). Equally important is the choice of appropriate features. So far, only pitch

and AMS have been studied. On the other hand, in the speech and speaker recognition
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Figure 1: Schematic diagram of a classification-based speech segregation system. First, a sound mixture is fed
into a 64-channel gammatone filterbank to produce a cochleagram. Acoustic features for each T-F unit are
then extracted. SVM classifiers are trained for each channel, and their classification yields an estimate of the
IBM. After gating the cochleagram by the estimated mask, target speech is segregated.

community, many acoustic features have been explored, such as gammatone frequency cepstral

coefficients (GFCC), mel-frequency cepstral coefficients (MFCC), relative spectral transform

(RASTA) and perceptual linear prediction (PLP), each having its own advantages.

In this paper we explore the use of existing speech and speaker features, in order to enlarge

possible features for speech segregation. It is shown in speech recognition that complementar-

ity exists between basic acoustic features [8, 35]. Even if individual features do not perform

well, their combination may yield large performance boosts. In order to investigate comple-

mentary features in terms of discriminative power in a principled way, we propose to address

the corresponding group variable selection problem using a group least absolute shrinkage and

selection operator (Lasso) [34]. Group Lasso extends the widely used Lasso [30] to perform

feature selection at the group level.

This paper is organized as follows. We present an overview of the system along with the

methodology of extracting features at the T-F unit level in Section 2. Section 3 describes a

group Lasso approach to combining different features. Unit labeling results in matched and

unmatched test conditions are reported in Section 4. To simplify the system, a dimension

reduction method based on bandwidth analysis is presented in Section 5. We conclude this

paper in Section 6.

2 System overview and Feature Extraction

The architecture of our segregation system is shown in Fig. 1. A sound mixture with 16 kHz

sampling frequency is first fed into a 64-channel gammatone filterbank, with center frequencies

equally spaced from 50 Hz to 8000 Hz on the equivalent rectangular bandwidth rate scale.

The output in each channel is then divided into 20-ms frames with 10-ms overlapping between

consecutive frames. This procedure produces a time-frequency representation of the sound

mixture, called a cochleagram [32]. Our computational goal is to estimate the ideal binary

mask for the mixture. Since the energy distribution of speech signals in different channels can

be very different, we train a Gaussian-kernel SVM [9] with all parameters cross-validated for

each subband channel separately, and ground truth labels are provided by the IBM. Feature
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Figure 2: Illustration of deriving RASTA-PLP features for the T-F unit in channel 20 and at frame 50 (u20,50).
The mixture signal is bandpassed by a 64-channel gammatone filterbank. Then, the output in channel 20 is fed
into the conventional RASTA-PLP feature extractor, which in essence extracts RASTA-PLPs for the subband
signal. Finally, we take the values at frame 50 as the feature vector for u20,50.

extraction is performed at the T-F unit level in the way described below. After obtaining a

binary mask (i.e., estimated IBM) from trained SVM classifiers, the target speech is segregated

from the sound mixture in a resynthesis step [32]. Note that we do not perform auditory

segmentation, which is usually done for better segregation [9, 17], as we want to directly

compare the unit labeling performance of each feature.

Acoustic features are usually derived at the frame level. But since a binary decision needs

to be made for each T-F unit, we need to find an appropriate representation for each T-F

unit (recall that each T-F unit contains a slice of a subband signal). This can be done in a

straightforward way as follows. To get acoustic features for the T-F unit uc,m in channel c and

at frame m, we take the filtered output xc(t) in channel c. Treating xc(t) as the input, con-

ventional frame-level acoustic feature extraction is carried out and the feature vector at frame

m is taken as the feature representation for uc,m. For features derived in a frame-by-frame

manner (such as MFCC and PLP), this procedure is equivalent to a spectral/cepstral analysis

solely based on the slice of the subband signal contained in each T-F unit; i.e., it is equiv-

alent to windowing (with overlapping) the subband signal, and performing spectral/cepstral

analysis afterwards. But our procedure also enables us to derive T-F unit features involving

neighboring frames, as done in RASTA filtering, in a convenient way. Note that the described

procedure is certainly not the only way to derive unit level features, and obviously the fea-

tures derived in this way contain redundant information. Nevertheless, this simple procedure

is effective in our experiments and we also present a method to reduce the dimensionality for

unit features based on bandwidth analysis in Section 5. Fig. 2 illustrates how to derive a 12th

order RASTA-PLP feature (including zeroth cepstral coefficient) for the T-F unit in channel
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20 and at frame 50.

In the following, we describe the features used in our experiments. These features charac-

terize different aspects of the speech signal. We make use of the RASTAMAT toolbox [7] for

extracting MFCC, PLP, and RASTA-PLP features.

2.1 Pitch-based Feature

Pitch is a primary cue for ASA. In our experiments, we use a set of pitch-based features

originally proposed in [12], and its effectiveness has been confirmed in both anechoic and

reverberant environments with additive noise [14, 17]. To get pitch-based features for uc,m,

we first calculate the normalized autocorrelation function at each time lag τ , denoted by

A(c,m, τ):

A(c,m, τ)

=

∑

n xc(mTm − nTn)xc(mTm − nTn − τTn)
√
∑

n x
2
c(mTm − nTn)

√
∑

n x
2
c(mTm − nTn − τTn)

(1)

where Tm = 10 ms is the frame shift and Tn is the sampling period. The summation is over

a 20-ms frame. If the signal in uc,m is voiced and dominated by the target speech, it should

have a period close to the pitch period at frame m. That is, given the pitch period of the

target speech τm at frame m, A(c,m, τm) measures how well the signal in uc,m is consistent

with the target speech.

The second and third features involve the average instantaneous frequency f̄(c,m) derived

from the zero-crossing rate of A(c,m, τ). If the signal in uc,m belongs to target speech, the

product of f̄(c,m) and τm gives a harmonic number. Hence, we set the second feature to

be the nearest integer of f̄(c,m)τm and the third feature to be the difference between the

actual value of the product and its nearest integer. These two features have complementary

information to the first feature A(c,m, τm) [14].

The next three features are the same as the first three except that they are extracted from

the envelopes of filter responses. The resulting six-dimensional feature is:

xc,m =

























A(c,m, τm)

[f̄(c,m)τm]

|f̄(c,m)τm − [f̄(c,m)τm]|

AE(c,m, τm)

[f̄E(c,m)τm]

|f̄E(c,m)τm − [f̄E(c,m)τm]|

























(2)

where [·] denotes the round operation, and subscript E indicates envelope.
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2.2 Amplitude Modulation Spectrogram

AMS features have been applied to speech segregation problems recently [19]. To extract AMS

features, we extract the envelope of the mixture signal and decimate it by a factor of 4. The

decimated envelope is Hanning windowed and zero-padded for a 256-point FFT. The resulted

FFT magnitudes are integrated by 15 triangular windows, producing a 15-dimensional AMS

feature.

2.3 Gammaotone Frequency Cepstral Coefficient

GFCCs are shown to be effective for robust speaker identification [28]. To get GFCC features,

a signal is decomposed by a 64-channel gammatone filterbank first. Then, we decimate a

filter response to an effective sampling rate of 100 Hz, resulting in a 10-ms frame shift. The

magnitudes of the decimated filter outputs are then loudness-compressed by a cubic root

operation. Finally, discrete cosine transform (DCT) is applied to the compressed signal to

yield GFCC.

2.4 Mel-Frequency Cepstral Coefficient

We follow the standard procedure to get MFCC. The signal is first preemphasized, followed

by a 512-point short-time Fourier transform with a 20-ms Hamming window to get its power

spectrogram. The power spectra are then warped to the mel scale followed by a log operation

and DCT. Note that we warp the magnitudes to a 64-channel mel scale, for a fair comparison

with GFCCs in which a 64-channel gammatone filterbank is used for subband analysis.

2.5 Perceptual Linear Prediction

PLP [10] is a popular feature in speech recognition, and it is designed to find smooth spectra

consisting of resonant peaks. To derive PLPs, we first warp the power spectrum to a 20-channel

Bark scale using trapezoidal filters. Then, equal loudness preemphasis is applied, followed by

applying an intensity loudness law. Finally, cepstral coefficients from linear predictions form

the PLP feature.

2.6 Relative Spectral Transform-PLP

RASTA filtering [11] is often coupled with PLP for robust speech recognition. In our exper-

iments, we use a log-RASTA filtering approach. After the power spectrum is warped to the

Bark scale, we log-compress the resulted auditory spectrum, filter it by the RASTA filer (single

pole at 0.94), and expand it again by an exponential function. Subsequently, PLP analysis is

taken on this filtered spectrum. In essence, RASTA filtering serves as a modulation-frequency

bandpass filter, which emphasizes the modulation frequency range most relevant to speech

while discarding lower or higher modulation frequencies.
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3 Feature combination: a group Lasso approach

Different acoustic features characterize different properties of the speech signal. As observed

in speech recognition, feature combination may lead to significant performance improve-

ment [8, 35]. Here, feature combination is usually done in three ways. The simplest method

is to directly try different combinations. The exponential number of possibilities renders this

method unrealistic when the number of features is large. The second way is to perform unsu-

pervised feature transformation such as kernel-PCA [29] on the concatenated feature vector.

The third way is to apply supervised feature transformation such as linear discriminant anal-

ysis [8] to the concatenated feature vector. However, an issue with feature transformation

relates to complementarity; i.e., it is unclear which features are complementary after trans-

formation.

Our goal is to find a principled way to select a set of complementary features, and such

complementarity should be related to the discrimination of target-dominance and interference-

dominance. This problem can be cast as a group variable selection problem, which is to find

important groups of explanatory factors for prediction in the regression framework. Group

Lasso [34], a generalization of the widely used Lasso operator [30], is designed to tackle this

problem by incorporating a mixed-norm regularization over regression coefficients. Since our

labels are binary, we use the logistic regression extension of group Lasso [22], which can be

efficiently solved by block coordinate gradient descent. The estimator is

β̂λ =argmin
β

∑

i

log
(

1 + exp(−yi(β
Txi + a))

)

+ λ

G
∑

g=1

‖β
Ig
‖2 (3)

where xi is the ith training sample, yi is the ground truth label scaled to {−1, 1}, and a is a

parameter (intercept). ‖·‖2 refers to the ℓ2 norm. β consists of G predefined non-overlapping

groups and Ig is the index set of the gth group. The first term in the minimization is a standard

log loss that concerns discrimination. The second term is an ℓ1/ℓ2 mixed-norm regularization,

which imposes an ℓ1 regularization between groups and an ℓ2 regularization within each group.

It is well known that the ℓ1 norm induces sparsity, therefore the ℓ1/ℓ2 regularization results

in group sparsity hence group level feature selection. Regularization parameter λ controls the

level of sparsity of the resulting model. In practice, we usually calculate λmax first, above

which β̂λ is all zero. We then use γ · λmax with γ ∈ [0, 1] as λ in Equation (3) for the ease of

choosing appropriate parameter values. In our experiments, we make use of the SLEP sparse

learning package [21] for efficient optimization.

To do feature combination using group Lasso, all the features are concatenated together

to form a long feature vector, and each feature is defined as a group. Then, for a fixed γ
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(hence λ), we solve Equation (3) to get β̂λ. Since group sparsity is induced, β̂
Ig

shall be

zeros (or small numbers) for some groups g, meaning that these groups (features) contribute

little to discrimination in the presence of the other groups. Groups having large regression

coefficients shall be included in the complementary feature set. To achieve a good trade-off

between discrimination power and model complexity which is the number of groups selected,

we cross-validate γ from 0.1 to 0.9 with the step size of 0.1. It should be noted that the

above procedure is carried out at each channel separately. That is, we solve Equation (3) for

each γ using training samples from each channel. A subband SVM classifier is then trained

on the resulting combined feature for cross-validation, yielding 64 × 9 = 576 cross-validation

accuracies, which are then averaged across channels. We empirically determine the final

combination by leveraging the averaged cross-validation accuracies with the corresponding

model complexity. For an illustration, see Fig. 5 in Section 4.5.

4 Evaluation Results

4.1 Experimental Setup

We use the IEEE corpus [15] for all of our evaluations. All utterances are downsampled to 16

kHz. For training, we mix 50 utterances recorded by a female talker with three types of noise

at 0 dB. The three noises are: N1 – bird chirps with water flowing, N2 – crow noise, and N3 –

cocktail party noise [12]. We choose 10 new utterances from the IEEE corpus for testing. Two

test conditions are employed. In condition one, we mix the test utterances with the trained

noises (i.e., N1-N3) in order to test the performance on unseen utterances. In condition two,

the test utterances are mixed with three unseen noises: N4 – crowd noise at a playground,

N5 – traffic noise, and N6 – electric fan noise. Unless stated otherwise, the test mixtures are

mixed at 0 dB.

As mentioned in Section 2, the dimensionality of the pitch-based feature and AMS feature

is 6 and 15, respectively. We use a 31-D GFCC feature as suggested in [27]. Following common

practice in speech recognition, we use a 12th order linear prediction model, yielding 13-D (in-

cluding zeroth cepstral coefficient) PLP and RASTA-PLP features. Initially, we take the first

13 DCT coefficients to form a 13-D MFCC feature, as usually done in speech recognition. To

include more harmonic structure in the representation, we also increase the MFCC dimension

to 31. For comparison, we also use a 13-D GFCC feature, and we denote MFCC/GFCC with

two dimensionalities as MFCC13/GFCC13 and MFCC31/GFCC31. For the pitch-based fea-

ture, classifiers are trained on ground truth pitch extracted from clean speech by PRAAT [3],

but tested on pitch estimated by a recently proposed multipitch tracker [18]. We use PITCH

to denote the pitch-based feature.

To put the performance of our classification-based segregation in perspective, we include

results from a recent CASA system, the tandem algorithm [14], which jointly performs voiced

9
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Table 1: HIT−FA rates for single features in condition one. Boldface indicates best rate

Feature
Overall Voiced Unvoiced

HIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA
AMS 70% 7% 63% 76% 8% 68% 47% 5% 42%
PLP 79% 8% 71% 82% 9% 73% 65% 6% 59%

RASTA-PLP 73% 7% 66% 77% 9% 68% 56% 5% 51%
GFCC13 84% 6% 78% 87% 8% 79% 74% 4% 70%
MFCC13 79% 9% 70% 82% 11% 71% 69% 7% 62%
GFCC31 86% 6% 80% 89% 7% 82% 76% 4% 72%
MFCC31 83% 7% 76% 86% 8% 78% 70% 5% 65%
PITCH N/A N/A N/A 76% 16% 60% N/A N/A N/A

TANDEM N/A N/A N/A 74% 4% 70% N/A N/A N/A

Table 2: HIT−FA rates for single features in condition two

Feature
Overall Voiced Unvoiced

HIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA
AMS 59% 23% 36% 64% 22% 42% 41% 25% 16%
PLP 70% 28% 42% 72% 27% 45% 62% 29% 32%

RASTA-PLP 68% 12% 56% 70% 13% 57% 58% 10% 48%
GFCC13 68% 31% 37% 68% 30% 38% 70% 31% 39%
MFCC13 70% 33% 37% 71% 33% 38% 67% 34% 33%
GFCC31 74% 30% 44% 74% 29% 45% 74% 32% 42%
MFCC31 74% 28% 46% 75% 28% 47% 68% 28% 40%
PITCH N/A N/A N/A 76% 20% 56% N/A N/A N/A

TANDEM N/A N/A N/A 67% 4% 63% N/A N/A N/A

speech segregation and pitch estimation in an iterative fashion. The tandem algorithm is

initialized by the same estimated pitch. We use ideal sequential grouping for the tandem

algorithm as it does not address the problem of grouping pitch contours and their associated

binary masks across time. So these results represent the ceiling performance of the tandem

algorithm.

The evaluation criterion used throughout the experiments is the hit minus false alarm rate

(HIT−FA). The HIT rate is the percent of correctly classified target-dominant T-F units in the

IBM. The FA rate is the percent of wrongly classified interference-dominant T-F units in the

IBM. HIT−FA has been shown to be highly correlated with human speech intelligibility [19,

20].

4.2 Single Features

In terms of HIT−FA, we document unit labeling performance at three levels: voiced speech

intervals (pitched frames), unvoiced speech intervals (unpitched frames), and overall. Voiced

and unvoiced speech intervals are determined by ground truth pitch. Table 1 gives the results

in test condition one. In this condition, all features are able to maintain a low FA rate. The

performance differences mainly stem from the HIT rate. Clearly, AMS does not perform well

compared with the other features as it fails to label a lot of target-dominant units. In contrast,

10
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Figure 3: Binary masks for a test utterance mixed with the cocktail party noise at 0 dB. Top panel shows the
IBM. Middle and bottom panel show the estimated IBMs obtained by using GFCC31 and AMS, respectively.

GFCC31 manages to achieve high HIT rates, with 80% overall HIT−FA, which is significantly

better than other single features. Unvoiced speech is important to speech intelligibility, and

its segregation is a difficult task due to the lack of harmonicity and weak energy [13]. Again,

AMS performs the worst whereas GFCCs do a very good job at segregating unvoiced speech.

With the same dimensionality, GFCC outperforms MFCC. The good performance of GFCC

is probably due to its effectiveness as a speaker feature [28]. It is interesting to note that

increasing the dimensionality of MFCC from 13 to 31 significantly improves its performance in

speech segregation, which indicates that keeping more harmonic structure in the representation

is helpful. An encouraging observation in the matched-interference test condition is that some

general features such as GFCC31 significantly outperform PITCH even in voiced intervals.

This remains true even when ground truth pitch is used in (2), which achieves 72% HIT−FA

in voiced intervals. Similarly, the tandem algorithm, which includes auditory segmentation,

is not competitive. Note that the HIT−FA rates with GFCC31 significantly exceed those

reported in [19] which uses GMM classifiers on AMS features. Fig. 3 illustrates the binary
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Figure 4: ROC curves for overall classification obtained by single features in condition one and two.

masks obtained by using GFCC31 and AMS for a test utterance mixed with the cocktail

party noise. For systematic comparison, the receiver operating characteristic (ROC) curves

for overall classification obtained by using the single features are shown in Fig. 4(a). The

ROC curves are generated from the SVM decision values.

Unlike test condition one, the unseen broadband noises are more demanding for general-

ization. The HIT−FA results in this condition are listed in Table 2. We can see that both

HIT rate and FA rate are affected, and the main degradation comes from substantially in-

creased FA rates. Contrary to the other features, PITCH is the least affected feature with

only 4% reduction in HIT−FA. Using ground truth pitch it is able to achieve 68% HIT−FA

in voiced intervals. As the pitch-based feature reflects intrinsic properties of speech, we do

not expect that the change of interference will dramatically change pitch characteristics in

target-dominant T-F units. Similarly, the tandem algorithm obtains a fairly low FA rate and

achieves the best HIT-FA result in voiced intervals in this condition. It is interesting to see

that RASTA-PLP becomes the best performing feature in condition two. As shown in [11],

RASTA-PLP effectively acts as a modulation-frequency filter, which retains slow modulations

corresponding to speech. The ROC curves for overall classification in test condition two are

shown in Fig. 4(b).

Given their superior performance, in the following we only include 31-D results for MFCC

and GFCC features.

4.3 Combining with Pitch-based Feature

Considering the excellent performance of some features in the matched-interference condition

and the robustness of the pitch-based feature in the unmatched-interference condition, it seems

12
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Table 3: HIT−FA results for pairwise combination of single features and pitch-based feature in test condition
one

Feature
Overall Voiced Unvoiced

HIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA
AMS+PITCH 73% 12% 61% 81% 10% 71% 41% 14% 27%
PLP+PITCH 78% 10% 68% 84% 9% 75% 58% 12% 46%

RASTA-PLP+PITCH 76% 10% 66% 83% 9% 74% 47% 11% 36%
GFCC31+PITCH 83% 9% 74% 88% 8% 80% 65% 11% 54%
MFCC31+PITCH 80% 10% 70% 85% 8% 77% 62% 12% 50%

Table 4: HIT−FA results for pairwise combination of single features and pitch-based feature in test condition
two

Feature
Overall Voiced Unvoiced

HIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA
AMS+PITCH 65% 12% 53% 73% 12% 61% 29% 11% 18%
PLP+PITCH 71% 12% 59% 76% 13% 63% 50% 9% 41%

RASTA-PLP+PITCH 72% 10% 62% 77% 12% 65% 50% 7% 43%
GFCC31+PITCH 75% 20% 55% 79% 19% 60% 62% 23% 39%
MFCC31+PITCH 73% 13% 60% 77% 13% 64% 55% 11% 44%

sensible to combine the single features with the pitch-based feature. Table 3 lists the HIT−FA

results for pairwise combinations in test condition one. Due to pitch estimation errors, the

combination does not improve the performance in this test condition. However, we find that

the combination using the ground truth pitch significantly improves the performance for all the

features. Results for the second test condition are listed in Table 4. Even with estimated pitch,

the performance of all the features is significantly boosted by the combination, demonstrating

the role of the pitch-based feature in generalization to unseen noises. As before, RASTA-PLP

leads the overall performance in this combination.

4.4 Adding Delta Features

Difference features, also known as delta features, are found to be useful in speech processing as

they capture variations. We now investigate the effects of including delta features. A positive

effect of adding delta features with AMS has been shown in [19]. Table 5 and Table 6 show

the HIT−FA results by adding first-order delta features (denoted by ∆) along time in two

test conditions. We can clearly see improvements in both test conditions. Two observations

are in order. First, adding deltas is helpful for unvoiced speech segregation. Second, almost

all features benefit from adding deltas in the unmatched condition, indicating their effect in

improving generalization.

We have also experimented with adding deltas along frequency channel as suggested in [19].

However this yields only small improvements (approximately 1% to 3%) at the expense of

added dimensionality. As a trade-off, we suggest adding frequency deltas only for the pitch-

based feature which has a low dimensionality, producing a 18-D feature denoted by PITCH∆∆.
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Table 5: HIT−FA results by including first-order delta features in test condition one

Feature
Overall Voiced Unvoiced

HIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA
AMS∆ 77% 7% 70% 82% 8% 74% 55% 4% 51%
PLP∆ 83% 7% 76% 86% 9% 77% 71% 4% 67%

RASTA-PLP∆ 80% 7% 73% 83% 9% 74% 69% 5% 64%
GFCC31∆ 87% 5% 82% 89% 7% 82% 77% 3% 74%
MFCC31∆ 85% 6% 79% 88% 7% 81% 72% 4% 68%
PITCH∆ N/A N/A N/A 76% 15% 61% N/A N/A N/A

Table 6: HIT−FA results by including first-order delta features in test condition two

Feature
Overall Voiced Unvoiced

HIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA
AMS∆ 67% 26% 41% 71% 26% 45% 51% 28% 23%
PLP∆ 73% 22% 51% 74% 23% 51% 67% 20% 47%

RASTA-PLP∆ 73% 13% 60% 73% 14% 59% 69% 11% 58%
GFCC31∆ 75% 28% 47% 76% 28% 48% 75% 28% 47%
MFCC31∆ 75% 19% 56% 76% 20% 56% 68% 16% 52%
PITCH∆ N/A N/A N/A 76% 19% 57% N/A N/A N/A
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Figure 5: Regression coefficients. The top panel shows the magnitudes of regression coefficients for each
channel, where brighter color indicates higher value. The bottom panel shows the averages across 64 channels.

4.5 Feature Combination

In this subsection, we evaluate feature combination as described in Section 3. Since we have

shown the importance of adding the pitch-based feature, we focus on selecting complementary

features from the rest. We empirically found that γ = 0.2 offers a good trade-off between

14
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Table 7: HIT−FA results for feature combination in test condition one

Feature Combination
Overall Voiced Unvoiced

HIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA
AMS+RASTA-PLP

87% 5% 82% 89% 6% 83% 77% 4% 73%
+MFCC31

AMS
73% 11% 62% 83% 9% 74% 36% 13% 23%

+PITCH∆∆
RASTA-PLP

72% 12% 60% 82% 13% 69% 39% 12% 27%
+PITCH∆∆
GFCC31

82% 9% 73% 87% 8% 79% 63% 11% 52%
+PITCH∆∆
MFCC31

80% 9% 71% 86% 8% 78% 58% 11% 47%
+PITCH∆∆

AMS+RASTA-PLP∆
85% 7% 78% 89% 7% 82% 71% 9% 62%

+MFCC31+PITCH∆∆

PITCH∆∆ N/A N/A N/A 80% 17% 63% N/A N/A N/A

Table 8: HIT−FA results for feature combination in test condition two

Feature Combination
Overall Voiced Unvoiced

HIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA
AMS+RASTA-PLP

81% 22% 59% 81% 22% 59% 81% 22% 59%
+MFCC31

AMS
66% 10% 56% 75% 11% 64% 27% 8% 19%

+PITCH∆∆
RASTA-PLP

73% 10% 63% 79% 12% 67% 48% 8% 40%
+PITCH∆∆
GFCC31

75% 19% 56% 78% 17% 61% 62% 24% 38%
+PITCH∆∆
MFCC31

74% 12% 62% 79% 12% 67% 53% 11% 42%
+PITCH∆∆

AMS+RASTA-PLP∆
81% 11% 70% 83% 12% 71% 72% 10% 62%

+MFCC31+PITCH∆∆

PITCH∆∆ N/A N/A N/A 80% 24% 56% N/A N/A N/A

model complexity and cross-validation accuracy. For λ = 0.2λmax, we plot the magnitudes

of regression coefficients for each channel in the top panel of Fig. 5 and their averages across

64 channels in the bottom panel. It is clear that AMS, RASTA-PLP and MFCC31 are

associated with large regression coefficients, while the coefficients of PLP are zero in almost

all channels. GFCC31’s contribution to model fitting is relatively weak, making it almost

redundant given AMS, RASTA-PLP and MFCC31. Therefore, we choose AMS+RASTA-

PLP+MFCC31 as our complementary feature set. Leveraging deltas, we set the final combined

feature to AMS+RASTA-PLP∆+MFCC31+PITCH∆∆, resulting in a 90-D feature vector.

The HIT−FA results in the two test conditions are shown in Table 7 and Table 8. As

comparison, we also include results from AMS+RASTA-PLP+MFCC31, AMS+PITCH∆∆,

RASTA-PLP+PITCH∆∆, MFCC31+PITCH∆∆, GFCC31+PITCH∆∆, and PITCH∆∆. Com-
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Figure 6: Overall HIT−FA rates of representative features with number of training utterances. “COMP”
stands for AMS+RASTA-PLP+MFCC31.

paring with Table 1 and Table 2, we see that the complementary feature set AMS+RASTA-

PLP+MFCC31 performs the best in test condition one, equaling GFCC31∆. The final com-

bined feature generalizes well to the unmatched-interference condition as shown in Table 8.

For reference, the final combined feature using ground truth pitch achieves 84% and 76%

HIT−FA rates in the two test conditions, respectively.

4.6 Training Corpus Size

As mentioned in Section 4.1, our training set is created from 50 clean utterances. In the fol-

lowing, we examine the dependence on the number of training utterances for each feature. We

retrain SVM classifiers using 20, 100, and 200 utterances mixed with the same noises N1-N3,

for representative features AMS+RASTA-PLP+MFCC31, AMS, GFCC31, and RASTA-PLP.

The overall HIT−FA results are given in Fig. 6(a) and Fig. 6(b) for the two test conditions.

In the first condition, more utterances for training enable each feature to improve the

unit labeling performance. Specifically, we obtain about 5% improvements by increasing the

number of training utterances from 20 to 200, except for RASTA-PLP, which shows a 2%

degradation from 100 to 200 utterances, indicative of overfitting. In the second condition,

however, no significant performance gain is achieved beyond 50. For RASTA-PLP, a 5% gain

is achieved by using 100 utterances compared to 20, but overfitting seems to occur when

200 utterances are used. It is worth noting that the performance of the combined feature

using only 20 training utterances surpasses the other features using more training utterances.

In summary, we do not observe strong dependence on the number of training utterances in

condition two.
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Table 9: Overall HIT−FA results in test condition one when tested on different SNR conditions

Feature
-5 dB 5 dB 10 dB

HIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA
AMS 73% 12% 61% 65% 9% 56% 55% 15% 40%

RASTA-PLP 75% 7% 68% 71% 9% 62% 63% 8% 55%
GFCC31 92% 21% 71% 81% 11% 70% 75% 28% 47%
MFCC31 85% 9% 76% 80% 9% 71% 73% 10% 63%

AMS+RASTA-PLP
89% 9% 80% 84% 7% 77% 75% 8% 67%

+MFCC31
AMS

72% 11% 61% 73% 12% 61% 65% 11% 54%
+PITCH∆∆
RASTA-PLP

74% 11% 63% 75% 10% 65% 66% 8% 58%
+PITCH∆∆
GFCC31

83% 14% 69% 81% 12% 69% 74% 18% 56%
+PITCH∆∆
MFCC31

80% 9% 71% 81% 11% 70% 73% 9% 64%
+PITCH∆∆

AMS+RASTA-PLP∆
85% 8% 77% 85% 9% 76% 76% 8% 68%

+MFCC31+PITCH∆∆

Table 10: Overall HIT−FA results in test condition two when tested on different SNR conditions

Feature
-5 dB 5 dB 10 dB

HIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA
AMS 58% 28% 30% 59% 20% 39% 53% 19% 34%

RASTA-PLP 67% 12% 55% 68% 13% 55% 60% 11% 49%
GFCC31 77% 41% 36% 73% 28% 45% 71% 32% 39%
MFCC31 71% 33% 38% 77% 27% 50% 60% 11% 49%

AMS+RASTA-PLP
78% 26% 52% 83% 21% 62% 76% 18% 58%

+MFCC31
AMS

60% 11% 49% 68% 10% 58% 60% 9% 51%
+PITCH∆∆
RASTA-PLP

68% 11% 57% 74% 10% 64% 64% 8% 56%
+PITCH∆∆
GFCC31

72% 25% 47% 77% 19% 58% 71% 21% 50%
+PITCH∆∆
MFCC31

68% 13% 55% 77% 13% 64% 70% 12% 58%
+PITCH∆∆

AMS+RASTA-PLP∆
75% 13% 62% 83% 12% 71% 74% 10% 64%

+MFCC31+PITCH∆∆

4.7 Evaluation in Different SNR Conditions

From a practical point of view, it is interesting to know how well a model trained on a single

SNR generalizes to different SNR conditions. To examine this question, we use the subband

SVMs already trained on 0 dB mixtures described in Section 4.1 to segregate the same test

mixtures at -5 dB, 5 dB, and 10 dB. Table 9 and Table 10 give the overall HIT−FA results

for the two test conditions. All features are impacted in an unmatched-SNR condition. The

reason for the performance degradation seems twofold. First, a change of SNR leads to a
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Figure 7: Magnitude response of a gammatone filter with center frequency fc = 3864 Hz and the corresponding
40-dB bandwidth.

change of power spectrum distribution at the T-F unit level, leading to a deviation from

training. Second, a change of SNR also leads to a change of the IBM, which becomes denser

(sparser) as SNR increases (decreases). Such a change in the prior probability of unit labels

presents an issue to discriminative classifiers such as SVM. This is a clear trend in the 10

dB case, in which the HIT rate decreases significantly. Relatively speaking, MFCC31 and

RASTA-PLP hold up well, especially at the lower SNR level. Again, the inclusion of the

pitch-based feature clearly helps each feature to stabilize the labeling performance. The final

combined feature significantly outperforms the other features in each SNR condition. When

ground truth pitch is used, it achieves 86%, 81%, and 72% HIT−FA in test condition one,

and 75%, 75%, and 68% in test condition two, at -5, 5 and 10 dB SNR respectively. These

results are comparable to the matched-SNR scenario.

5 Dimension Reduction

Unit level features described in Section 2 contain redundancy since a subband signal contains

information only within a certain bandwidth. The removal of redundancy could increase

efficiency without hurting performance. We propose to reduce feature dimensionality based

on bandwidth analysis of the gammatone filterbank. The impulse response function of a

fourth-order gammatone filter with center frequency fc is:

gc(t) = t3 exp (−2πBct) cos (2πfct + φ) , t > 0 (4)
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Table 11: HIT−FA results for reduced dimension GFCC feature in test condition one

Feature
Overall Voiced Unvoiced

HIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA
GFCC31 86% 6% 80% 89% 7% 82% 76% 4% 72%
GFCC13 84% 6% 78% 87% 8% 79% 74% 4% 70%
GFCC DR 83% 6% 77% 87% 7% 80% 69% 4% 65%

Table 12: HIT−FA results for reduced dimension GFCC feature in test condition two

Feature
Overall Voiced Unvoiced

HIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA
GFCC31 74% 30% 44% 74% 29% 45% 74% 32% 42%
GFCC13 68% 31% 37% 68% 30% 38% 70% 31% 39%
GFCC DR 75% 31% 44% 77% 30% 47% 67% 33% 34%

where φ is the phase, and Bc indicates bandwidth. A good approximation to its frequency

response [32] is

Gc(f) =

(

1 +
j(f − fc)

Bc

)−4

. (5)

Based on its magnitude response |Gc(f)|, we can easily get the X-dB bandwidth as

[

fc −
√

B2
c (10

X/40 − 1), fc +
√

B2
c (10

X/40 − 1)

]

, (6)

which is defined as the frequency range between the lower and upper cutoff frequency at which

the magnitude of the filter response is attenuated by X dB. Figure 7 illustrates the 40-dB

bandwidth for a gammatone filter with center frequency fc = 3864 Hz.

To extract unit level features, we first perform full spectral analysis on each subband signal,

and retain only spectral contents within the X-dB bandwidth for further processing such as

DCT. As an illustration, we apply this method to the GFCC feature, in which the 40-dB

bandwidth is retained for decimation, cubic root compression and DCT (without truncation).

This results in a new GFCC feature with an average dimension of 121, halving the original 31

dimensions. The HIT−FA results for this new feature, denoted by GFCC DR, are listed in

Table 11 and Table 12. Compared with the original GFCC31 feature, GFCC DR achieves sim-

ilar performance in both test conditions. In condition two, GFCC DR which retains essential

spectral information clearly outperforms GFCC13, a GFCC feature that reduces dimension

by truncating higher DCT coefficients. Performance degradation is observed in unvoiced in-

tervals. The reason is likely that the passband of a gammatone filter becomes wider at higher

frequencies where unvoiced speech is prominent. Hence a fixed 40-dB bandwidth might not

be sufficiently wide to discriminate unvoiced speech. A varied X could be used to alleviate

this problem in the future. If we use a 60-dB bandwidth, for example, the average dimension

increases to 23, but the HIT−FA rates become the same as GFCC31 in both test conditions.

1For a fixed X, the dimensionality of a feature varies in different channels with different widths of passbands.
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Figure 8: HIT−FA rates of representative features in each frequency channel.

6 Discussion

Formulating monaural speech segregation as binary classification is an effective approach. So

far, only pitch and AMS have been employed as T-F unit level features. In this paper, we have

significantly expanded the feature repository to include features commonly used in speech and

speaker processing. For both voiced and unvoiced speech segregation, these newly included

features have achieved significant improvements in terms of HIT−FA, a criterion that is highly

correlated with human speech intelligibility. In terms of single features, GFCC shows excellent

performance in the matched test condition, and RASTA-PLP in the unmatched conditions.

The complementarity among these features is systematically exploited by using a group

Lasso approach, which selects important features contributing to target and interference

discrimination. The selected complementary feature set AMS+RASTA-PLP+MFCC31 has

shown stable performance in various test conditions and outperforms each of its components

significantly.

We point out that HIT−FA results vary with respect to frequency channel, although clas-

sification is performed in a channel-independent way. The variations are shown in Fig. 8. In

condition one, the performance clearly drops between channel 32 (fc = 1245 Hz) and channel

58 (fc = 5732 Hz). In condition two, the trend is less clear and it seems that combining

outputs from classifiers trained on different features is helpful. Future effort is needed to

understand the performance variation with respect to filter channel.

Generalization is a critical issue for classification-based speech segregation. We have exam-

ined the generalization performance of each feature in several unmatched conditions. These

results point to the robustness of the pitch-based feature, which is parameterized by estimated

pitch. Nevertheless, the pitch-based feature needs to be combined with general acoustic fea-
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tures in order to segregate unvoiced speech and improve voiced speech segregation. The final

combined feature AMS+RASTA-PLP∆+MFCC31+PITCH∆∆ achieves very promising seg-

regation results in various test conditions. These results are substantially better than those

of earlier studies and are expected to further improve with better pitch tracking.

In addition to pitch, our results suggest that RASTA filtering also plays an important

role in good generalization. RASTA filtering effectively captures low modulation frequencies

corresponding to speech. The inclusion of this speech property significantly reduces FA rates,

which degrade significantly in unmatched conditions. It would be interesting to explore new

features that characterize both pitch and low modulation frequencies in future research.
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