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Abstract – We present a system for robust signal-to-noise ratio (SNR) estimation based on

computational auditory scene analysis (CASA). The proposed algorithm uses an estimate

of the Ideal Binary Mask to segregate a time-frequency representation of the noisy signal

into speech dominated and noise dominated regions. Energy within each of these regions is

summated to derive the filtered global SNR. An SNR transform is introduced to convert the

estimated filtered SNR to the true broadband SNR of the noisy signal. The algorithm is

further extended to estimate subband SNRs. Evaluations are done using the TIMIT speech

corpus and the NOISEX-92 noise database. Results indicate that both global and subband

SNR estimates are superior to those of existing methods, especially at low SNR conditions.

Index Terms – Signal-to-noise ratio, broadband SNR, subband SNR, computational auditory

scene analysis (CASA), ideal binary mask (IBM).
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1 Introduction

Estimation of the signal-to-noise ratio has been studied for decades, mostly in the context

of noise estimation, speech enhancement and robust automatic speech recognition (ASR).

Typical algorithms estimate local or instantaneous SNR, i.e. the SNR at a particular time-

frequency (T-F) unit (also referred to as short-time subband SNR) [18], which can then be

directly used by speech enhancement algorithms [2] (see [20] for a comprehensive review).

Two assumptions made by these algorithms are: 1) the background noise is stationary, at

least between speech pauses and during the time interval when the noise energy is estimated

(or updated) and 2) regular speech pauses occur in speech. For the estimation to be effective,

the interval size should be chosen wisely. Longer intervals are suited for tracking stationary

background noises. When noise statistics change quickly, a shorter interval is preferred. But

using a shorter interval reduces the chance of seeing noise-only frames. In realistic noise

conditions, such as the so called cocktail-party condition, most estimation techniques falter

[20].

While most algorithms perform short-time subband SNR estimation, knowledge of the SNR

at other levels is also useful. Global SNR of an utterance, for instance, can be used to devise

SNR specific speech and speaker recognition strategies [6, 26]. In many applications, speech

processing algorithms are optimized to function in certain specific SNR conditions. An SNR

estimator can be used in such applications during the model selection process at runtime.

Similarly, subband SNR estimates are useful in many speech processing tasks.

The main theme of this paper is to estimate broadband and subband global SNRs, i.e. SNRs

at the utterance level. Typical utterance length is between 2–5 seconds (e.g., the utterances in

the TIMIT core test set [7]). Traditional SNR estimation algorithms have difficulties dealing

with such long intervals of speech when the underlying noise is non-stationary. Algorithms

have been proposed for global broadband SNR estimation. They are based on identifying the

noise and speech energy distributions [1, 4], or signal statistics [14].

We take a CASA-based approach for SNR estimation. A main goal of CASA is to estimate

the ideal binary mask (IBM) [24], which identifies speech dominated and noise dominated

units in a T-F representation of noisy speech. The IBM has been shown to be effective

in improving speech intelligibility and robust automatic speech and speaker recognition in

noise [25]. Motivated by this line of research, we propose to use the IBM to calculate both

broadband and subband SNRs. Although IBM estimation algorithms are commonly based on

short-time SNR estimation [13, 17], few have used the IBM to estimate the SNR of mixture

signals. The proposed algorithm works under the assumption that at the utterance level, the

total speech and noise energy can be well approximated using only the speech dominant and

the noise dominant T-F units, respectively.

The remainder of the paper is organized as follows. In Section 2 we discuss existing SNR

estimation strategies from the literature. A detailed description of our system is provided in
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Section 3. Evaluation results are described in Section 4. We conclude with a discussion of our

results in Section 5.

2 Prior Work

We first discuss short-time subband SNR estimation algorithms. In [9], histograms of the

noisy spectral magnitudes are analyzed to estimate the noise energy in each frequency band.

Since the histogram of the spectral magnitudes of clean speech typically has a peak close

to 0, any shift in this peak is attributed to the stationary background noise. The author

suggests using a time interval of 500 msec to best follow the changes in non-stationary noise

conditions. The system is further developed in [10] to include a dynamic threshold that helps

avoid overestimation of the noise level in situations when the above assumption is not met

(typically in low frequency bands where the speech energy is relatively high). In the same

paper, they also introduce a weighted average method in which the noise energy is calculated

as the weighted sum of the past spectral energy values, along with the use of the dynamic

threshold to prevent overestimation. An alternative approach based on minimum statistics

was proposed in [18], where noise energy is estimated by tracking the low-energy envelope of

the signal with the assumption that the energy minima occur during speech pauses. While

estimating the SNR, the estimated noise energy is scaled to account for the fact that only the

energy minima are considered in the first stage. Ris and Dupont [20] introduced a harmonic

filtering method that makes use of low-energy valleys between formants in voiced intervals to

update the noise estimate in the absence of regular speech pauses. Other strategies include

energy clustering to distinguish speech and noise portions of the mixture [3,4,22], and explicit

speech pause or voice-activity detection (VAD) [16]. Nemer et al. [19] make use of higher order

statistics of speech and noise, assuming a sinusoidal model for band restricted speech and a

Gaussian model for noise. Supervised classification based methods have also been applied to

this task. For example, features inspired from psychoacoustics and an MLP based classifier are

used in [15,21] to estimate broadband and subband SNRs in short intervals of noisy speech.

Global SNR estimation has also been studied, although not as widely as short-time subband

SNR estimation. A commonly used algorithm from NIST [1] builds a histogram of short-time

signal power using the noisy utterance which is then used to infer noise and noisy speech

distributions. With the assumption that the noisy signal has bimodal distribution, it fits a

raised cosine function to the left hand peak and uses its mean as the mean noise power. The

learned cosine function is then subtracted from the histogram distribution and the remainder

is assumed to be the distribution of speech power. From these distributions, the peak signal-to-

noise ratio is calculated rather than the mean SNR. The peak SNR is clearly an overestimate

of the true SNR. Dat et al. [4] use a similar approach, but instead of fitting the histogram, they

fit a 2-component Gaussian to the data using the expectation maximization (EM) algorithm.

A similar approach was also used in [22] to model speech. Dat et al. extend the idea by using
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the learned Gaussians in a principled way to derive the SNR of the signal. Similar to [1], their

approach would have problems when the bimodal Gaussian assumption fails. It is also very

sensitive to initialization and the stopping criterion used by the EM algorithm. In cases when

the noise variance is estimated to be larger than that of clean speech, the algorithm can be

numerically unstable. The method by Kim and Stern [14] is based on waveform amplitude

distribution. It assumes that clean and noisy speech have Gamma distributions, and noise a

Gaussian distribution. It infers the global SNR based on the parameter of the distribution

estimated from noisy speech. Their algorithm works well when these assumptions are met.

Performance degradation occurs at low SNR conditions and when the background noise has

non-Gaussian characteristics. An alternative, relatively straightforward approach would be to

use speech enhancement algorithms to estimate the noise power spectral density (PSD) [8] and

the speech magnitude [5]. Assuming that the noise PSD approximates noise energy, which is

reasonable, both global broadband and subband SNRs can be directly calculated from these

estimates.

Long-term subband SNR estimation is not much studied, but global SNR estimation strate-

gies can be extended to perform subband SNR estimation. The technique in [1] has a subband

SNR estimation algorithm that is based on the same principle as broadband SNR estimation.

It is fairly easy to extend the methods in [14] and [4], and speech enhancement based strategies

to perform subband SNR estimation. A supervised learning approach to estimate long-term

subband SNRs was proposed by Kleinschmidt and Hohmann [15]. Being supervised, it is very

likely that the algorithm is dependent on training conditions. The authors note that their

algorithm works better for stationary noise types compared to non-stationary noise types.

A system related to ours is the one described in [12] (referred to as the Hu-Wang’10 system).

It estimates the SNR using a binary mask for only the voiced speech frames, by making the

following assumptions: 1) the total voiced speech energy is approximately equal to the total

noisy signal energy under the unmasked, speech dominant (1s in the voiced IBM) T-F units,

2) the total signal energy can be inferred from the total voiced signal energy, and 3) the

per-frame noise energy in both voiced and unvoiced frames remains unchanged. Their system

produces reasonable results at SNRs close to 0 dB but biased estimates at other conditions.

Since only the voiced IBM is used, estimating subband SNRs will be challenging, especially

at high frequencies. In addition to providing a novel framework for SNR estimation, our

algorithm differs from the Hu-Wang’10 system since we use an estimate of the IBM in both

voiced and unvoiced time frames.

3 System Description

The architecture of the proposed system is shown in Figure 1. The input to the system is

a noisy speech signal, which is first processed using a 128-channel gammatone filterbank to

perform T-F decomposition. The center frequencies of the filterbank are uniformly spaced in
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Figure 1: Schematic diagram of the proposed system. The input to the system is a noisy mixture. The outputs
are the broadband SNR, filtered SNR and subband SNRs. The system includes an IBM estimation module
and an SNR estimation module.

the ERB (Equivalent Rectangular Bandwidth) rate scale from 50 Hz to 8000 Hz [25]. The

signals are sampled at 16 kHz in our experiments, and the chosen frequency range ensures that

almost all useful speech information is retained in the filtered signal. A typical gammatone

filterbank performs loudness equalization across frequencies to match cochlear filtering. As

a result, different frequency components are scaled differently. This may alter the SNR of

the filtered signal compared to the original signal in the time domain, even if the signal is

band limited to 50–8000 Hz. In order to prevent this undesired effect, we normalize the

gammatone filterbank. The normalized gammatone filterbank scales most of the frequency

components covered by the filterbank so as to ensure that for speech signals, the filtered

signal energy approximately equals its total time-domain energy. This may not be the case

for noise and noisy speech signals if the underlying noise type has significant energy in the

low-frequency range (e.g., the car interior noise from the NOISEX-92 corpus [23]). We will

make use of the normalized filterbank in the subsequent SNR transformation step to estimate

the true broadband SNR of a noisy signal, given its filtered SNR. Figure 2 compares the

aggregated magnitude responses of the conventional gammatone filterbank and the normalized

gammatone filterbank.

After T-F decomposition, the filtered signal is windowed using a 20 msec rectangular frame

with a 10 msec frame shift. A cochleagram [25] of the signal is then created by calculating

the signal energy within each of these windows. Because of the 50% overlap between adjacent

frames, the total energy within the cochleagram will roughly be twice the energy of the speech

signal in the time domain.

Let y(t), x(t) and n(t) represent the noisy signal, clean signal and noise signal, respectively,

and Y, X and N their corresponding cochleagrams. Since noise is assumed to be additive and
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Figure 2: Aggregated magnitude response of the normalized and loudness equalized gammatone filterbank. The
gain for a specific frequency is calculated by aggregating the gains across the 128 filters of the filterbank. Notice
that most frequency components undergo no attenuation/amplification when processed using the normalized
gammatone filterbank.

independent of speech, the following relationships hold:

y(t) = x(t) + n(t),

Y(m, c) ≈ X(m, c) +N(m, c).

Here, t denotes a time sample, m indexes a time frame and c a frequency channel. We define

the following SNRs of the signal:

SNRb = 10 log10

(∑
t(x(t))

2∑
t(n(t))

2

)
, (1)

SNRf = 10 log10

(∑
m,c X(m, c)∑
m,c N(m, c)

)
, (2)

SNRc = 10 log10

(∑
mX(m, c)∑
mN(m, c)

)
, (3)

where SNRb, SNRf and SNRc denote the broadband SNR, the filtered SNR and the subband

SNR, respectively.

Since we only have access to y(t) and Y in practice, to calculate these SNRs, we approxi-

mate the total target speech and noise energy using Y and an estimated IBM. The IBM is a

two-dimensional binary matrix, with the same dimensionality as Y. An element in the matrix

takes the value 1 if the speech energy within the corresponding T-F unit is greater than the
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noise energy. Formally, the IBM is defined as:

IBM(m, c) =

{
1 if X(m, c) > N(m, c)

0 otherwise
. (4)

Note that the IBM can also be defined in terms of a local SNR threshold at each T-F unit

called the local criterion (LC). The above formulation implies an LC of 0 dB. In the proposed

system, a binary mask is estimated using the IBM estimation module. Given the estimated

IBM and the cochleagram of the input signal, the SNRs are estimated by the SNR estimation

module (Figure 1). These modules are described in the following subsections.

3.1 IBM Estimation

We aim to develop a system that generalizes well to different test conditions. Therefore, we

estimate the IBM by combining a CASA algorithm that has been shown to work well in a

wide range of conditions and a state-of-the-art speech enhancement algorithm. The CASA

algorithm is based on the Hu-Wang’11 system described in [13]. It uses the tandem algorithm

[11] to estimate the voiced IBM (the IBM in voiced frames) and a spectral subtraction based

method to estimate the unvoiced IBM. The tandem algorithm is an iterative procedure that

estimates both the target pitch and the corresponding binary mask for up to two voiced sound

sources in the signal. It returns more than one pitch estimate for a single frame of noisy speech

if the background is pitched as in multi-talker babble or bird chirp. The tandem algorithm does

not link disjoint pitch contours, which is the task of sequential organization. Since we only

deal with non-speech noise, multiple pitch points are typically detected only for a fraction

of frames. Sequential organization in non-speech noise conditions is a relatively easy task

compared to multi-talker conditions. In this work, we perform sequential organization based

on: 1) plausible pitch range of speech, 2) length of a pitch contour, and 3) pitch continuity.

The binary masks corresponding to the sequentially grouped pitch contours are then grouped

to obtain an estimate of the voiced IBM. Given the voiced mask, the Hu-Wang’11 system

estimates the unvoiced IBM by first removing periodic components from the mixture signal.

It then forms a noise estimate for each unvoiced interval by averaging the energy within the

noise dominant T-F units (0s in the mask) of its neighboring voiced intervals. These estimates

are finally used in spectral subtraction to obtain the estimated unvoiced IBM. Figure 3(c)

shows an estimated IBM obtained in this fashion. It captures most of the voiced segments

(T-F regions) and a good number of unvoiced segments. Comparing with the IBM shown

in Figure 3(f), we can see that it still misses a few target-dominant segments. The goal of

the speech enhancement based mask estimation module described below is to recover these

segments.

The motivation behind using a speech enhancement method is that such algorithms work

well when the SNR is high, whereas CASA algorithms are usually designed for low SNR
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Figure 3: IBM estimation. (a) Cochleagram of the utterance ‘Straw hats are out of fashion this year’ from the
core test set of the TIMIT corpus. (b) Cochleagram of the same utterance mixed with babble noise, where
the filtered SNR is set to 5 dB. (c) The mask estimated by the Hu-Wang’11 system. (d) The mask estimated
by a speech enhancement method. (e) The mask obtained by combining the two methods. (f) The IBM.

conditions. The speech enhancement mask estimation is based on a state-of-the-art noise

tracking algorithm described in [8]. The algorithm operates in the linear frequency domain,

using the FFT to perform T-F decomposition. To estimate the noise power, it uses an MMSE

estimator of noise magnitude-squared DFT coefficients assuming that both speech and noise

DFT coefficients follow a complex-Gaussian distribution. The speech DFT coefficients are

estimated using the algorithm in [5], which assumes that speech magnitude-DFT coefficients

follow a generalized Gamma distribution with parameters γ = 1 and ν = 0.6. Given these
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estimates, the noise and speech energy within a time-frequency unit are approximated as

the estimated noise power and squared-magnitude of the estimated speech DFT coefficient.

These estimates are then transformed to the nonlinear frequency domain of the gammatone

filterbank using the frequency response of the individual gammatone filters:

X̂(m, c) = (1/K)
K−1∑
k=0

(X̂FFT (m, k).|Gc(k)|2). (5)

Here, X̂ is an estimate of X, X̂FFT the estimated speech energy in the linear frequency domain

and Gc the frequency response of the filter channel c. Index k denotes a DFT coefficient and

K the number of DFT bins used for T-F analysis, which is set to 512 in our experiments. A

similar equation is used to estimateN. The IBM is finally estimated by calculating the SNR at

each T-F unit using X̂ and N̂, and comparing it to LC. Since we use the speech enhancement

method to capture segments having high SNR, we set LC to a value greater than 0, unlike

(4). This also helps to reduce false alarms (0s wrongly labeled as 1s) in IBM estimation. The

optimal value for LC is chosen using a small development set of noisy mixtures. Figure 3(d)

shows a binary mask estimated in this way. Clearly, it captures some target dominant segments

missed in Figure 3(c).

To combine the two masks, we use the simple logical ‘OR’ operation. Figure 3(e) shows

the final mask estimated by our algorithm. The final mask is more similar to the IBM than

each of the individual masks.

3.2 SNR Estimation

For SNR estimation, we assume that the total filtered target energy, both at the broadband

and the subband level, can be estimated using only the speech dominant T-F units and the

total filtered noise energy from the noise-dominant T-F units. As shown in the evaluations,

this assumption is reasonable for long-term SNR estimation.

3.2.1 Global SNR Estimation

Given an estimated IBM (M), the total speech and noise energy are estimated as follows:

Êspeech =
∑
m,c

Y(m, c).M(m, c), (6)

Ênoise =
∑
m,c

Y(m, c).¬M(m, c), (7)
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where ‘¬’ denotes the ‘NOT’ operation. The filtered SNR ( ̂SNRf ) is then estimated as shown

below, using these estimates:

̂SNRf = 10 log10

(
Êspeech

Ênoise

)
. (8)

The true broadband SNR is estimated by transforming ̂SNRf using an SNR transformation

step. We transform the SNR based on the following observation. Recall that when speech

signals are processed using the normalized gammatone filterbank, the total signal energy is

not significantly altered since it applies a unit gain to most of the useful bands. Therefore,

the difference between the energy of the noisy signal in the time domain and its energy after

T-F decomposition using the normalized gammatone filterbank can mostly be attributed to

noise. This is true especially at low SNRs, where noise energy is comparable to or greater

than the target energy. With this observation, the true broadband SNR can be calculated by

compensating the noise energy with this difference during SNR estimation:

△Ê = 2
∑
t

(y(t))2 −
∑
m,c

Y(m, c), (9)

̂SNRb = 10 log10

(
Êspeech

Ênoise +max(0,△Ê)

)
. (10)

̂SNRb is the estimated broadband SNR of the noisy signal.

3.2.2 Subband SNR Estimation

The subband SNRs are estimated similar to (8), but the energy values are summated only

across time: ̂SNRc = 10 log10

( ∑
mY(m, c).M(m, c)∑

m Y(m, c).¬M(m, c)

)
. (11)

̂SNRc denotes the estimated subband SNR for frequency channel c.

4 Evaluation Results

We start by describing the experimental setup in Section 4.1. Since the idea of using binary

masks for SNR estimation is relatively new, we provide an initial set of results using the IBM

directly in Section 4.2. We also present another set of results in the same subsection that

highlights the role of the SNR transformation step. This is followed by a description of the

results using the estimated IBMs and comparisons in Section 4.3.
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4.1 Experimental Setup

All our experiments are conducted using the TIMIT speech corpus [7] and the NOISEX92

noise database [23]. Specifically, the experimental results are obtained on the core test set of

the TIMIT database which consists of 192 clean speech utterances from 24 speakers recorded

at 16 kHz. Four noises are chosen from the NOISEX92 database – white noise, car noise,

babble noise and factory noise. The first two noises are stationary and the last two relatively

non-stationary. Car noise is chosen as it has a considerable amount of low frequency energy

as a result of which the broadband and the filtered SNRs are quite different, thereby enabling

us to measure the performance of the proposed algorithm in estimating these SNRs more

thoroughly. The noise signals are downsampled to 16 kHz to match the sampling rate of the

speech signals.

Two test sets are created for evaluating the performance of the proposed system in estimat-

ing the broadband SNR and the filtered SNR separately. Both test sets consist of the 4 noises

mixed with clean speech at 6 SNR conditions ranging from -10 dB to 15 dB, in increments

of 5 dB. To create a noisy signal, a randomly selected segment of the noise is scaled to the

desired level and added to the speech signal. Depending on the test set, either the broadband

SNR or the filtered SNR is set to the desired SNR level. The test set created by controlling

the filtered SNR is also used to evaluate subband SNR estimation.

The broadband and filtered SNR estimation results are compared with those of the fol-

lowing systems. The first one is the SNR estimation algorithm (WADA) proposed in [14],

which was shown to significantly outperform the algorithm from NIST [1]. The second sys-

tem uses the noise and speech magnitude estimates obtained using the speech enhancement

algorithms [5, 8] directly to estimate the SNR (HND). The frame length and the frame shift

are set to 20 msec and 10 msec, respectively, to match those used by our algorithm. The

remaining approaches are based on estimated IBMs. The Hu-Wang’10 system [12] is the

third, and is slightly modified so as to make use of the normalized filterbank and the SNR

transform. These modifications improve the performance reported in [12]. The forth method

transforms the estimates from the speech enhancement algorithms [5, 8] to the nonlinear fre-

quency domain using (5), and estimates the IBM by setting an appropriate LC (see (4)). The

estimated IBM is then used to calculate the SNRs in the same way as the proposed system,

and we denote this method HND MOD. As the fifth method we use the IBM estimated using

only the CASA system described in Section 3.1; this method is denoted Hu-Wang’11. Note

that the only difference between HND MOD, Hu-Wang’11 and our method is in the way the

IBM is estimated. So an improvement in performance is solely attributed to improved IBM

estimation.

WADA and HND make use of all the frequencies of the signal to estimate the SNR. There-

fore, before estimating the filtered SNR using these algorithms, the original mixture is pro-

cessed using a filter that has a frequency response similar to the aggregated response of the

11
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gammatone filterbank (see Figure 2). These algorithms then calculate the broadband SNR

using the filtered signal, which is equivalent to estimating the filtered SNR of the signal.

A development set is created by randomly choosing 30 utterances from the training set of

the TIMIT corpus to tune the following parameters: 1) LC that is used to estimate the speech

enhancement mask, as described in Section 3.1. 2) LC used by HND MOD. Values ranging

from 0 dB to 10 dB in 1-dB steps are tested and the one that gives the best performance in

terms of SNR estimation on the development set is finally used. To create the development

set, the 30 selected utterances are mixed with all 4 noises at all 6 SNR conditions. The final

chosen LC values are 8 dB for computing speech enhancement based binary mask, and 0 dB

for HND MOD.

Subband SNRs are estimated across the frequency bands of a 64-channel gammatone fil-

terbank, which is a typical number of channels used in CASA systems. Among the algorithms

described earlier, only modified versions of WADA and HND are compared with the proposed

subband SNR estimation algorithm. As described in Section 2, WADA assumes that speech

is Gamma distributed with a fixed parameter α = 0.4. Although this holds for broadband

signals, we have noticed that this value does not hold for band-limited signals. Therefore, the

30-utterance development set is used to find an optimal α for each subband. This is done

by fitting a Gamma distribution to the clean subband signal amplitudes (in the maximum-

likelihood sense). The mean α for the 30 utterances for each channel is then chosen as the

final parameter for that channel. HND is adapted to estimate subband SNRs in the domain

defined by the gammatone filterbank by transforming energy estimates using (5). The IBM

estimation module of the proposed algorithm estimates a 128-channel mask. Instead of re-

estimating a 64-channel mask for the purpose of subband SNR estimation, we sub-sample this

mask to 64 channels. This is reasonable because the center frequencies (c) of the 64-channel

gammatone filterbank and those of the odd numbered channels (2c − 1) of the 128-channel

gammatone filterbank are identical, since both of them are uniformly distributed in the ERB

rate scale. Sub-sampling is done by additionally accounting for the wider bandwidths of filters

in the 64-channel filterbank; a T-F unit, M64(m, c), in the 64-channel mask is labeled 1 only

if at least 2 out of the 3 corresponding T-F units, M128(m, 2c − 2)), M128(m, 2c − 1) and

M128(m, 2c), in the 128-channel mask are speech dominant. The subband SNRs are restricted

to the range of -20 dB to 30 dB, i.e. any estimate not falling in this range is rounded to the

boundary values.

Estimated SNR values from each of these algorithms are rounded to the nearest integer

before calculating error metrics. In the case of broadband/filtered SNR estimation, the mean

absolute errors and standard deviations are reported. In the case of subband SNR estimation,

only the mean absolute errors are reported.

12
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Table 1: Mean absolute error and standard deviation of the error (in parenthesis) in estimating the filtered
SNR using the IBM.

Noise SNR Mean

type -10 dB -5 dB 0 dB 5 dB 10 dB 15 dB

White 0.16(±0.37) 0.00(±0.00) 0.00(±0.00) 0.09(±0.28) 0.55(±0.50) 0.99(±0.19) 0.30(±0.22)

Car 0.00(±0.00) 0.00(±0.00) 0.00(±0.00) 0.00(±0.00) 0.00(±0.00) 0.03(±0.17) 0.01(±0.03)

Babble 0.89(±0.56) 0.05(±0.21) 0.09(±0.29) 0.79(±0.41) 1.10(±0.31) 1.72(±0.53) 0.77(±0.39)

Factory 0.77(±0.47) 0.01(±0.07) 0.07(±0.26) 0.71(±0.45) 1.02(±0.20) 1.53(±0.51) 0.68(±0.33)

Table 2: Mean absolute error and standard deviation of the error (in parenthesis) in estimating the broadband
SNR using the IBM.

Noise SNR Mean

type -10 dB -5 dB 0 dB 5 dB 10 dB 15 dB

White 0.16(±0.37) 0.00(±0.00) 0.00(±0.00) 0.07(±0.26) 0.51(±0.50) 0.98(±0.25) 0.29(±0.23)

Car 0.00(±0.00) 0.00(±0.00) 0.00(±0.00) 0.00(±0.00) 0.02(±0.12) 0.09(±0.42) 0.02(±0.09)

Babble 0.89(±0.55) 0.03(±0.16) 0.12(±0.33) 0.74(±0.44) 1.09(±0.34) 1.79(±0.51) 0.78(±0.39)

Factory 0.55(±0.50) 0.01(±0.07) 0.10(±0.31) 0.71(±0.45) 1.01(±0.22) 1.47(±0.54) 0.64(±0.35)

Table 3: Mean absolute error in estimating broadband SNR, with and without the SNR transformation step.
Car noise is used for this experiment.

Noise Method SNR Mean

type -10 dB -5 dB 0 dB 5 dB 10 dB 15 dB

Car IBM w/ SNR transformation 0.00 0.00 0.00 0.00 0.02 0.09 0.02

IBM w/o SNR transformation 7.68 7.84 7.72 7.75 8.00 8.22 7.87

4.2 IBM Results

The mean absolute errors and the standard deviations of the errors in estimating the filtered

SNR of the signal using the IBM are shown in Table 1. It can be clearly seen from the results

that excellent performance is obtained using the IBM. When the noise is relatively stationary,

the IBM based system is even able to perfectly estimate the SNR in a few test conditions.

It is interesting to note that the errors are slightly larger in high SNR conditions. This is

because at high SNRs masked T-F units are fewer, leading to an underestimation of the total

noise energy. This bias is noise dependent, and the noise dependence makes it difficult to

compensate for without prior knowledge about the noise type. Error statistics in estimating

the broadband SNR are shown in Table 2. The error trends are quite similar to those in

Table 1. These results point to the fact that the IBM, despite being binary, can indeed be

used for SNR estimation.

To illustrate the role of the SNR transformation step we present the results obtained with

and without it. Only the results using the car noise are shown since it has a significant

amount of low-frequency energy. Note that turning off the SNR transform implies that the

broadband SNR is approximately equal to the filtered SNR. The results are shown in Table 3
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for 6 SNR conditions. As can be seen, without the transformation, the errors are much larger.

On average, the SNR transformation step improves the performance by around 7.9 dB. The

difference is less dramatic for other noise types but still significant, especially at low SNR

conditions. The results corroborate our claim that the broadband and the filtered SNR can

be different; the proposed SNR transform compensates for this difference for broadband SNR

estimation.

4.3 Estimated IBM Results

4.3.1 Global SNR Estimation

Global SNR estimation results are tabulated in Tables 4 and 5. Each table consists of 5 sets

of results – one for each noise and one for the average across the 4 noises.

The mean absolute errors in estimating the filtered SNR are shown in Table 4. The proposed

algorithm obtains the best average results across all noise types. It also obtains the best results

in most of the individual test conditions. Similar to the IBM results, errors gradually increase

at positive SNR levels but are still reasonably small. The second best performance is obtained

using another binary masking method – HND MOD. On average, it is around 0.4 dB worse

than the proposed method. The proposed algorithm outperforms WADA and HND by about

1.5 dB and 0.4 dB, respectively. WADA performs reasonably when the SNR > 0 dB. But

at lower SNRs, the noisy speech does not follow the Gamma distribution leading to poor

estimation results. Not surprisingly, it performs the best in white noise conditions. Hu-

Wang’10 outperforms the proposed system when the background noise is white and the SNR

≤ 0 dB. Hu-Wang’11 performs well when the SNR is low, but produces poor results at high

SNRs, mainly because the algorithm is tuned to work at low SNR conditions as noted earlier.

Its average performance is worse than the proposed algorithm by 1.6 dB. It outperforms the

proposed method when the background noise is babble and the SNR -10 dB. It is interesting

to note that the proposed algorithm works better than the IBM in a few conditions. This is

possible because the IBM does make errors in SNR estimation, as can be seen from Table 1,

and some errors in estimating the IBM are favorable for SNR estimation. However, on average

the IBM obtains better results than the proposed algorithm in every noise condition. The

standard deviations of the errors are also shown in Table 4. In terms of this error metric, the

proposed algorithm also works the best in most test conditions.

The errors in estimating the broadband SNR are shown in Table 5. Again, the trends are

very similar to Table 4. Compared to HND MOD, the average mean absolute error of the

proposed algorithm is better by about 0.3 dB. Compared to WADA and HND, it is better by

about 1.7 dB and 1 dB, respectively. The standard deviation profiles are similar to those for

filtered SNR estimation.

Table 6 shows the mean absolute errors of the different algorithms according to the utter-

ance length. The shortest and the longest utterance in the TIMIT core test set are 1.3 sec
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Table 6: The mean absolute error in estimating the broadband SNR using using WADA, HND, Hu-Wang’10,
HND MOD, Hu-Wang’11 and the proposed algorithm, according to the utterance length. Errors are averaged
across all 4 noises. The best result in each condition is marked in bold.

Utterance length (sec) Method SNR Mean

(# of utterances) -10 dB -5 dB 0 dB 5 dB 10 dB 15 dB

0− 2 (19) WADA 5.50 2.92 1.37 1.20 1.20 1.50 2.28

HND 2.68 1.68 1.46 1.30 1.21 1.39 1.62

Hu-Wang’10 1.42 0.86 0.76 1.18 1.70 3.51 1.57

HND MOD 1.67 1.03 0.79 0.74 0.83 0.82 0.98

Hu-Wang’11 1.55 1.22 1.08 1.61 2.70 5.51 2.28

IBM 0.42 0.03 0.04 0.42 0.71 1.13 0.46

Proposed 1.29 0.78 0.51 0.39 0.57 0.80 0.72

2− 3 (83) WADA 5.76 2.79 1.50 1.16 1.21 1.72 2.36

HND 3.11 1.61 1.17 1.10 1.20 1.34 1.59

Hu-Wang’10 1.40 0.70 0.70 1.05 1.67 3.45 1.49

HND MOD 1.62 0.89 0.59 0.60 0.71 0.83 0.87

Hu-Wang’11 1.34 0.94 1.00 1.52 2.86 5.16 2.14

IBM 0.38 0.01 0.07 0.34 0.61 1.04 0.41

Proposed 1.19 0.60 0.33 0.32 0.48 0.76 0.61

3− 4 (66) WADA 5.23 3.04 1.45 1.17 1.27 1.87 2.34

HND 3.16 1.73 1.16 1.14 1.22 1.44 1.64

Hu-Wang’10 1.23 0.57 0.66 0.97 1.67 3.30 1.40

HND MOD 1.53 0.87 0.62 0.63 0.75 0.89 0.88

Hu-Wang’11 1.25 0.91 1.12 1.83 3.23 5.83 2.36

IBM 0.41 0.01 0.06 0.41 0.67 1.11 0.45

Proposed 1.10 0.52 0.34 0.36 0.52 0.85 0.61

4− 5 (19) WADA 5.25 2.29 1.42 1.14 1.07 1.20 2.06

HND 3.13 1.74 1.18 1.28 1.33 1.53 1.70

Hu-Wang’10 1.14 0.49 0.47 0.76 1.38 2.93 1.20

HND MOD 1.70 0.78 0.61 0.72 0.84 0.89 0.92

Hu-Wang’11 1.25 0.84 0.89 1.36 2.63 5.18 2.03

IBM 0.42 0.00 0.03 0.42 0.74 1.11 0.45

Proposed 1.14 0.50 0.28 0.25 0.33 0.67 0.53

> 5 (5) WADA 4.50 2.55 1.25 0.75 0.90 1.15 1.85

HND 3.65 1.80 1.30 1.15 1.40 1.45 1.79

Hu-Wang’10 1.35 0.90 1.10 2.15 3.30 5.60 2.40

HND MOD 1.60 0.70 0.70 0.70 0.80 0.70 0.87

Hu-Wang’11 1.20 1.35 1.35 2.60 4.35 7.40 3.04

IBM 0.50 0.00 0.00 0.45 0.60 1.05 0.43

Proposed 1.20 0.60 0.60 0.60 0.95 1.25 0.87

and 6.2 sec, respectively. The utterances are grouped into 1-sec bins. The errors across all

4 noise types are aggregated to obtain the average performance in the table. The proposed

algorithm performs the best in most conditions. It can be seen that our algorithm works best

when the utterance length is between 2 – 5 sec and the SNR between -5 dB and 10 dB. Note

that not enough samples are available to draw meaningful conclusions when the utterance
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Figure 4: Subband SNR estimation results using WADA, HND, the IBM, and the estimated IBM by the
proposed algorithm, for speech mixed with white noise. Mean absolute errors across the 64 sub-bands are
shown, for the following filtered SNR conditions: (a) -10 dB. (b) -5 dB. (c) 0 dB. (d) 5 dB. (e) 10 dB. (f) 15
dB.

length > 5 sec.

These results clearly show that the proposed algorithm is able to obtain accurate estimates

of global SNR – both broadband and filtered.

4.3.2 Subband SNR Estimation

Subband SNR estimation results are shown in Figs. 4-8. The figures show the performance for

the four noises individually, and the average across them. Unlike the global SNR estimation
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Figure 5: Subband SNR estimation results using WADA, HND, the IBM, and the estimated IBM by the
proposed algorithm, for speech mixed with car noise. Mean absolute errors across the 64 sub-bands are
shown, for the following filtered SNR conditions: (a) -10 dB. (b) -5 dB. (c) 0 dB. (d) 5 dB. (e) 10 dB. (f) 15
dB.

results, the errors are larger even when the IBM is used, where the best performance is

typically obtained. Similar to broadband SNR estimation, HND and the proposed algorithm

outperform the IBM based results for a few channels and test conditions. For the proposed

algorithm, better performance is usually obtained when the noise type is stationary. Two

conditions especially unfavorable to the proposed algorithm are: low frequency channels when

the background noise is babble, and high frequency channels when the background noise is

factory, both at SNRs ≤ 0 dB. Even then, the proposed algorithm is not the worst performing
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Figure 6: Subband SNR estimation results using WADA, HND, the IBM, and the estimated IBM by the
proposed algorithm, for speech mixed with babble noise. Mean absolute errors across the 64 sub-bands are
shown, for the following filtered SNR conditions: (a) -10 dB. (b) -5 dB. (c) 0 dB. (d) 5 dB. (e) 10 dB. (f) 15
dB.

method at these conditions. In fact, at the latter condition, it is still better than both HND

and WADA. The mean absolute error of the proposed algorithm is almost always ≤ 5 dB at

the remaining conditions.

Excluding the IBM results, the best performance in the low frequency channels (center

frequency ≤ 350 Hz or the first 10–15 channels) is typically obtained by the proposed algo-

rithm. The only noted exception is when the noise is babble and the SNR ≤ 0 dB. In these

conditions, HND works better. If we consider the average performance across all noise con-
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Figure 7: Subband SNR estimation results using WADA, HND, the IBM, and the estimated IBM by the
proposed algorithm, for speech mixed with factory noise. Mean absolute errors across the 64 sub-bands are
shown, for the following filtered SNR conditions: (a) -10 dB. (b) -5 dB. (c) 0 dB. (d) 5 dB. (e) 10 dB. (f) 15
dB.

ditions (Figure 8), the mean absolute error of the proposed algorithm is well within 5 dB for

these frequency channels, significantly better than both HND and WADA. The performance

of WADA at low frequency channels is poor because the noisy signals, or even the speech

signals for that matter, in these channels are not Gamma distributed anymore.

For the mid-frequency channels (center frequency between 300 Hz and 3800 Hz, or frequency

channels 13–51), no one method works uniformly better than the rest. Both HND and the

proposed algorithm work well in most conditions. WADA obtains results similar to HND and

21



OSU Dept. of Computer Science and Engineering Technical Report #36, 2011

0

5

10

15
−10 dB

M
ea

n 
ab

so
lu

te
 e

rr
or

 (
dB

)

(a)

0

5

10

15
−5 dB

WADA
HND
IBM
Proposed

(b)

0

2

4

6

8

10

12
0 dB

M
ea

n 
ab

so
lu

te
 e

rr
or

 (
dB

)

(c)

0

2

4

6

8

10

12
5 dB

(d)

50 332 839 1919 3864 8000
0

2

4

6

8

10

Center Frequency (Hz)

10 dB

M
ea

n 
ab

so
lu

te
 e

rr
or

 (
dB

)

(e)

50 332 839 1919 3864 8000
0

2

4

6

8

10

Center Frequency (Hz)

15 dB

(f)

Figure 8: Subband SNR estimation results using WADA, HND, the IBM, and the estimated IBM by the
proposed algorithm, averaged across all noise types. Mean absolute errors across the 64 sub-bands are shown,
for the following filtered SNR conditions: (a) -10 dB. (b) -5 dB. (c) 0 dB. (d) 5 dB. (e) 10 dB. (f) 15 dB.

the proposed algorithm when the background noise is white. For car noise it works quite

well when the SNR ≥ 10 dB, almost as well as the IBM and better than both HND and

the proposed algorithm. This is largely because the true subband SNRs in these conditions

are well above 0 dB. At other conditions, performance of WADA is significantly worse than

the other methods, as reflected in the average performance shown in Figure 8. When the

background noise is non-stationary, the proposed algorithm is slightly better than HND at

most SNRs. Under stationary conditions, the performance of the proposed algorithm is mostly

comparable or better than HND. In a few cases, especially when the SNR is high, HND works

22



OSU Dept. of Computer Science and Engineering Technical Report #36, 2011

slightly better. Similar mixed trends can be observed for the high frequency channels (center

frequency≥ 3800 Hz, or the last 10–15 channels), with the proposed algorithm working slightly

better than HND especially when the noise type is non-stationary.

We can observe a few overall trends in estimation errors from the figures. For example,

from Figure 8 we can see that as the filtered SNR of the signal increases, the performance of

the proposed algorithm also improves. When the SNR is -10 dB, the mean absolute errors

are about 4 dB. And when the SNR is 10 dB, the errors are about 2 dB. Also note that

improvements in mask estimation can clearly improve the average performance of the proposed

method, since the IBM results are significantly better especially at low SNR conditions. These

results indicate that the proposed algorithm can additionally be used to estimate subband

SNRs with considerable accuracy.

5 Discussion

The results presented in this paper show that binary masks can be used for long-term SNR

estimation – both at subband and broadband levels. The results further indicate that we only

need a reasonable estimate of the IBM to obtain good SNR estimates. If an algorithm is able

to correctly label the high energy regions as belonging to the target or the noise, the long-term

SNR can be estimated with very good accuracy as the energy in these regions dominates the

total energy. In most of the test conditions, the best performance is obtained when the masks

estimated by CASA and speech enhancement algorithms are combined.

The proposed algorithm cannot be used to estimate short-time SNR of a signal, which would

lead to a chicken-and-egg problem as the short-time SNR can directly be used to estimate the

IBM. A disadvantage of the proposed algorithm is its computational complexity. The CASA

component involves computation of autocorrelation and envelope extraction at each T-F unit

during the feature extraction stage, both of which are computationally expensive. The feature

extraction stage dominates the time complexity of the proposed algorithm. Autocorrelations

can be efficiently calculated in O(N logN) time and since frequency channels are independent

of each other, computations can be parallelized [11, 13]. Even so, the algorithm takes longer

than WADA or HND. Nevertheless, the performance in SNR estimation obtained by the

proposed system is significantly better than these approaches.

Binary masking described in this work is quite different from the VAD based algorithms

that have been proposed in the literature for SNR estimation [16,20]. A VAD tries to identify

noise-only frames to obtain an estimate of the noise energy by assuming stationarity. On the

other hand, our approach identifies noise-dominant T-F units, which are used to approximate

the total noise energy in the algorithm. The algorithm can easily be extended to estimate the

SNR in speech-present frames, by simply dropping noise-only frames during estimation.

Note that, the mask estimation and the SNR estimation in the proposed system are two

separate modules. The IBM estimation module used by the current system can be replaced
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with any other mask estimation algorithm. Therefore, the proposed algorithm can potentially

be used in more challenging conditions like reverberant noisy environments and multi-talker

conditions by replacing the existing mask estimation algorithm with those that work well in

such conditions.

To summarize, we have proposed a novel CASA based SNR estimation algorithm. The

algorithm estimates the filtered SNR, the broadband SNR and the subband SNRs with high

accuracy. Results show that the performance of the proposed system is better than existing

long-term SNR estimation algorithms. The algorithm additionally estimates the IBM, which

can be used for speech separation purposes. An insight from our work is that binary masks

can be effectively used for SNR estimation.
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