
Using Ontology-Based Methods for Implementing Role-
Based Access Control in Cooperative Systems

Satyajeet Raje Chowdary Davuluri Michael Freitas Rajiv Ramnath Jay Ramanathan
Department of Computer Science and Engineering,
The Ohio State University Columbus, Ohio, USA.

ramnath@cse.ohio-state.edu
	

ABSTRACT
Cooperative systems and Internet-based collaborative
environments nowadays are becoming pervasive. The issue of
security of data becomes very critical due to the federated
databases that such systems integrate. In this paper, we describe
the implementation and evaluation of a role-based access control
(RBAC) mechanism for a system used to support proteomics
researchers in collaborative project group at a major medical
center at a R1 research university. This system uses ontology-
based methods for its implementation. Using an ontology in
RBAC has several advantages. It eases the process of making
modifications. It also brings about standardization, which is
cornerstone for portability. We test and evaluate this approach in
an implementation of a data-management system for proteomic
experiment data. The primary aim of this study is, firstly, to make
use of an upcoming and potentially standard technology and apply
it to the domain of system security. Our second aim is to validate
the hypothesis that such a method can be effectively used in a
real-world cooperative system.

Categories and Subject Descriptors

H.2.7 Database Administration

H.5.3 Group and Organization Interfaces

C.1.3 Other Architecture Styles

General Terms
Management, Security and Standardization.

Keywords
Ontology, Access Control, RBAC, Semantic Web.

1. INTRODUCTION
The safety and consistency of information are not trivial issues for
even the smallest of organizations. In collaborative research
environments in particular, addressing data access-control issues
is very important, but difficult to find solutions to. The scale of
these issues becomes even more severe when databases serving
these collaborative environments are federated and heterogeneous
i.e. are on different platforms and varied in their the schema. It
has also is become crucial to have standardized mechanisms for
access control. The reason is that this facilitates collaboration and
allows for faster cooperation. Standardized mechanisms provide
the ability to manage large cooperative systems.

Figure 1: Role-based Access Control

Role-Based Access Control (RBAC) and Team-based Access
Control (TMAC), an extension of RBAC, are techniques
considered suitable for managing access in cooperative
organizations [1, 2]. RBAC, explained in Figure 1 above, was
introduced in early multi-user computer systems [3, 4]. As seen in
the figure, RBAC separates the user management and assignment
of permission. A major advantage of RBAC is its ability to
constraint access based on the concept of separation of duties,
which significantly simplifies the management of permissions,
because it is easy to use and understand. RBAC is a means for
controlling access to resources based on the roles that individual
users have within an organization. In this method, individual users
are assigned roles, which, in turn, are associated with permissions,
In other words, instead of specifying access rights (read, write,
etc.) to individual objects a user is granted access based on his
assigned roles. RBAC has stirred up interest from the research
community working in data and information security as can be
seen in [2]. However, the success of traditional RBAC techniques
comes at a price. Because of the additional level of indirection in
the specification of the access-control policy, these techniques
lack the granularity that is required for effective data access
control as the permissions are restricted to the roles and making
exceptions is not easy. In addition, traditional RBAC also cannot
utilize contextual information as is required in larger
collaborations. This makes the traditional RBAC cumbersome and
not as effective as expected in the cooperative environment.
The method described in this paper tries to overcome these
shortcomings by using an ontology-based approach for
specification and implementation of the RBAC in a collaborative
system used within a research group to manage proteomics data,
where the access control policy depends on how the project team
hierarchy is structured.
2. USING ONTOLOGY BASED
MECHANISMS FOR RBAC
Traditional RBAC techniques are typically difficult to adapt
across organizations [5]. If a good access control mechanism has
been implemented for one project, it is difficult to modify and use

the same for another project. This is a major concern in case of
dynamic project environments, where it is difficult for traditional
RBAC to cope with changing organizational structures, user roles
and security requirements found in such scenarios. As dynamic
environments are becoming common there is need of change in
the RBAC techniques as well.
Over the past few years, ontology-based methods are being used
to solve problems with a wide range of scope [6]. In this study we
apply these methods to address access control in organizational
structures. They permit the uniform description of organizational
structures, roles, privileges and resources at different levels of
abstraction and supports reasoning about both the structure and
the properties of the elements that constitute the system.
Essentially, ontology-based mechanisms allow for contextual
information to be stored along with the access control
mechanisms. Another major advantage is that ontology-based
systems require only the URIs to point to the actual data sources
URI and URI handling is an integral part of Web 3.0, so moving
to a federated system is easy and an implementation based on
ontological methods provides this inherently. This becomes very
important in collaborative environments as the data in question is
invariably distributed. However, since the control to the data is
entirely URI based it does not matter where the data is located as
long as we have an updated URI. We feel that all these advantages
make up for the shortfalls in traditional RBAC and make it more
suitable for cooperative systems with heterogeneous
environments. Finally, ontology-based mechanisms provide the
standardization essential for portability [7].
The researchers in [1] provide a comparative analysis of the
different possible access control mechanisms. They conclude that
that decentralized access control models that use Web 3.0
technologies show promise for federated, collaborative systems. A
similar comparison is provided by [2]. In [8] ontological methods
for access control to web communities is discussed. There are two
types of RBAC constraints: dynamic and static. Authors in [9]
described an approach for RBAC with dynamic constraints using
automated reasoning techniques.

In [10], authors presented an approach to reduce the inefficiencies
of the management (coordination, verification and validation, and
enforcement) of many role-based access control policies and
mechanisms using OWL1. They focused on the representation of
XACML2 (eXtensible Access Control Markup Language) policies
in DL. The authors in [11] discuss how one might use SPARQL
along with the reasoner to implement RBAC on the semantic web.
In [12], the authors also suggested expressing access control
policies based on OWL and SWRL. The solution was limited to
the definition of OWL ontology and declaration of SWRL rules.
They predicted the use of an engine to deduce more information
by adding rules. Another such technique is discussed in [13]. The
proposed solution actually uses an OWL reasoner called Pellet3 to
execute rules and deduce more information. Paper [14] also
proposed using OWL for constructing ontologies that define
policies/privileges.

1 OWL Web Ontology Language Reference:
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
2 http://www.oasis-open.org/committees/xacml/
3 Pellet: The Open Source OWL 2 Reasoner:
http://clarkparsia.com/pellet/

Organizational semantics and access control mechanisms may be
formally represented in an ontology using several available
ontology languages. In our work, we focus on Web Ontology
Language (OWL) recommended by the W3C. The system can
control access to the resources of the organization by providing
differential access privileges. We specify static constraints on
roles, and use Semantic Web Rule Language (SWRL) rules over
the ontology to infer new knowledge to be passed back to the
ontology. Through these rules, verification of access control
constraints defined in the ontology are also achieved. Our
evaluation shows that the proposed solution can adapt to changing
organizational structures with less effort, and (finally) that there is
acceptance from users of the system.

3. AN EXAMPLE ORGANIZATIONAL
STRUCTURE
For illustration let us look at the organizational structure in Figure
1 below. This example is based on an actual proteomics research
group within a comprehensive cancer center (CCC) within the
medical center at a major R1 university.

Figure 2: A typical organizational structure

This real example is not unlike a hierarchy within a dynamic
collaborative project group. It deals with the roles Department
Head (DeptHead), Principal Investigator (PI), Group Leader (GL)
and Technician (Tech). CCC (a Department) contains two projects
- Proteomics and Genomics. Proteomics (Project) in turn contains
groups MetaDB and Pegasus. A department is headed by a
Department Head, a project by a Principal Investigator and a
group by a Group Leader, respectively. A group may contain
multiple technicians. A researcher’s resources consists of the set
of files owned by him. A person may have multiple roles. For
example, David is not only a PI (Project – Genomics) but also a
GL (Group – MetaDB). He should have access to the
corresponding project and group resources in which he is
involved. Thus, a person’s access rights are determined by his role
in the departments, projects and groups to which he belongs.
Following are some of the examples of access rights for the
specific roles:

1. DeptHead is the head of a Department. He can read the files
owned by PIs of all the projects owned by his department. He
can add and delete projects to his department. He can also
add and remove PIs to the projects within his department.

2. PI is the head of a project. He can read the files of GLs of all
the groups owned by his project. He can add or delete groups

to his project. He can also add or delete GLs to the groups his
project owns.

3. GL is the head of a group. He can read and write the files of
all the Technicians of his group. He can add and delete
Technicians to his group.

4. A Technician can read the files of all the others Technicians
in his group.

5. Finally, Department Heads gain read permission to files of
Principal Investigators of projects part of their respective
departments.

Note that the system should manage access to resources not only
based on roles but also based on the involvement in organizational
divisions (departments, projects and groups). The traditional
RBAC implementations cannot provide support for such specific
role assignments.

4. THE PROPOSED ONTOLOGY
4.1 Defining Concepts
The ontology described here is based on the specific
organizational structure described in Figure 2. In the proposed
ontology, the Researcher class defines researchers of the
organization. We specify Department, Project and Group as
subclasses of WorkUnit in order to avoid defining explicit
relationships between department / project / group and roles. Role
is the positional hierarchy of researchers in the organization.
Through this, individuals are restricted in access to the correct
resources. The class hierarchy is a critical issue in inheritance of
properties. The classes Department Head, Principal Investigator,
Group Leader and Technician are a subset of the Role class. The
File class defines the files owned by a researcher. The Tag class
defines user-defined folksonomies.

Figure 3: The proposed ontology

4.2 Concepts through Instances
OWL classes are interpreted as sets that contain instances of
concepts (i.e. individuals). In Figure 3 instances of classes are
shown in ellipses. Instances of the researchers are defined here
simply as their names. Instances to the subclasses of Role are
added in accordance with the individual roles to realize multiple
roles of a person. As for example, David_PI instance of Principal
Investigator corresponds to the principal investigator instance of

David. Similarly, David_GL corresponds to the group leader role
of David.
4.3 Relations through Properties
Properties are the binary relations between the two things, more
specifically between the instances of classes. A property relates
instances from the domain with the instances from the range.
Syntactically, a domain links a property to a class and range links
a property to either a class or a data range. Due to the class
hierarchy and domain and range specifications, subclasses inherit
the relationships between the respective classes. Figure 3 also
provides the properties and their relationships with classes.
rolePlaysIn property specifies the fact that in which specific Work
Unit (department/project/group) a Role instance plays its role. The
proposed ontology is supposed to answer what kinds of
permissions a researcher has on a resource and
hasReadPermission and hasWritePermission properties define
this situation. Note that the relationships of hasReadPermission
and hasWritePermission are not defined explicitly. These
relationships of the properties are filled in through the inferencing
process.

5. ENHANCING THE KNOWLEDGE BASE
The expressivity provided by the OWL is limited to tree like
structures [15]. This means that knowledge based on indirect
relations between the entities cannot be inferred from an OWL
ontology. Therefore, we do inferencing using rules described over
the ontology, using the Semantic Web Rule Language (SWRL)4 -
a complementary feature of OWL. SWRL rules can be used to
infer new knowledge from existing OWL knowledge bases.
SWRL is based on a combination of the OWL DL and OWL Lite
sublanguages of the OWL and the Unary/Binary Dialog
sublanguages of the Rule Markup Language5 (RuleML). SWRL
allows users to write Horn-like rules expressed in terms of OWL
concepts to reason about OWL individuals without creating
restrictions to the original functionality [16]. In this work we also
used the Pellet reasoner explained in [17]. Pellet is a complete
OWL-DL reasoner with acceptable to very good performance,
extensive middleware, and a number of unique features that we
have used to implement the rules. It is the first sound and
complete OWL-DL reasoner with extensive support for reasoning
with individuals (including nominal support and conjunctive
query), user-defined data types, and debugging support for
ontologies. It implements several extensions to OWL-DL
including a “combination formalism” for OWL-DL ontologies, a
non-monotonic operator, and preliminary support for OWL/Rule
hybrid reasoning.
Objects of the properties hasReadPermission and
hasWritePermission are filled in through the inferred knowledge
derived by executing the rules. In order to do this, the proposed
ontology and SWRL rules are transferred to Pellet. Running the
reasoner then initiates the inferencing process, which generates
additional knowledge elements that are passed back to, and
enrich, the ontology. Some of the SWRL rules corresponding to
the example policies in Section 3 are as follows:

• Rule1: A group leader has write permission over the files
owned by all the technicians in his group

4 http://www.w3.org/Submission/SWRL/
5 http://ruleml.org/

File(?f) , Group(?G) ,
Researcher(?p) , Researcher(?t) ,
GroupLeader(?p_GL) , Technician(?t_Technician) ,
hasRole(?p, ?p_GL) , hasRole(?t, ?t_Technician) ,
isFileOwnedBy(?f, ?t) ,
rolePlaysIn(?p_GL, ?G) , rolePlaysIn(?t_Technician, ?G) ->
hasWritePermission(?p, ?f)

• Rule2: A technician has read permission over the files
owned by all the other technicians in his group

File(?f) , Group(?G) ,
Researcher(?p) , Researcher(?t) ,
Technician(?t_Technician) , Technician(?p_Technician) ,
hasRole(?p, ?p_Technician) , hasRole(?t, ?t_Technician) ,
isFileOwnedBy(?f, ?t) ,
rolePlaysIn(?p_Technician, ?G) , rolePlaysIn(?t_Technician, ?G)
-> hasReadPermission(?p, ?f)

• Rule3: Department Heads gain read permission to files of
Principal Investigators of projects part of their respective
departments.

Department(?D) , Project(?P) , File(?f) ,
isProjectOf(?P, ?D) ,
Researcher(?p) , Researcher(?t) ,
DepartmentHead(?p_DeptHead) , PrincipalInvestigator(?t_PI) ,
hasRole(?p, ?p_DeptHead) , hasRole(?t, ?t_PI) ,
isFileOwnedBy(?f, ?t) ,
rolePlaysIn(?p_DeptHead, ?D) , rolePlaysIn(?t_PI, ?P)
-> hasReadPermission(?p, ?f)

Once again, note that all the relationships that exist between the
entities in the ontology are not explicitly defined in the ontology.
For example, hasWritePermission relationship of group leader
David (David_GL) has not been explicitly defined. Executing
Rule 1 infers those relationships, and identifies which resources
David_GL has write access to. That is (see Figure 2) executing
Rule 1 infers that researcher David, as group leader of MetaDB,
has write permission to the resources owned by researchers
Andrew and Josef. The inferred results are exported back to the
ontology to fill these empty relationships. Execution of Rule 2
shows the similar result. Researcher Andrew, as a technician in
the MetaDB group, gains read access to the resources owned by
researcher Josef. The implementation of other rules is also
straightforward.

6. IMPLEMENTATION
The research described in this paper is part of a larger effort to
provide a usable, extensible, scalable system and framework
(called MetaDB) for management of large-scale proteomics data
for research groups within a large medical research center. Figure
3 shows a component diagram for MetaDB. The MetaDB
framework provides APIs for managing meta-data, fetching
consolidated logical data sets, updating information objects etc.
This component is domain independent, very generic and can be
used to manage almost any kind of data (for example, a shared
music collection, something like a federated iTunesTM!). The core
component interacts with different data sources using standard

access methods – SOAP-based web services and a ReSTful
interface. The details of the implementation are provided in [18].

Figure 4: Component Diagram

The framework (including the core component) is built on the
Enterprise Java framework. It is extensible in that it provides for
adding on domain specific functionality through plug-ins. For
example, there is a proteomics plug-in to handle proteomics
metadata. Domain specific plug-ins must also provide a
corresponding UI component. The primary purpose of the plug-
ins is to create a specific view of data.

An example of the access-management GUI is shown in Figure 4,
which shows the panel from which the administrator views and
modifies the organizational hierarchy, by adding or removing
roles, rules and individuals.

Figure 5: GUI for the tool

7. EVALUATION
In this section we present a brief evaluation of the tool along the
axes of flexibility, usability and performance.
7.1 Flexibility
The ontology-based approach allowed us to reflect the
organization changes of a research environment with minimum
effort. For example, let us assume that a new group, MicroArrays
has been created in the project hierarchy shown in Figure 1, and is
to be added to the Genomics project, with researchers Adam and
Josef having joined as the group leader of and technician within
the group respectively. These changes in the organizational

structure may be straightforwardly accomplished using the user-
interface shown in Figure 3. Now, let us see how the access-rights
to files are adjusted.
It is expected that a group leader (Adam) has read permission over
the files owned by the technicians (Josef) in his group. As a
principal investigator, researcher David gains read and write
permissions to the files owned by research Adam, group leader of
group MicroArrays, under project Genomics. The corresponding
actions to reflect these changes into the ontology are described
below, as a means of evaluating the strength of our approach.

1. Add new researcher instance: Adam
2. Add new group instance: MicroArray
3. Add new instance of Group Leader role: Adam_GL
4. Calculate the corresponding relationships.
5. If we execute Rule 1 (described in Section 5), new

relationships are inferred with hasWritePermission property.
These are exported back to the ontology to fill in the empty
relationships. As expected, researcher David gains read
access to the files owned by researcher Adam.

Figure 6: Modified Structure

Note that the changes that are required to the existing ontology are
all in the instances, and automatically done by the rules. In our
approach it is also simple mechanism to revoke somebody’s role
or privilege. One can simply delete the relationship between the
role instance and the corresponding permission instance to
withdraw the privilege. Afterward the corresponding role instance
itself can be deleted to entirely repeal the subject’s role-specific
permissions.
7.2 Performance
Although OWL ontologies can now be stored in relational
databases, querying resulting from the inferencing process was
computationally very expensive, with frequent querying
drastically reducing the performance of the system when
managing large numbers of entities. Thus, MetaDB architecture
essentially copies into the ontology the contents of the database.
This replication of information resulted in significant run-time
performance gains in read-only situations. However, when new
entities (data objects, users and roles) were added the entire
ontology was recomputed.
7.3 User Acceptance
A small user assessment of MetaDB has been conducted in order
to gather requirements for future work. The users were developers
not associated with this project (in order to minimize bias). The

software implementation was provided as an executable jar file
along with a basic Users’ Guide. Users were asked to fill out a
questionnaire in which they were asked to indicate their level of
agreement with a set of assertions about MetaDB (with 1
indicating strong disagreement and 5 indicating strong
agreement). Table 1 summarizes the results of the questionnaire.

Statement

Average
Rating

1 It helps me be more effective 3.25
2 It is useful 3.25
3 I can use it successfully every time 4.25
4 It saves me time when I use it 3
5 It meets my needs 3
6 It does everything I would expect it to do 4
7 It is user-friendly and simple to use 4
8 I can use it without written instructions 4.5
9 I don’t notice any inconsistencies as I use it 3.5

10 I am satisfied with it 4
Table 1: User Evaluation

The evaluation showed that users evaluated the ease of use of the
software positively, with almost all the users reporting that the
user interface was intuitive and usable without written
instructions. Interestingly, several of the users felt that the
software would be more useful to their respective supervisors than
to them. When we went deeper into this issue with them, users
supported this assertion by saying that they knew well where their
individual data was stored and how it was organized. When they
were specifically asked about shared data, they began to better see
the usefulness of the software. Also, it turned out that all the users
participated in the study were part of multiple projects, but with
no clearly defined roles. Thus, it was clear that they had not yet
been placed in situations where access control was complex.
Certainly, an expanded, comprehensive user evaluation is
necessary.

8. DISCUSSION AND FUTURE WORK
Given the interpreted nature of the technology this approach is
computationally expensive. Also, note that decidability is not
guaranteed by SWRL. We are currently working on caching meta-
date in the relational database for frequent and faster centralized
access. We believe this will decrease the access time for the
system drastically.
Another impact to performance was caused by the fact that the
state of the art in Description Logic (DL) reasoners currently do
not allow incremental reasoning (so that less re-computation is
needed when updates to rules are made, or when new objects are
added. (Although Pellet, the OWL-DL reasoner being used,
contains support for incremental classification and incremental
consistency checking, it still does not support incremental
realization). Thus, changes to rules are currently implemented in a
“clear-and-reload” manner. Integrating incremental reasoning
within the current system, whenever available, should increase the
performance, particularly when reasoning over large knowledge
bases.
9. CONCLUSION
In this paper, we discussed how access management in dynamic
project-based environments might be implemented using
Semantic Web technologies. Specifically, we developed an

ontology to represent the organizational structure of a project-
based dynamic and collaborative research environment and the
roles of individuals. In the ontology, dynamic and non-
hierarchical relationships between the entities could not be
defined explicitly; semantic rules (in SWRL) were used to specify
additional access control policies. A Pellet OWL-DL reasoner
executed these rules to calculate new facts, which were then
transferred back to the ontology. The system has been assessed at
a small-scale and has received positive responses from potential
users.

ACKNOWLEDGEMENTS
This work was supported by the National Science Foundation's
Industry-University Cooperative Research, at the Centre for
Experimental Research in Computer Systems at Georgia Tech
Institute and The Ohio State University, and by the National
Institutes for Health Grant R01CA107106. We also thank research
group members at the Ohio State Medical Center for their help in
the evaluation. We also acknowledge Aman Kumar, who
implemented the first prototype of metaDB.

REFERENCES
[1] Baina, A., Deswarte, Y., El Kalam, A. and Kaaniche, M.

Access Control for Cooperative Systems: A Comparative
Analysis. In Proceedings of the 3rd Intl. Conf. on Risks and
Security of Internet and Systems (CRiSIS '08) (Tozeur,
Tunisia, Oct 28-30, 2008), IEEE Computer Society,
Piscataway, N.J., 2008, 19 - 26.

[2] Tolone, W., Ahn, G., Pai, T. and Hong, S. 2005. Access
control in collaborative systems. ACM Comput. Surv. 37, 1
(March 2005), 29-41.

[3] Sandhu, R., Ferraiolo, D. F. and Kuhn, D. R. The NIST
Model for Role Based Access Control: Toward a Unified
Standard. In Proceedings of the 5th ACM workshop on Role
Based Access Control, (Berlin, German, July 26-27, 2000).
ACM Press, New York, NY, 2000, 47-63.

[4] Bacon J., Moody K., and Yao W. 2002. A model of OASIS
role-based access control and its support for active security.
ACM Trans. Inf. Syst. Secur. 5, 4 (Nov 2002), 492-540.

[5] Elahi, N., Chowdhury, M. and Noll, J. Semantic Access
Control in Web Based Communities. In Proceedings of the
3rd Intl. multi-conference on Computing in the Global
Information Technology (ICCGI '08) (Athens, Greece, July
27-Aug 1, 2008). IEEE Computer Society, Los Alamitos,
CA, 2008, 131 - 136.

[6] Hayes-Roth, F. and Jacobstein, N. 1994. The state of
knowledge-based systems. Commun. ACM 37, 3 (March
1994), 26-39.

[7] Fensel, D. Ontologies: A Silver Bullet for Knowledge
Management and Electronic Commerce. Springer, Berlin,
NY, 2001. Print.

[8] Chowdhury M., Chamizo J., Noll J. and Miguel J. Capturing
Semantics for Information Security and Privacy Assurance.

In Proceedings of the 5th Intl. conference on Ubiquitous
Intelligence and Computing (UIC '08). (Oslo, Norway, June
23-25, 2008). Springer-Verlag, Berlin, Heidelberg, 2008,
105-118.

[9] Dury A., Boroday S., Petrenko A. and Lotz V. 2007. Formal
Verification of Business Workflows and Role Based Access
Control Systems. In Proceedings of the The International
Conference on Emerging Security Information, Systems, and
Technologies (SECUREWARE '07). IEEE Computer
Society, Washington, DC, USA, 201-210.

[10] Smith, M.A., Schain, A.J., Clark, K.G., Griffey, A. and
Kolovski, V. Mother, May I? OWL-based Policy
Management at NASA. In Proceedings of the Workshop on
OWL: Experiences and Directions (OWLED 2007).
(Innsbruck, Austria, June 6-7, 2007).

[11] Cirio, L., Cruz, I., and Tamassia, R. A Role and Attribute
Based Access Control System using Semantic Web
Technologies. In Proceedings of the 2007 OTM
Confederated international conference on On the move to
meaningful internet systems - Volume Part II (OTM'07),
Robert Meersman, Zahir Tari, and Pilar Herrero (Eds.), Vol.
Part II. Springer-Verlag, Berlin, Heidelberg, 1256-1266.

[12] Di W., Jian L., Yabo D., and Miaoliang Z. Using Semantic
Web Technologies to Specify Constraints of RBAC. In
Proceedings of the 6th Intl. conference on Parallel and
Distributed Computing Applications and Technologies
(PDCAT '05). (Dalian, China, December 5-8, 2005). IEEE
Computer Society, Washington, DC, USA, 2005. 543-545.

[13] Li, H., Zhang, X., Wu, H., Yuzhong, Q., Design and
Application of Rule Based Access Control Policies. In
Proceedings of the 4th Intl. Semantic Web and Policy
Workshop (SWPS). (Galway, Ireland, November 7, 2005)

[14] Finin T. and Joshi A. Agents, trust, and information access
on the semantic web. SIGMOD Rec. 31, 4 (December 2002),
30-35.

[15] Motik B., Sattler U. and Studer R. Query Answering for
OWL-DL with rules. Web Semant. 3, 1 (July 2005), 41-60.

[16] O'Conner, M., Knublauch, H., Tu, S., Grosof, B., Dean, M.
Grosso, W., and Mussen, M. Supporting rule system
interoperability on the Semantic Web with SWRL. In
Proceedings of the Fourth International Semantic Web
Conference (ISWC2005). (Galway, Ireland, November 6-10,
2005)

[17] Sirin, S., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.
Pellet: A practical OWLDL reasoner. Technical Report CS
4766, University of Maryland, College Park, MD (2005)

[18] Davuluri C. Role-Based Access Control in Collaborative
Research Environments. Thesis. Dept. of Computer Science
and Engineering, The Ohio State University. (2010)

