
Zoolander: Modelling and Managing Replication for Predictability

Daiyi Yang and Christopher Stewart
The Ohio State University

Abstract
Social networking and scientific computing workloads
access networked storage much more frequently than tra-
ditional, e-commerce workloads. In these workloads, is-
suing storage accesses in parallel offers speedup, as long
as the slowest parallel access is fast. This paper stud-
ies replication for predictability, an approach to speed
up slow storage accesses by running the same work-
load on duplicate servers and using the results from the
fastest server. We created Zoolander, an analytic model
that predicts the percentage of accesses that will com-
plete quickly— i.e., a service level. Zoolander considers
the effects of replication strategies, heavy tails in access
time distributions, and queuing delays. We validated Zo-
olander against RP Zookeeper, an enhanced Zookeeper
Coordination Service that supports replication for pre-
dictability. Zoolander was precise, predicting achieved
service levels within 0.002 across diverse workloads and
platforms. We used Zoolander to manage service lev-
els of two parallel, data-intensive workloads running on
RP Zookeeper. Exploiting replication for predictability,
we achieved speedups of 373% and reduced the cloud
servers needed by 50%.

1 Introduction

Service level agreements (SLAs) set bounds on the per-
cieved latency for networked storage accesses at differ-
ent percentile levels. For example, a traditional, storage
SLA may read, “99% of all storage accesses should com-
plete within 300ms provided peak load is less than 500
accesses per second [10, 27, 30].” The service-level por-
tion in the above SLA (i.e., 99% of all accesses) may
suffice for static content and e-commerce workloads that
nest only a few storage accesses within a single user re-
quest. However, data-intensive workloads like social net-
working and cloud-based scientific computing may nest
many parallel, storage accesses within a user request.

Response times for such workloads depend on the slow-
est parallel storage access— not the mean. These work-
loads need storage systems that can provide service lev-
els of several nines (e.g., 99.99% of all accesses) while
maintaining low latency.

Partitioning and replication are widely used to manage
service levels in traditional storage workloads [10, 14].
However, parallel, data-intensive workloads may de-
mand stronger service levels than small partitions un-
der light workloads can achieve, creating a need for
additional approaches. Recently researchers have be-
gun reigning in performance anomalies, i.e., making ac-
cess times follow a normal distribution with low vari-
ance. Such research has taken two approaches: 1) debug-
ging the underlying root causes of anomalies [23] and 2)
avoiding anomalies via online management [2, 27, 30].
In very recent works, Trushkowsky et al. [30] and Anan-
thanarayanan et al. [2] used replication for predictabil-
ity to avoid anomalies in their systems. Specifically,
the SCADS manager [30] deploys two copies of the ex-
act same storage partition, sending reads to both copies
in parallel. The copy that replies first (normally not
an anomaly) provides the result. This approach, called
replication for predictability, is unlike traditional repli-
cation for throughput. Here, replication masks non-
deterministic performance anomalies. It reduces vari-
ance but does not improve throughput. The prior work [2,
30] used replication for predictability only sparingly with
conservative, ad-hoc goals. For example, in both works,
the approach was limited to no more than two copies and
supported only read accesses. Neither work quantified
the expected performance gains. This work studies repli-
cation for predictability in greater detail by 1) modelling
its benefits (at scale) and 2) using it to manage service
levels for the read and write storage accesses of data-
intensive, parallel services.

We present Zoolander, an analytic model that predicts
service levels under replication for predictability. Zo-
olander accepts the following inputs: 1) a target latency

bound, 2) service-time distributions, 3) storage access
patterns, and 4) the network latency distribution. Zoolan-
der outputs the percentage of accesses with response time
below the target latency (i.e., the service level). Online
management can query Zoolander with what-if questions
about the service level under hypothetical changes, e.g.,
what will the service level become if the request arrival
rate doubles or how many duplicates are needed if the
SLA is strengthened to 99.99%?

We validated Zoolander by adding replication for pre-
dictability to the Zookeeper Coordination Service [15],
creating a storage system that we call RP Zookeeper.
We chose Zookeeper for three reasons. First, it is
used in production at Yahoo where it underlies the Ya-
hoo Message Broker and PNUTS. Second, Zookeeper
implements wait-free coordination as a service, mean-
ing the latency of any storage access depends only on
Zookeeper servers, not on the computation of user work-
loads. Such wait-free coordination reduces the variance
of service times within Zookeeper. Our third reason for
choosing Zookeeper is that it enforces write-order con-
sistency that is stronger than many published key-value
systems [9,10]. RP Zookeeper maintains these relatively
strong consistency guarantees. Viewed as a case study,
RP Zookeeper shows that replication for predictability
can support stringent consistency. The name Zoolander,
for a service-level model, comes from a popular movie
about fashion models and plays on the first syllable of
Zookeeper.

Zoolander predicts the service levels of RP Zookeeper
with less than 0.002 error across diverse workloads, com-
plex Zookeeper setups, and heterogeneous hardware.
Using just 4 shared-nothing duplicates, RP Zookeeper
can serve reads and writes within 15ms at a 4-nines ser-
vice level (99.995%). Comparitively, using traditional,
replication for throughput achieves a service level of only
99%—RP Zookeeper improves by 2 orders of magni-
tude. Using Zoolander to guide replication strategy, RP
Zookeeper can reduce the execution time of a scientific
computing workload by 373%. Or, it can meet an preset
SLA using 50% fewer servers.

This paper is organized as follows: Section 2
overviews the emerging data-intensive workloads that we
target, explaining the need for richer SLAs. Section 3
distinguishes our work from prior performance models
and storage systems. Section 4 details the first principles
of replication for predictability for service-level manage-
ment and presents Zoolander. Section 5 summarizes the
implementation of RP Zookeeper. We also present re-
sults on it’s service-level scalability and on the accuracy
of Zoolander. Section 6 demonstrates Zoolander in the
online management of two data-intensive benchmarks.
Section 7 concludes.

2 Background: Data-Intensive Workloads

Our research provides support for transforming data-
intensive workloads into services on cloud-based stor-
age. Today, these workloads are commonly batch pro-
cessed, e.g., as MapReduce jobs, without stringent re-
sponse time constraints. Moving toward a service model
with predictably fast response times could benefit end
users and workload managers alike. End users could
flexibly perform a wider range of operations in real
time [32]. Managers, especially for scientific computing
workloads, can benefit from lower costs by dynamically
provisioning cloud resources instead of investing in ded-
icated hardware [18].

In this section, we first describe the hardware and
software architectures underlying cloud storage. Then
we discuss the storage workloads that arise from data-
intensive services and the impact of slow storage ac-
cesses on such services. Finally, we present the two
data-intensive services used in this paper as representa-
tive benchmarks.
Hardware: Large datacenters comprising thousands of
commodity servers enable new, in-memory system de-
signs for networked storage. Instead of buying a few
custom servers with enormous secondary storage capac-
ity, these new designs exploit the main memory of many
commodity servers. These servers share only the data-
center’s power delivery and network resources—hence,
these designs are often called shared nothing. Since the
servers are independent, simple fail-over redundancy can
mask hardware failures.

One storage access on shared-nothing systems can be
extremely fast, needing only 1) a network roundtrip, 2)
light computation, and 3) a memory access. However,
if the data layout or consistency model requires commu-
nicatation between servers, the performance won’t scale.
One approach to reduce such inter-server communication
is to carefully partition data. Traditional replication can
also be used, provided the storage system can support
relaxed consistency models. Partitioning and replication
are easy to manage in key-value storage systems. A parti-
tion copies a subset of keys from a server to a new server
and replication carbon copies an entire server’s data. The
challenge is understanding when to apply each approach.

Data-Intensive Workloads: Static-content and e-
commerce workloads famously use shared-nothing stor-
age to support interactive Internet services, using parti-
tioning and replication to produce service level guaran-
tees on 99% of storage accesses. In these workloads,
only a few storage accesses must complete quickly to
achieve good results—for example, a 99% SLA on stor-
age accesses often translates to a 99% SLA on static web-
page requests. However, data-intensive services present

workloads that need many fast storage accesses. Even
a few slow storage accesses can degrade performance
for the whole workload. Below, we describe such work-
loads, explaining the outsized effect of a few slow stor-
age accesses.

Inner-Join Olio: This workload represents a request type
within a social networking service. It presents users
with a new view of their data based on a non-indexed
search [28, 32]. Specifically, it allows users of Olio, a
social calendar benchmark [25], to find events posted by
users with fuzzy (non-indexed) properties, e.g., find the
hostess of tagged events posted by users born in Oakland,
CA. In others words, it computes an inner join:

SELECT event.hostess
FROM event INNER JOIN user
ON event.taggedBy includes MY.NAME and
event.id in user.events and user.origin = Oakland;

Like other Olio requests, this workload must return
quickly to satisfy end users. Unlike other requests, this
workload requires many storage accesses. First, key-
values corresponding to the tagged events must be re-
trieved, then values that match the search criteria spark
another access to the user data. Even services with small
user databases will generate hundreds of storage accesses
on these requests. In a key-value storge system, the join
predicate can be parallelized at a fine granularity and
spread across many cloud nodes, but the result is incom-
plete until all parallel accesses finish. Thus, the slowest
parallel accesses are a lower bound on the response time
of the entire request.
Cloud Gridlab-D: This workload runs smart-grid simu-
lations [6] on a shared-nothing cloud. Gridlab-D uses
event-driven simulation to model a wide range of energy
producing/consuming devices from power plants to air
conditioners. Created in C++, each class implements an
simulation agent that first waits for a triggering event,
then updates its local state, and finally triggers other
agents. Figure 1 depicts a workload that tracks the en-
ergy usage for a household, personal choices within it,
and a water heater. Agents in brackets depend only on
the storage system; they can execute in parallel (here,
storage system also maintains global variables). These
agents must complete before agents later in the pipeline
can trigger, even if every agent is given its own compute
resources. Slow storage accesses can affect many depen-
dent agents, inflating response time linearly.

As shown by the above workloads, data-intensive ser-
vices must complete many storage accesses within tight
response time constraints—all of their accesses must
complete quickly. We instrumented the Gridlab-D work-
load and injected a random delay into 2% of its storage
accesses during a 5-minute simulation. Figure 2 plots the
slowdown caused by the few slow requests against the

Water heater

[Water
Demand]

High-SLA
Parallel Reads

[Climate]

Smart Household
Electricity Meter

[Energy Market]
(e.g., renewables)

Air
Conditioning

[Cooling
Demand]

Internal
Air Temp.

Personal
Choices

High-SLA
Parallel Writes

Figure 1: Data dependence in a Gridlab-D simulation for
1 time step. Unframed text blocks represent simulation
agents. Lines indicate data dependence. Dependences
across time steps are not shown.

0% 10% 20% 30% 40%

0%

10%

20%

30%

40%
Observed
Expected

Injected Delay per Access
(% of avg. time per access)

S
lo

w
d

o
w

n

Figure 2: An experiment with the Gridlab-D workload.
Random delay was injected into 2% of storage accesses.
The X-axis shows the amount of delay inserted per ac-
cess. The dotted line plots a slope of 1, i.e., the expected
slowdown for workloads that make few storage accesses.
The solid line plots the observed slowdown in Gridlab-D.

injected delay per access. If Gridlab-D were like static-
content workloads, the slowdown after a 5-minute test
would be proportional to the injected delay per access,
i.e., the expected increase in response time. Unfortu-
nately, injecting a few slow requests made the simula-
tion run 53–133% slower than a static-content workload
would. The outsized effect of a few slow storage ac-
cesses on data-intensive workloads raises a new research
challenge: Is it possible to exploit the abundance of com-
modity cloud servers to improve service levels by several
orders of magnitude while maintaining low latency? In
this paper, we will demonstrate that replication for pre-
dictability provides a scalable solution.

3 Related Work

Parallel, data-intensive services will produce diverse and
demanding storage workloads that need high service lev-
els and low latency. Our goal to manage networked stor-
age for these workloads distinguishes our efforts from

prior work—motivating us to rigorously study replica-
tion for predictability and consider it in online manage-
ment. Prior work that used replication for predictability
targeted specific workloads with less stringent service-
level demands, allowing them to apply the approach spar-
ingly based on ad-hoc rules of thumb. Prior performance
models and anomaly classification tools have focused on
the service-level benefits of partitioning and traditional
replication.

The SCADS manager is the most related system [30].
SCADS achieved service levels of 99.5% for the
EBates.com workload by 1) dynamically partitioning a
key-value store and 2) by using 1 duplicate copy. We dis-
tinguish a duplicate, used in replication for predictability,
from a replica, used in traditional replication for through-
put. Specifically, SCADS observed that even small data
partitions under light load incurred performance anoma-
lies that violated SLAs. However, since their target
workloads did not demand several-nines SLA, SCADS
used only 1 duplicate to avoid anomalies. From an im-
plementation persepective, SCADS also benefitted from
a relaxed-consistency data model that effectively made
their workload read only. The Gridlab-D workload de-
scribed in Figure 1 needs consistent writes in over 40%
of its storage accesses. Further, it demands a stronger
SLA, as a 99.5% SLA would translate to to only 96.5%
SLA for an individual simulation time step. Our con-
tribution is Zoolander, an analytic model that answers
the question, “How many duplicates are needed to get
a 99.9% SLA for Gridlab-D?”

Mantri [2] applied replication for predictability to
map-reduce applications. Working at a higher level, they
traded the costs of a map-reduce task being run twice
(due to failure) against the lost throughput from replica-
tion for predictability. Mantri’s decisions varied depend-
ing on 1) the amount of input data that would be recom-
puted in pipelined map-reduce jobs and 2) the cost of
replicating data. An important distinction is that Mantri
provided only best-effort outlier removal, justifying their
usage of only 1 duplicated job. In contrast, our goal is
to provide predictable and strong SLAs to data-intensive
services. These services may not migrate to cloud stor-
age otherwise, and many consider clouds cost effective
compared to supercomputers anyway [18]. Zoolander
permits reasoning about the precise performance bene-
fits of many duplicates (we have tested up to 16).

Our service-level modelling approach builds on the
prior success of performance models from queuing the-
ory [12, 26, 31] to machine-learned models [3, 8] to con-
trol theory [7, 20, 24] (to cite only a few). Such research
has been broadly impactful in the development of the
foundations for cloud computing, motivating successful
start ups like RightScale and demanding a place in core
system designs (Amazon Queuing service). While rigor-

replica 1

Inner-Join
Olio

Replication for Throughput

1. Get(A)

replica 2

2. Get(B)
3. Get(C)Fin. (1) Fin. (2) Fin. (3)

processing

anomalyprocessing

processing

duplicate 1

Inner-Join
Olio

Replication for Predictability

1. Get(A)

duplicate 2

2. Get(B)
3. Get(C)Fin. (1) Fin. (2) Fin. (3)

processing

anomalyprocessing

processing

processing

ignored

processing

{speedup

Figure 3: Replication for predictability versus replica-
tion for throughput. In this example, only predictabil-
ity speeds up the inner-join Olio workload. Horizontal
lines reflect the local time of a cloud server. The num-
bered commands reflect Olio access patterns. The terms
replica and duplicate refer to servers that store the same
data, but, unlike replicas, duplicates process the exact
same workload—A feature which masks nondetermin-
istic anomalies. Star means the workload is complete.
Note, get #3 depends on gets #1 and #2.

ous, traditional queuing models focus on the service time
to arrival rate at a single node. To date, we are unaware
of a work that has extended this theory to replication for
predictability in Internet services. Machine learning can
predict a broader range of performance mechanism, al-
beit with fewer core insights. Indeed, we adopt a hybrid
approach in this paper. Using machine-learned service
times [30] and a first principles model of replication for
predictability.

Finally, our work focuses on nondeterministic perfor-
mance anomalies. Other related work has studied deter-
ministic performance anomalies caused by performance
bugs. EntomoModel [27] and IronModel [29] both use
machine-learned models of the system to select configu-
rations that avoid anomalies during runtime. Reference-
Driven Anomaly Detection [23] uses the manifestation
patterns of performance bugs to find hints on their un-
derlying root causes.

4 Zoolander

Figure 3 compares replication for predictability against
traditional, replication for throughput. In traditional
replication, each request is processed on just one cloud
server; adding replicas increases the number of requests
that can be processed. This parsimonius approach suf-
fers when the processing server incurs a performance
anomaly, i.e., the perceived processing time is much
longer than expected. In networked storage, many fac-
tors can induce anomalies, from the OS scheduler to

0.1 1 10 100 1000

0%

25%

50%

75%

100%

Reads
ZK=1
Wr i tes
ZK=1
Wr i tes
ZK=3
Normal
Dist

C
D

F

Latency (ms)

(a) CDF of access latencies in Zookeeper. Each
experiment looks at 1 Zookeeper group contain-
ing 1 node (ZK=1) or 3 nodes (ZK=3). Writes
and reads are separated.

0% 50% 100%

0%

50%

100%

P
e

rc
e

nt
ile

 in
 D

up
lic

a
te

 1

Percentile in Duplicate 2

(b) Nondeterministic anomaly
manifestations. An anomaly in
either duplicate does significantly
increase the probability of anomaly
in the other. Correlation coefficent
equals 0.25.

0 1 2

0

25

50

75

100

125
Duplicate 1
Duplicate 2

Q
u

eu
e

 L
en

g
th

 (
m

s)

Execution Timeline (seconds)

During this period,
duplicate 2 can not
mask anomalies.

spikes = anomaly
 manifestations

Neither duplicate
can mask anomalies

(c) Divergent waiting times over time.

Figure 4: Empirical evidence in support replication for predictability.

garbage collectors to background data copying [30] to
misconfigurations [27].

Performance anomalies have less impact under repli-
cation for predictability; N duplicates can mask N − 1
anomalies. However, duplicates sacrifice throughput,
achieving only 1/N throughput of tradtional replication.
When anomalies— not workload access patterns— are
the root cause of SLA violations, replication for pre-
dictability can help to reduce response times. Figure 3
shows that the parallel storage accesses issued by inner-
join Olio can benefit from this approach.

This section describes Zoolander, an analytic model
that predicts service levels given a replication strategy.
Zoolander is based on the following principles of repli-
cation for predictability:

1. Duplicates operate independently. To mask per-
formance anomalies, slow accesses on 1 duplicate
can not spread to others. Duplicates should have
their own (virtual) resources, and they should pro-
cess storage accesses without depending on other
duplicates.

2. Duplicates mask nondeterministic performance
anomalies. Low response times and high through-
put are common goals in production storage sys-
tems. They have been designed to meet this goals,
so few deterministic performance bugs make it onto
production servers [27]. However, nondeterminis-
tic anomalies are hard to fix and are known to reach
production systems. Here by nondeterministic, we
mean that these anomalies manifest independently
of workload patterns.

In the remainder of this section, we confirm these first
principles on a cloud platform. Then we present the mod-
elling approach for Zoolander, and show that Zoolander
alone is useful to understand basic replication tradeoffs.

But first, we discuss data consistency under replication
for predictability.

4.1 Consistency Issues

If duplicates operate independently (principle #1), a
failed duplicate can not make storage unavilable. Ac-
cording to the CAP Conjecture [4, 13], networked stor-
age with high availability must sacrifice either data con-
sistency or partition tolerance. The former ensures that
a storage access returns only data that is up to date,
whereas the latter allows the system to grow by adding
networked servers. In traditional replication, partition
tolerance scales throughput with the number of servers,
so data consistency is often sacrificed [1,4,10,30]. How-
ever, as shown in Figure 3, replication for predictabil-
ity is not intended to scale throughput; predictable re-
sponses (both in service level and data value) are the
key. Here, we describe a simple approach to sacri-
fice partition tolerance by funnelling storage accesses
through one machine. We connect all duplicates to a
message repeater, i.e., a device that broadcasts network
messages to all connected devices in FIFO order. Work-
loads access duplicates only through the repeater. If a
duplicate misses any broadcast message or fails to com-
plete a storage access, it stops running. The repeater
should achieve higher throughput than any single du-
plicate and incurr few anomalies. These traits can be
achieved with hardware or software repeater. Section 5
describes our implementation of such a software repeater
between Zookeeper duplicates.

4.2 First Principles

We studied the service times (i.e., processing time for a
storage access) in our own local, private cloud. By run-

ning on a private cloud, we gained repeatability and con-
trol in our experiments. We use a 16-processor, 32-core
Dell cluster, where each core operates at 2.66 GHz with
a 3MB L2 cache. Only one virtual machine can run on
each processor, eliminating L2 cache sharing (this is re-
laxed in Section 5). Idle cores use p-states to lower their
power draw. Our virtualization software is User-Mode
Linux (UML) [11], a port of the Linux operating sys-
tem that runs in user space of any X86 Linux system.
Thus, RedHat Linux (kernel 2.6.18) serves as our virtual
machine monitor. Custom PERL scripts designed in the
mold of Usher [19] allow us to 1) run predefined virtual
machines on server hardware, 2) stop virtual machines,
3) create private networks, and 4) expose public IP ad-
dresses. Our cloud infrastructure is compatable with any
public cloud that hosts X86 Linux instances, including
Amazon EC2.

For this work, we chose Zookeeper as a storage sub-
strate [15]. Zookeeper retreives values (data) given a key
(some string). Such key-value storage provides fast ac-
cess and loose structure that can help data-intensive ser-
vices grow. In this paper, we use the following terms
to describe a Zookeeper setup: 1) a Zookeeper group
is a group of cloud servers that host the same subset
of keys, and 2) a Zookeeper node is one cloud server
in a Zookeeper group. Zookeeper allows for inconsis-
tent reads but enforces consistency in writes. For reads,
Zookeeper sends the result from only 1 Zookeeper node,
improving throughput as described above. On the other
hand, writes must contact a majority of Zookeeper nodes
in a group. If a network partition blocks communication
within the group, the write service becomes unavailable.

We created an initialization script that automatically
sets up Zookeeper in our cloud. The script takes the IP
addresses of all Zookeeper nodes within each Zookeeper
group. Experiments in this section focus on all-read or
all-write storage accesses. Each key stores a value that is
2KB. In total, there are 1,000 keys so the total dataset fits
within L2. Accesses were issued one after another with
no concurrency or according to a preset rate. For simplic-
ity, duplication is performed at the group level through-
out this paper.

Figure 4(a) plots the cumulative distribution function
(CDF) for Zookeeper reads and writes in our cloud. All
of the experiments followed a low-variance, normal dis-
tribution for fast service times, i.e., latency below the
70th percentile. But variance across the entire distribu-
tion was much higher, producing coefficients of varia-
tion (σ

|µ|) ranging from 1.5–8. To visually highlight the
heaviness of the tails, Figure 4(a) also plots a normal
distribution with standard deviation and mean that were
25% larger than the fastest 90% of write times in ZK=1.
The tails for both reads and writes under ZK=1 overtake
the normal distribution, even though the normal distri-

bution has a larger mean. We also found that the distri-
bution tails increased as requests accessed more system
resources. Writes in a single-node Zookeeper lead to lo-
cal disk accesses that didn’t happen under reads. Writes
in 3-node Zookeeper groups send network messages for
consistency. This behavior suggests that local resource
management, e.g., handling I/O interrupts, may induce
some anomalies. Finally, Figure 4(a) also provides ev-
idence to motivate this study. Even when we set a lax
latency bound of 2 times the mean, Zookeeper only pro-
vided a service level of 98.8%,95.7%,91.5% for reads,
writes to 1 node, and writes to 3 nodes respectively. Al-
ternatively, to provide a service level of 99.99% (needed
for parallel, data-intensive services), the latency bound
would have risen to 16X, 26X, and 99X relative to the
respective means.

We also measured read access times in Memcached, a
simple, inconsistent key-value store often used in prac-
tice [22]. We saw a coefficient of variation of 1.9, and,
under a lax latency bound, only 98.3% service level was
achieved. This result suggests that anomalies due to lo-
cal resource management afflict other key-value stores
as well, not just Zookeeper. We also looked at the ser-
vice time distribution for browsing requests in RUBiS,
a benchmark for online auction services. The tail here
was much less heavy with a coefficient of variation of
only 1.2. As a more complicated service, mean response
times in RUBiS were much larger than Zookeeper, mak-
ing issues like interrupt scheduling less impactful rela-
tive to the total processing time. This result shows that
while there is potential for replication for predictability
in computation-intensive services [2], storage infrastruc-
ture can gain a lot from mitigating heavy-tailed access
distributions. Further, complicated services are more
likely to be afflicted by workload-dependent, determinis-
tic performance bugs [27] compared to more simple key-
value stores.

Figure 4(b) highlights principle #2. Across two du-
plicates that run the same workload, we show the per-
centile of each storage access. If anomalies were work-
load dependent, either the bottom right or upper left quar-
tiles of this plot would have been empty. Instead, every
quartile was touched evenly. Figure 4(c) plots the queue
lengths of these two duplicates over time. In this ex-
periment, storage accesses arrived at a set rate of 500
requests per second, below our peak throughput of 2,000
requests per second but enough to cause significant queu-
ing. Performance anomalies caused the plot to spike.
After an anomaly, subsequent requests processed on the
same cloud node must wait to be processed. At sev-
eral points, one of the duplicates is unable to mask an
anomaly because its queue is too long. Queuing de-
lay can pass anomalies across storage accesses and even
servers. We must consider queuing in Zoolander.

4.3 Service-Level Model

In this subsection, we will reference the symbols defined
in Table 1. Our model seeks to characterize the ser-
vice level provided by N independent duplicates running
the exact same workload under nondeterministic perfor-
mance anomalies. In our model, an anomaly is defined as
an SLA violation. The storage system manager provides
target latency (τ ms) for the SLA.

Model Inputs
ŝ Expected service level
N Number of duplicates used to mask anomalies
τ Target latency bound

Φn(k) Percentage of service times in Zookeeper du-
plicate n with latency below k

λ Mean interarrival rate for storage accesses
µnet Mean of network latency between Zookeeper

duplicates and storage clients
µn Mean service time for Zookeeper duplicate n

(derived)

Table 1: Zoolander inputs.

Using principles #1 and 2, Zoolander first models the
probability that the fastest duplicate will respond within
SLA. Recall, all duplicates run the exact same workload
and can provide consistent/acceptable data, allowing the
fastest duplicate to provide results. This probability is
computed with the following series:

ŝ =
N−1

∑
n=0

[Φn(τ)∗
n−1

∏
i=0

(1−Φi(τ))]

To provide intuition into this result, consider Φ0(τ) is
the probability that duplicate 0 meets the τ ms latency
bound in SLA. If N = 2, Φ1(τ)∗ (1−Φ0(τ)) is the prob-
ability that duplicate 1 masks an anomaly for duplicate
0. Note, the order in which we consider Zookeeper du-
plicates does not affect the service level estimate. When
all duplicates have the same service time distribution,
we can reduce the above equation to a geometric series.
Then the Nth moment of the series is easily computed
below: (Note, as N approaches infinity, the expected ser-
vice level converges to 1.)

ŝ = ∑
n=0

Φn(τ)∗ (1−Φn(τ))n = 1− (1−Φn(τ))N

Queuing and Network Delay: SLAs reflect a client’s
perceived latency which may include processing time,
queuing delay, and network latency. Since duplicates ex-
ecute the same workload, they share access arrival pat-
terns and their respective queuing delays are correlated.
Similarly, networking problems can affect all duplicates.
As shown in Figure 4(c), queuing delay can significantly
increase execution times.

Here, we lean on prior work on queuing theory to
answer two questions. First, does the expected queu-
ing level completely inhibit replication for predictabil-
ity? And second, how many duplicates are needed to
overcome the effects of queuing? The key idea is to
deduct the queuing delay from τ in the base model. In-
tuitively, requiring all duplicates to reduce their expected
service time in proportion to the expected queuing delay.

τn = τ− (
1+C2

v
2
∗ ρ

1−ρ
∗µn)−µnet

ŝ =
N−1

∑
n=0

[Φn(τn)∗
n−1

∏
i=0

(1−Φi(τi))]

We used an M/G/1 queuing model to derive the ex-
pected queuing delay, reflecting the heavy-tail service
times observed in Figure 4(a). To breifly explain the first
equation above, an M/G/1 models the expected queuing
delay as a function of system utilization (ρ), distribu-
tion variance (C2

v), and mean service time. Utilization is
the mean arrival rate divided by the mean service time.
Note, that the new τ may be different for each Zookeeper
group (parameterizing it by n). An M/G/1 assumes that
inter-arrivals are exponentially distributed. This may
not be the case in all data-intensive services. A G/G/1
with some constraints on inter-arrival may be more accu-
rate. Alternatively, an M/M/1 would have simplified our
model, eliminating the need for the squared coefficient
of variance (C2

v). Prior work has shown that multi-class
M/M/1 can sometimes capture the first-order effects of
M/G/1. We leave empirical analysis of the right queu-
ing network to future work. We also deduct the mean
time lost to network latency. Here, network latency is
the average delay to send a TCP message between any
two cloud servers.

4.4 Model-Driven Analysis
Figure 5 uses Zoolander to compare the expected service
levels achieved via traditional replication versus replica-
tion for predictability. The expected queuing delay af-
fects which approach is best. We used the CDF from
“writes, ZK=1” in Figure 4(a) to obtain a mean service
time and the squared coefficient of variation (no queuing
at all). We set the target latency bound to 5 ms. We var-
ied the utilization (i.e., ρ) by changing the arrival rate of
storage accesses. Traditional replication divides the ar-
rival rate across all replicas evenly (in this case, allowing
for inconsistent writes [10, 30]). We plugged all of these
parameters into Zoolander to get expected service levels.

Figure 5 shows that replication for predictability is not
appropriate under even moderate queuing delay. The ser-
vice time skew due to heavy-tail anomalies magnifies ex-
pected queuing delay by a factor of 3. Such large queuing

0%

20%

40%

60%

80%

100%

Ρ=1%; RP
Ρ=5%; RP
Ρ=15%; RP

Ρ=1%; RT
Ρ=5%; RT
Ρ=15%; RT

E
xp

e
ct

e
d

S
e

rv
ic

e
 L

e
ve

l

of Duplicates/Replicas

1 2 4 8 16 32

Figure 5: Trading throughput for predictability. Zoolan-
der predicts the service level achieved under different
replication strategies and workloads.

delay reduces the target latency for Zoolander duplicates
to the 2nd percentile, producing the flat line at the bottom
of the plot. Fortunately, traditional replication mitigates
queuing delay. Recall, replicas balanced the arrival rate
evenly, greatly reducing the per-node ρ . We observe that
15% utilization is mitigated using 8 replicas (ρ=2%).

Unfortunately, traditional replication can not improve
service levels under light workloads with little queuing.
In this example, 5 ms corresponds with the 90th per-
centile. Replication for predictability is not bound by
the service time distribution. Under light queuing, it is
expected to achieve a service level of serveral nines. Of
course, these approachs are not exclusive. When queuing
is significant, storage managers can choose traditional
replication (or partitioning). When anomalies are pre-
vailent, replication for predictability is appropriate. Zo-
olander helps managers find the sweet spots for their sys-
tem.

5 RP Zookeeper

Figure 6 depicts RP Zookeeper, our add-on to the
Zookeeper coordination service. RP Zookeeper enables
replication for predictability for both read and write key-
value accesses with consistency guarantees similar to
Zookeeper. Writes are processed in FIFO order, but
reads may be inconsistent. This section describes im-
plementation details of each component that were key
in the design of RP Zookeeper. First, we make a case
for Zookeeper as the underlying storage substrate. Then,
we describe our message repeater that ensures that state-
changing accesses arrive at each duplicate in the same
FIFO order. The RP Zookeeper proxy ensures write

consistency across duplicates and responds directly to
clients, reducing network roundtrips. Subsection 5.1
uses RP Zookeeper to empirically validate Zoolander
across workloads, platforms, and SLA bounds.

RP Zookeeper was built as an extension of Zookeeper,
even borrowing its name. However, we believe that other
key-value systems can also benefit from replication for
predictability. For instance, our results in Section 4 sug-
gest that Memcached also suffers from nondeterministic,
heavy-tailed anomalies. Prior work [30] has show that
replication for predictability can be built on top of other
key-value systems (SCADS), albeit prior implementa-
tions have been more limited than ours.

Zookeeper [15]: Replication for predictability bene-
fits from two implementation decisions in Zookeeper.
First, Zookeeper avoids locks in favor of wait-free syn-
chronization primitives. A storage access in Zookeeper
can not be delayed because another client holds a lock.
This reduces the resource sharing (i.e., no locks) in
Zookeeper, which reduces performance anomalies. The
tradeoff is that storage accesses in Zookeeper can fail,
unlike pure lock-based systems.

Wait-free primitives also simplify Zoolander, our
service-level model. In a pure lock-based system,
anomalies due to lock-hogging clients could force other
duplicates to interact to maintain consistency. This
would violate Zoolander’s first principles. It would pos-
sibly force us to consider the effect of lock-hogging.
Lock-hogging can be a serious problem. Most produc-
tion systems, like Chubby [5] and Farsite [1], now use
leases to thwart lock hoggers. Leases bound the amount
of time that 1 client can delay other clients. Wait-free
synchronization eliminates the problem.

Zookeeper also enforces first-in-first-out (FIFO) order
on its write accesses. This allows clients to issue mul-
tiple accesses at once. The Zookeeper leader node or-
ders their arrival into the system, only committing writes
in that order. To commit a write, a majority of nodes
must be contacted using the Zab Atomic Broadcast pro-
tocol [16, 17, 21]. In RP Zookeeper, we use a software-
based repeater to ensure that all duplicates see writes in
the same order.

Message repeater: Our message repeater sits between
the client and Zookeeper duplicates. All state changing
accesses, e.g., write, create, and delete, go through the
message repeater. We implemented the message repeater
in C. It runs on its own server to maximize its through-
put. It maintains one FIFO queue for all accesses sent
through it. It forwards accesses to all duplicates in the
same order, sending one access at a time. Specifically,
accesses from multiple clients are not interleaved. The
above operation guarantees both linearizable writes and

Zookeeper
node

Zookeeper
node

Zookeeper
Master
node

Zookeeper Group (duplicate #1)

Zookeeper
node

Zookeeper
node

Zookeeper
Master
node

Zookeeper Group (duplicate #2)

RP Zookeeper
Message Repeater

 FIFO queue

RP Zookeeper
Client #1

RP Zookeeper Proxy

op=”se
t”,

 ke
y=

”m
yK

ey”,

va
lue

=”B
lue S

teel”,

re
tur

n=
”cl

ient
1 IP

”

op=”set”, key=”..”, value=”...”

return=”...”, timestamp = “3”

op=”get”, key=”myKey”

op=”set”, result=”success”

op=”get”, k
ey=”myKey”

RP Zookeeper
Client #2

Only first
response
accepted

9 8 3

1. Validation for Writes
 Last timestamp = 2
 New = 3 == 2+ 1 then Valid

2. Forward to Zookeeper Master
 (first step for reads)

3. Send result to client

RP Zookeeper Proxy

2. Forward to Zookeeper Master
 (first step for reads)

3. Send result to client

1. Validation for Writes
 Last timestamp = 2
 New = 3 == 2+ 1 then Valid

Figure 6: The components of RP Zookeeper. Directed lines indicate data paths across the network for reads (bold) to
writes (dotted). The depicted Zookeeper groups comprise 3 nodes each. Replication for predictability occurs at the
group level. For visual clarity, return values from the Get operation are omitted.

System Overheads (ms) in log scale

A
ch

ie
ve

d
 S

e
rv

ic
e

L
ev

el

.00001 .00010 .00100 .01000 .10000 1.00000

0

0.25

0.5

0.75

1

Network
Latency
RP
Zookeeper

C
D

F

Figure 7: The cdf of the network delay and the whole
system overhead of RP Zookeeper

FIFO client order similar to zookeeper. When the re-
peater forwards a message, it attaches a logical times-
tamp, reflecting the “ticket number” of the access. The
timestamp is increased by 1 after each message.

Zookeeper Proxy: Zookeeper proxy is a C program
running on the leader node of each Zookeeper group.
The main thread of proxy listens on the connection from
the message repeater for change-state accesses like write,
and from clients for read accesses, then selects the first
upcoming packet to process. Packets are defined by a
struct that contains fields for request type (read, write,
create or delete), client address to send the result to, a

key and value, and also a timestamp that denotes the or-
der of the change-state request. Besides, the proxy also
contain a second thread which dequeues packets from
the queue, unpacks them, then validate their timestamps.
The Zookeeper proxy validate one timestamp by compar-
ing it with the most current timestamp. If it is one digit
larger then the most current one, it is valid and the re-
quest will be processed. If not, the proxy assumes that a
failure has occurred and kills the duplicate. Packets with
valid timestamps will then be sent to the local Zookeeper
leader node to be processed; then their result will be
taken and forwards to the client by a third thread. The
proxy also examines Zookeeper outputs before forward-
ing to the client. If somehow, Zookeeper fails locally
(e.g., many disk crashes), the proxy kills the entire dupli-
cate. Such local failures include extremely slow access
times that exceed a lax timeout.

Finally, we note that RP Zookeeper provides one ad-
ditional operation type: write-all-duplicates. The oper-
ation parallels Zookeeper’s sync command by ensuring
that a write to all duplicates has completed successfully.
A write-all-duplicates message occurs on the client side,
but guarantees that a subsequent read from a specific
node will return an up-to-date value.

Client: Clients use a special library for RP Zookeeper.
It packs all of the Zookeeper request into the packet for-
mat as described above. It sends state-change accesses
to the message repeater and non-state-change accesses as
read directly to the Zookeeper proxy. The client also lis-

tens for the response from the Zookeeper proxy by open-
ing a port with a second thread. Finally, the client can
detect subtle inconsistencies if duplicate responses ever
differ, killing offending duplicate.

Overhead: We also tested the system overhead of the
RP Zookeeper, which consists of two parts as the net-
work delay and the Zookeeper process time. As shown
in Figure 7, the mean system overhead is very small
(≤0.001ms) in RP Zookeeper and reliable and it main-
tain less then 0.5ms even in the worst situation when net-
work outlier occurs.

5.1 Model Validation & System Results

We deployed RP Zookeeper on the cloud platform de-
scribed in Section 4. Zookeeper group size was set to 1
node. Initially, there were no duplicates. We then issued
100,000 writes one after another (no concurrency), get-
ting a distribution of service times. We used this single-
node distribution as input to Zoolander. Also, we used
the 90th percentile of this distribution as the default la-
tency bound (τ=5ms) in our experiments (also a Zoolan-
der input). We then added duplicates to RP Zookeeper
one at a time, issuing the same write workload each time
we added a duplicate. Figure 8(a) shows RP Zookeeper’s
performance, i.e., achieved service level, as duplicates
increase. Specifically, the achieved service level grew
as duplicates were added. For example, under 8 nodes,
RP Zookeeper could support the following SLA: 99.9%
of write accesses will complete within 5ms. The graph
also shows that Zoolander had absolute error (i.e., actual
service level minus predicted) below 0.002 in all cases.

In our next test, we set the number of duplicates to
8 and collected a service time distribution. We then
changed the latency bound (τ) to different percentiles
in the single-node distribution, from the 75th to 99.5th.
High percentiles led to several-nine service levels in RP
Zookeeper, forcing Zoolander to be accurate with high
precision. Low percentiles required Zoolander to ac-
curately model more accesses. Figure 8(b) shows Zo-
olander’s accuracy as the latency bound increased. Ab-
solute error was within 0.001 for high and low per-
centiles. In Figure 4(a), we observed that write access
times had a heavy-tail distribution that started around
the 96th percentile. Figure 8(b) shows a steeper slope
(strong gains) for latency bounds after the 96th per-
centile. For instance, setting the latency bound to the
99th percentile of single-node distribution (τ=15ms), RP
Zookeeper achieved 99.991% service level using only 4
duplicates. In other words, 4 duplicates improved the
service level by two orders of magnitude.

Diverse Workloads Figures 8(c) and 8(d) shows the
number of nines achieved under read accesses and un-
der larger Zookeeper group size. On our cloud platform,
reads completed in microseconds [15]. Sometimes our
software repeater had not finished broadcasting accesses
before a duplicate finished the job. Figure 8(c) shows the
results with just 2 duplicates. As we varied the latency
bound, Zoolander accurately estimated service level. We
focus on the number of nines because it is a common
metric in practice for SLAs. In one case, Zoolander mis-
estimates the number of nines, but the error in that case
was only 0.0009.

Figure 8(d) shows results where we set the group size
to 3 under a write workload. Recall, Zookeeper uses an
atomic broadcast to issue group writes. Communication
between group nodes increases anomalies. Despite this
increase, Zoolander accurately predicted the number of
nines across all tested latency bounds.

Heterogeneous Platforms We were also able to
change our cloud platform, allowing virtual machine in-
stances to share the L2 cache. We created a new single-
node distribution of service times for this architecture.
We found that Zoolander still accurately predicted ser-
vice levels with less than 0.0002 error. We also changed
the networking substrate, making virtual machines com-
municate through a user-level SLIRP device. Zoolander
still predicted service levels with less than 0.001 error.

6 Zoolander in System Management

Section 2 presented two targeted workloads: Inner-Join
Olio and Gridlab-D. We implemented those workloads
and captured a storage access traces from each. Below,
we describe the access patterns of each. We then use
replication for predictability to manage SLAs and costs
for these workloads.

For Inner-Join Olio, we created an Olio request type
that reads a user’s tagged events, then for each event that
matches a user-supplied keyword, we look up the user
that posted the event. This workload typically produced
about 30 parallel read accesses to get tagged events and
another 20 parallel accesses to get user data from match-
ing events. For RP Zookeeper, we essentially used two
tables. The first was indexed by event IDs and the second
by user IDs. A key was an ID and the value held all per-
tinent information. This workload issues only read ac-
cesses. Since these requests come for independent users,
we assume that storage accesses appear exponentially
distributed at the Zookeeper side. To be sure, we use the
term request to refer to 50 (30 then 20) parallel storage
accesses.

1 2 4 8 16

90.0%

92.5%

95.0%

97.5%

100.0%

0.000

0.002

0.004

0.006

0.008

0.010

Observed
Estimated
Absolute
Error

Servers Used

A
ch

ie
ve

d
 S

e
rv

ic
e

L
ev

el

Writes Accesses

P
re

d
ictio

n
 E

rro
r

(a) Achieved service levels against Zoolander predictions as dupli-
cates increase.

99.5%

99%

98%

96%

94%

92%

91%

90%

85%

75%

99.94%

99.95%

99.96%

99.97%

99.98%

99.99%

100.00%

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Observed
Zoolander
Prediction
Absolute Er ror
(r i ght axis)

Target Latency Bound (τ)
(shown as a percentile of the single-node

service time distribution)

A
ch

ie
ve

d
 S

er
vi

ce
 L

ev
el

Writes Accesses (8 duplicates)

P
re

d
ictio

n
 E

rro
r

(b) Service levels as the target latency bound changes. 8 duplicates
used.

99.5%99%98%97%96%95%94%93%92%91%

0

1

2

3

4 Zoolander
Prediction
Observed

Target Latency Bound (τ)
(shown as a percentile of the single-node

service time distribution)

A
ch

ie
ve

d
 S

er
vi

ce
 L

ev
e

l
(n

um
b

er
 o

f
n

in
es

)

Read Accesses

(0.0001)

(0.0002)(0.0009)

(0.0024)

(0.0120)(0.0135)(0.0169)

(0.0004)

(0.0185)(0.0180)

(c) Service levels achieved on read-only accesses. 2 duplicates used.

99.5%99%98%97%96%95%94%93%92%91%

0

1

2

3

4 Zoolander
Prediction
Observed

Target Latency Bound (τ)
(shown as a percentile of the single-node

service time distribution)

A
ch

ie
ve

d
 S

er
vi

ce
 L

ev
e

l
(n

um
b

er
 o

f
n

in
es

)

3-Node Zookeeper Groups

(0.0001)

(0.0002)(0.0007)

(0.001)(0.0016)

(0.001)

(0.0028) (0.0011)(0.0001)

(0.0006)

(d) Service levels achieved under 3-node Zookeeper deployment. 2
duplicates used.

Figure 8: Validation Experiments

For Cloud-based Gridlab-D, we used the instrumenta-
tion described in Section 2. We replayed the captured
trace, issuing 4 reads and 3 writes in parallel for each
simulation event. The requests arrived in batches un-
der this workload, reflecting surges in storage accesses at
the beginning and end of a simulation event. Note, this
defied Zoolander’s assumption that request inter-arrivals
are exponentially distributed. In this sense, our M/G/1
model could only approximate that actual G/G/1 queu-
ing that batched arrivals produced.

Our first goal was to answer the following question,
“What replication strategy produces the highest SLA un-
der these workloads?” Specifically, using 4 servers, RP
Zookeeper can be configured in 3 ways. First, all four
servers can use traditional replication. Second, all four
servers can use replication for predictability. Third, two
servers can use traditional replication while having 1 du-
plicate a piece (i.e., 2 replicas and 2 duplicates).

Figures 9(a) and 9(b) show that by using replica-
tion for predictability, we can support much stronger
SLAs than by using only replciation for throughput. For
read-only, exponentially distributed Olio workload (Fig-
ure 9(a)), the mixed solution provides the best tradeoff.
Peak throughput doubled (via replication for through-
put) at the cost of a small increase in the SLA latency
bound. However, the batched and write-heavy work-
load Gridlab-D required more duplicates for high service
level. Replication for predictability needed to be scaled
to all for nodes to meet a stringent (99.9%) SLA.

Our second goal was to answer the question, “what if
we used dynamic cloud provisioning, how many servers
are needed to meet a set SLA?” We set the SLA to 99%
of all accesses must complete with 10ms. Figure 9(c))
plots the number of servers need to meet the above SLA
as the request arrival rate increased. We compared using
only replication for throughput against using a mixed ap-
proach. For simplicity, all replicas had the same number

95% 99% 99.9% 99.99%
0

250

500

750

1000

RT
RP
Mixed

M
in

im
um

 L
a

te
n

cy
 B

ou
nd

 (
m

s)

Service Level

(a) Service level agreements for inner-join Olio. This
is a read-only workload. Inter-arrival times for storage
accesses were exponentially distributed. System utiliza-
tion was 8%. Group size is 1 throughout this section.

95% 99% 99.9% 99.99%
0

250

500

750

1000

RT
RP
Mixed

M
in

im
um

 L
a

te
n

cy
 B

ou
nd

 (
m

s)

Service Level

(b) Service level agreements for Gridlab-D work-
load. This workload includes writes. Inter-arrivals are
batched with each simulation event. System utilization
was 8%.

N
od

e
s

N
e

e
de

d
fo

r
9

9
%

 S
L

A

0 400 800 1200
2

4

6

8

RT
Mixed

Requests per Second

(c) Nodes used as request rate increases for Gridlab-
D. SLA was 99% of all accesses must complete within
10ms.

Figure 9: Management Experiments

of duplicates, forcing the mixed approach to provision by
factors of 2. We used Zoolander to decide the proper mix
of duplicates and replicas.

The approach that used only replication for throughput
provisioned one server for every 75 requests. The mixed

approach provisioned one server for approximately every
150 requests. Even though replication for predictabil-
ity does not improve throughput, it can improve good-
put substantially. Further, the best mixture of replicas
and duplicates changed with request arrival and latency
bound. For instance, 6 servers could contain two mix-
tures 1) 2 replicas with each duplicated 3 times or 2) 3
replicas duplicated twice. When the latency bound was
5 ms, the former provided better performance, but when
the latency bound was 10 ms, the latter was best.

7 Conclusion

In this paper, we’ve examined replication for predictabil-
ity as a mechanism to provide sufficiently high service
levels for data-intensive workloads. Unlike e-commerce
and static content workloads, these workloads, found in
social networking and scientific computing, issue mul-
tiple storage accesses for each user request. We col-
lected traces from two benchmarks, Olio and Gridlab-D,
to confirm such access patterns. These workloads suf-
fer from non-deterministic performance anomalies, es-
pecially when such anomalies cause heavy-tailed latency
distributions. Replication for predictability avoids such
anomalies online by executing the same storage accesses
across many machines simultaneously. The fastest node
provides the result, improving overall service levels. A
key contribution in this paper was Zoolander, a model
that characterizes the service level under replication for
predictability using a geometric series. Zoolander con-
siders the service times of each duplicate as well as the
impact of queuing delay and network latency. We val-
idated Zoolander on RP Zookeeper, an add-on to the
Zookeeper Coordination Service that supports replica-
tion for predictability. Our results have two significant
impacts. First, they show that replication for predictabil-
ity can scale service levels as the number of nodes is in-
creased, provided queuing delay and network latency are
small. Second, they shows that Zoolander can help sys-
tem managers decide between traditional replication and
replication for predictability. This is important because
the best management policy differs across workloads.

References

[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. Farsite: Fed-
erated, available, and reliable storage for an in-
completely trusted environment. In USENIX Symp.
on Operating Systems Design and Implementation,
2002.

[2] G. Ananthanarayanan, S. Kandula, A. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in
the outliers in map-reduce clusters using mantri. In
USENIX Symp. on Operating Systems Design and
Implementation, 2010.

[3] E. Anderson. Simple table-based modeling of stor-
age devices.

[4] E. Brewer. Towards robust distributed systems (ab-
stract). In Symposium on Principles of Distributed
Computing, 2000.

[5] M. Burrows. The chubby lock service for loosely-
coupled distributed systems. In Proceedings of the
7th symposium on Operating systems design and
implementation, OSDI ’06, 2006.

[6] D. Chassin, K. Schneider, and C. Gerkensmeyer. In
Transmission and Distribution Conference and Ex-
position.

[7] J. Chen, G. Soundararajan, and C. Amza. Au-
tonomic provisioning of backend databases in dy-
namic content web servers. In Autonomic Comput-
ing, 2006. ICAC ’06. IEEE International Confer-
ence on, 2006.

[8] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and
J. Chase. Correlating instrumentation data to sys-
tem states: A building block for automated diagno-
sis and control. In USENIX Symp. on Operating
Systems Design and Implementation, pages 231–
244, Dec. 2004.

[9] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H. arno Jacobsen,
N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!s
hosted data serving platform. In VLDB, 2008.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: amazons
highly available key-value store. In ACM Symp. on
Operating Systems Principles, 2007.

[11] J. Dike. User-mode linux.

[12] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and
A. M. Vahdat. Model-based resource provisioning
in a web service utility. In USITS, Mar. 2003.

[13] S. Gilbert and N. Lynch. Brewer’s conjecture and
the feasibility of consistent, available, partition-
tolerant web services. SIGACT News, 33, 2002.

[14] J. Gray. Transaction Processing: Concepts and
Techniques. 1993.

[15] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-
scale systems. In USENIX, 2010.

[16] F. Junqueira, B. Reed, and M. Serafini. Zab:
High-performance broadcast for primary-backup
systems. In Conference on DSN, 2011.

[17] F. P. Junqueira and B. C. Reed. Zab: A practical
totally ordered broadcast protocol. In Brief An-
nouncement in DISC, 2009.

[18] C. A. Lee. A perspective on scientific cloud com-
puting. In Science Cloud Workshop colocated with
the Symposium on High Performance Distributed
Computing, 2010.

[19] M. McNett, D. Gupta, A. Vahdat, and G. M.
Voelker. Usher: An Extensible Framework for
Managing Clusters of Virtual Machines. In Pro-
ceedings of the 21st Large Installation System Ad-
ministration Conference (LISA), November 2007.

[20] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, A. Merchant, and K. Salem. Adaptive
control of virtualized resources in utility computing
environments. In EuroSys Conf., 2007.

[21] B. Reed and F. P. Junqueira. A simple totally or-
dered broadcast protocol. In Proceedings of the 2nd
Workshop on Large-Scale Distributed Systems and
Middleware, 2008.

[22] N. Sharma, S. Barker, D. Irwin, and P. Shenoy.
Blink: managing server clusters on intermittent
power. In Conference on Architectural Support for
Programming Languages and Operating Systems,
Mar. 2011.

[23] K. Shen, C. Stewart, C. Li, and X. Li. Reference-
driven performance anomaly identification. In
ACM Int’l Conf. on Measurement and Modeling of
Computer Systems, 2009.

[24] K. Shen, H. Tang, T. Yang, and L. Chu. Inte-
grated resource management for cluster-based In-
ternet services. In USENIX Symp. on Operating
Systems Design and Implementation, Dec. 2002.

[25] W. Sobel, S. Subramanyam, A. Sucharitakul,
J. Nguyen, H. Wong, A. Klepchukov, S. Patil,
O. Fox, and D. Patterson. Cloudstone: Multi-
platform, multi-language benchmark and measure-
ment tools for web 2.0. In Workshop on Cloud
Computing, 2008.

[26] C. Stewart and K. Shen. Performance modeling
and system management for multi-component on-
line services. In USENIX Symp. on Networked Sys-
tems Design and Implementation, May 2005.

[27] C. Stewart, K. Shen, A. Iyengar, and J. Yin. En-
tomomodel: Understanding and avoiding perfor-
mance anomaly manifestations. In IEEE Interna-
tional Symposium on Modeling, Analysis, and Sim-
ulation of Computer and Telecommunication Sys-
tems, 2010.

[28] M. Stonebraker. Stonebraker on data warehouses.
Communcations of the ACM, 2011.

[29] E. Thereska and G. R. Ganger. IRONModel: Ro-
bust performance models in the wild. In ACM Int’l
Conf. on Measurement and Modeling of Computer
Systems, Annapolis, MD, June 2008.

[30] B. Trushkowsky, P. Bodk, A. Fox, M. J. Franklin,
M. I. Jordan, and D. A. Patterson. The scads di-
rector: Scaling a distributed storage system under
stringent performance requirements. In USENIX
Conf. on File and Storage Technologies, 2011.

[31] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer,
and A. Tantawi. An analytical model for multi-tier
internet services and its applications. In ACM Int’l
Conf. on Measurement and Modeling of Computer
Systems, Banff, Canada, 2005.

[32] F. Uyeda, D. Gupta, A. Vahdat, and G. Vargh-
ese. Grassroots: Socially-driven web sites for the
masses. In Workshop on Online Social Networks
(WOSN), Aug. 2009.

