
Extracting Analyzing and Visualizing Triangle
K-Core Motifs within Networks

Yang Zhang #1, Srinivasan Parthasarathy #2

#Department of Computer Science, Ohio State University, OH, USA
1zhang.863@osu.edu

2srini@cse.ohio-state.edu

Abstract— Cliques are topological structures that usually pro-
vide important information for understanding the structure of
a graph or network. However, detecting and extracting cliques
efficiently is known to be very hard. In this paper, we define and
introduce the notion of a Triangle K-Core, a simpler topological
structure and one that is more tractable and can moreover be
used as a proxy for probing and extracting relevant clique-like
structure from large dynamic graphs and networks. Based on this
definition we first develop a localized algorithm for extracting
Triangle K-Cores from large graphs. Subsequently we extend
the simple algorithm to accommodate dynamic graphs (where
edges can be dynamically added and deleted). Finally, we extend
the basic definition to support various template pattern cliques
with applications to network visualization and event detection on
graphs and networks. Our empirical results reveal the efficiency
and efficacy of the proposed methods on many real world
datasets.

I. INTRODUCTION

Many real world problems can be modeled as complex
entity-relationship networks where nodes represent entities
of interest and edges mimic the relationships among them.
Fueled by technological advances and inspired by empirical
analysis, the number of such problems and the diversity of
domains from which they arise – physics, sociology, technol-
ogy, biology, chemistry, metabolism and nutrition – is growing
steadily. The study of such networks can help us understand
the structure and function of such systems, potentially allowing
one to predict interesting aspects of their behavior.

Of particular interest in many of these applications, is to
probe, uncover, extract and understand the dense (clique-like)
structure of interactions of such networks. This problem is very
challenging. The first challenge relates to the characteristics of
the data (scale-free nature, presence of hub nodes) as well as
the scale and size of the data. The second challenge relates
to the dynamic nature of the data – changes to the network
– often requiring re-computation from scratch which can be
very expensive. Identifying the portions of the network that
are changing, characterizing the type of change, predicting
future events (e.g. link prediction), and developing generic
models for evolving networks are critical. The third challenge
relates to visualization and confirmation. Fundamental to most
data analysis is visual confirmation – from Galileo seeing the
moons of Jupiter to Gerd Binnig and Heinrich Rohrer seeing
atoms on a surface. Visualizing such complex networks and
honing in on important topological characteristics is difficult,

given the size and complexity of such systems, but nonetheless
important.

In this article we attack a small region of this problem space.
Specifically, we develop a scalable visual-analytic framework,
for probing and uncovering dense substructures within net-
works. Central to our approach is the notion of a Triangle
K-Core motif. We develop a simple algorithm for computing
Triangle K-Cores from graphs. We then discuss a mechanism
to plot such Triangle K-Cores – essentially realizing a density
plot in a manner analogous to a CSV plot[1]. This plot follows
an Optics[2]-style enumeration of vertices in the network.
The complexity of this algorithm is linear in the number of
triangles in the graph (so it is very fast for sparse graphs). In
fact as our experimental results show, we produce plots that
are very similar to CSV at a fraction of the cost.

Subsequently we extend the above static algorithm to handle
dynamic graphs. Additionally, a key challenge addressed here
is that of correspondence – the same community in two
different density plots must be clearly identified as long as
the local relationship structure has not changed significantly.
We develop a suitable incremental algorithm, with cognitive
correspondence (by relying on an adaptation of dual-view
plots), which we show to be significantly faster than the naive
approach which recomputes Triangle K-Cores from scratch.

An additional feature of our algorithms is the ability for the
user to dynamically specify, explore and probe the network for
various template patterns defined upon the base Triangle K-
Core pattern. Such template patterns are extremely informative
for identifying patterns of interest to the user. We design and
adapt our density plot framework (here density is defined
by the density of the template pattern of interest) based on
this notion and discuss possible application of this work on
several real world datasets. To sum up, the main contribution
of our work is to introduce a new motif for estimating clique
like structure in graphs (Triangle K-Core). Specifically in this
article we demonstrate its:

1) Utility: We demonstrate its use for visualization (in a
manner similar to a CSV plot), probing, exploring and
highlighting interesting patterns in both static as well
as dynamic graphs. We compare its utility with respect
to recent state of the art alternative (e.g. CSV[1] and
DN-Graph[3] motifs.

2) Efficiency: We present a localized algorithm for extract-
ing such motifs and demonstrate its efficiency by several



factors over competing strategies such as DN-Graph[3]
and CSV[1]. Additionally, we present an incremental
variant that can be extended to handle dynamic graphs
with much lower cost than the iterative method[3] and
global method[1] used by extant approaches.

3) Flexibility: An important feature of the Triangle K-
Core motif is its inherent simplicity which lends itself to
flexible probing of user- defined template clique patterns
of interest within both static and dynamic graphs.

II. RELATED WORK

In the context of graph clustering, several methods have
often found favor. For example, spectral methods[4], stochastic
flow methods[5], multi-level methods[6], [7] have all been
used for discovering dense subgraphs of interest. While several
of these algorithms scale well to large datasets they do not
precisely target the problem of detecting clique-like structures.

In spite of the fact that CLIQUE problem is NP-Hard[8],
and approximating the size of the largest clique in a graph
is almost NP-complete[9], mining cliques for a graph has
received much attention recently. The CLAN method [10] for
example, aims to mine exact cliques in large graph datasets,
CLAN uses the canonical form to represent a clique, and
the clique detection task becomes mining strings representing
cliques. Some other methods[11], [12] have been proposed
to detect quasi-clique, which is a clique with some edges
missing. Wang et al.[1] propose CSV to visualize approximate
cliques. CSV uses a notion of local density, co-clique size,
and plots all vertices based on co-clique sizes. The plot is a
OPTICS [2] style plot, and visualizes the distribution of all
the potential cliques. However, calculating co-clique size in
CSV is still fairly expensive and makes CSV costly on large
scale graphs. Other clique-like dense subgraph patterns, such
as DN-graph[3], are also expensive to compute.

Many methods have been proposed to analyze dynamically
changing graphs. Leskovec et al.[13] study the topological
properties of some evolving real-world graphs, and propose
”forest fire” spreading process including these properties.
Backstrom et al.[14] study the relation between the evolution
of communities and the structure of the underlying social
networks. Asur et al.[15] define several events based on graph
clusters evolution, and analyze group behavior through these
events. Sun et al.[16] present a non-user-defined parameters
approach to cluster evolving graphs based on Minimum De-
scription Length principle. Lin et al.[17] propose FacetNet
framework to detect community structure both by the network
data and the historic community evolution patterns.

Graph visualization is often helpful for providing important
insights of graph datasets. Namata et al.[18] develop a dual-
view approach to provide multiple views of a network simul-
taneously. Yang et al.[19] propose a Visual-Analytic Toolkit to
help analyze behavioral properties of nodes and communities,
such as stability and influence. Abello et al.[20] propose a
graph visualization system which uses clustering to construct
a hierarchy of large scale graphs.

III. PRELIMINARIES

Given a graph G = {V ,E}, V is the set of distinct vertices
{v1, ..., v|V |}, and E is the set of edges {e1, ..., e|E|}. A graph
G′ = {V ′,E′} is a subgraph of G if V ′ ⊆ V , E′ ⊆ E.

The Triangle K-Core subgraph proposed in this paper is
derived from K-Core subgraph, and we explain and compare
them as follows.

Definition 1: A K-Core is a subgraph G′ of G that each
vertex of G′ participates in at least k edges within the subgraph
G′. The K-Core number of such a subgraph is k.

Definition 2: The maximum K-Core associated with a
vertex v is defined by the subgraph Gv containing v whose
K-Core number is the maximum from among all subgraphs
containing v. The K-Core number of Gv is the maximum
K-Core number of v.

Batagelj et al [21] propose an efficient method to compute
every vertex’s maximum K-Core number with O(|E|) time
complexity.

Based on definition of K-Core, we are now in a position to
define the notion of a Triangle K-Core:

Definition 3: A Triangle K-Core is a subgraph G′ of G
that each edge of G′ is contained within at least k triangles
in the subgraph. Analogously, the Triangle K-Core number
of this Triangle K-Core is refered to as k.

Definition 4: The maximum Triangle K-Core associated
with an edge e is the subgraph Ge containing e that has the
maximum Triangle K-Core number. Analogously, the Triangle
K-Core number of Ge is the maximum Triangle K-Core
number of edge e. We use κ(e) to denote the maximum
Triangle K-Core number of edge e.

The main advantage of a Triangle K-Core over a K-Core is
that it offers a natural approximation of clique, we illustrate
this in the Figure 1.

(a) K-Core Number = 2 (b) Triangle K-Core Number = 2

Fig. 1. K-Core vs. Triangle K-Core

Figure 1(a) is a 5-vertex K-Core with K-Core number 2
constructed by minimal number of edges, Figure 1(b) is a
5-vertex Triangle K-Core with Triangle K-Core number 2
constructed by minimal number of edges, and we can easily
see that the Triangle K-Core is much closer to a 5-vertex clique
than the K-Core. In fact, Triangle K-Core is a relaxation of
clique, a n-vertex clique is equivalent to a n-vertex Triangle
K-Core with Triangle K-Core Number n-2.

For edge et, there is a triangle T containing et in et’s
maximum Triangle K-Core, we have the following property
for T:

Theorem 1: If triangle T is in et’s maximum Triangle K-
Core, and contains three edges, et, e1 and e2, then κ(ei) ≥
κ(et) (i = 1,2).



Proof: Since edge ei is in triangle T, and T is in et’s
maximum Triangle K-Core, denoted as Get , we have subgraph
Get contains ei. According to Definition 4, ei’s maximum
Triangle K-Core should have Triangle K-Core number no less
than Get ’s Triangle K-Core number, that is κ(ei) ≥ κ(et).

IV. TRIANGLE K-CORE ALGORITHM

A. Detecting Maximum Triangle K-Core

In Algorithm 1, input is Graph G, output is the maximum
Triangle K-Core number and optionally the maximum Triangle
K-Core associated with each edge. In each iteration, this
algorithm processes a particular edge ei and determines its
maximum Triangle K-Core number.

Algorithm 1 Detect each edge’s maximum Triangle K-Core
1: for each edge e in the graph do
2: set e to be unprocessed;
3: find all the triangles on e, set them to be unprocessed;
4: for each triangle t on edge e do
5: AddToCore(t, e);
6: κ̃(e) + +;
7: Place all the edges in list Edges, sort them in increasing order

of κ̃ value;
8: for i = 0 to |E|−1 do
9: ei = Edges[i];

10: κ(ei) = κ̃(ei);
11: for each unprocessed triangle T on ei do
12: for each edge et other than ei in T do
13: if κ̃(et) > κ̃(ei) then
14: DelFromCore(T, et);
15: κ̃(et)−−;
16: update et’s position in the sorted list Edges;
17: set triangle T to be processed;
18: set ei to be processed;

Before describing the Algorithm 1 we define the notions
of processing an edge and a triangle. If an edge’s maximum
Triangle K-Core number has been determined, it is considered
to be processed. A triangle T is processed if any one of its
edges is processed.

In step 2, each edge is set to unprocessed. In step 3, each
triangle on edge e is constructed by e’s two vertices and one
common neighbor of them. One triangle could be constructed
three times by its three edges, but we only store one instance
of each triangle. 1

Note that all triangles on edge e could be in e’s maximum
Triangle K-Core, so in step 5 the algorithm (AddToCore),
updates its bookkeeping to reflect the fact that each triangle
t is possibly2 in e’s maximum Triangle K-Core. Finally, κ̃(e)
contains the upper bound of e’s maximum Triangle K-Core
number κ(e).

In step 7 we place all the edges in a list sorted by increasing
order of κ̃ value. Bucket sort can be used as an optimization
step here with time complexity O(|E|). In steps 8-18, we pro-
cess each edge ei and determine its exact maximum Triangle

1We ensure this by giving a unique id to each edge, and only creating a
triangle instance on its edge with smallest id.

2The term possibly reflects the fact that this is currently an upper bound.

K-Core number κ(ei) since thus far we only had an upper
bound. In step 10, we determine that κ(ei) is exactly κ̃(ei),
the correctness is proved later. Then we update ei’s neighbor
edges’ κ̃ value in steps 11-17. If an unprocessed triangle T on
ei contains edge et that κ̃(et) is greater than κ̃(ei) (step 13),
we delete T from the upperbound of et’s maximum Triangle
K-Core. DelFromCore updates its bookkeeping to indicate that
T is not in the upperbound of et’s maximum Triangle K-Core.
In step 16, based on bucket sort the update could be optimized
with complexity O(1).

In fact, steps 5 and 14 are not necessary here, but it will
be useful for dynamic update algorithms. The time complexity
for Steps 8-18 is O(|Tri|), where |Tri| is the total number of
triangles in the graph.

Fig. 2. Example of Algorithm 1

Example: Figure 2 is an example to illustrate Algorithm 1.
We find the triangles on each edge, and sort edges in increasing
order of κ̃ value, {AB(1), AC(1), BD(2), BE(2), CD(2), CE(2),
DE(2), BC(3)}, where the number in parenthesis indicates the
κ̃ value of the edge. We process AB first, and get κ(AB)=1.
For unprocessed △ABC on AB, κ̃(BC)=3 is greater than
κ̃(AB)=1, so κ̃(BC) decrease 1 to be 2 (step 15), and
△ABC becomes processed. Then we process edge AC, and
have κ(AC)=1, there is no unprocessed triangle on AC, so
no update is needed. Next we process edge BD, and get
κ(BD)=2, △BDC and △BDE on BD are unprocessed, but
no edge of the two triangles has greater κ̃ value than κ̃(BD),
so no update. In the same way we find all left edges having
κ value equals 2.

Proof of Correctness of Algorithm 1: We show the
following invariances of Algorithm 1: at the end of each
iteration i, (1)for the edge et whose κ̃(et) value updated, κ̃(et)
is still the upperbound of κ(et); (2) for the edge ei processed
in current iteration, κ̃(ei) is equal to κ(ei).

We firstly prove the invariance (1) of Algorithm 1. In steps
11-12, for an unprocessed triangle T on edge ei, all T’s edges
are unprocessed, so T is still in the upperbound of maximum
Triangle K-Cores of all its edges(including edge ei and et). If
κ̃(et) > κ̃(ei) (step 13), we have:

Claim 1: κ̃(et) > κ(et)
Proof: We prove by contradiction. Assume κ̃(et) =

κ(et), then all the triangles in the current upper bound of
et’s maximum Triangle K-Core are exactly in et’s maximum
Triangle K-Core, so T is in et’s maximum Triangle K-Core.
However, in triangle T, κ(et) = κ̃(et) > κ̃(ei) >= κ(ei),
which violates Theorem 1, so the assumption is incorrect. We
have κ̃(et) > κ(et).
According to the proof of Claim 1, after decreasing κ̃(et) by



1 (step 15), κ̃(et) still remains as the upper bound of κ(et).
So invariance (1) is held.

Now we prove invariance (2). In iteration i, assume κ̃(ei)
= k, we use the edges whose current κ̃ ≥ k to construct a
subgraph Gk (including ei), and have the following claim:

Claim 2: The subgraph Gk is a Triangle K-Core with
Triangle K-Core number k.

Proof: For any edge e in Gk, κ̃(e) ≥ k, so the upper
bound of e’s maximum Triangle K-Core now contains at least
k triangles. Assume triangle T is one of them, considering T’s
two other edges e1 and e2, if e1 is not in subgraph Gk, then
κ̃(e1) < k. We could see that Algorithm 1 processes edges
in increasing order of κ̃, so e1 should already be processed.
When processing e1, κ̃(e1) < κ̃(e) (step 13) is true, so triangle
T should be deleted from the upper bound of e’s maximum
Triangle K-Core (step 14), which is a contradiction to the
assumption that triangle T is in upper bound of e’s maximum
Triangle K-Core. So e1 is in subgraph Gk, and so is e2.
Because edges e, e1 and e2 are all in subgraph Gk, triangle
T is in Gk. So all the triangles now in upper bound of e’s
maximum Triangle K-Core are in subgraph Gk, which means
any e in Gk is contained in at least k triangles in Gk, so Gk

is a Triangle K-Core with Triangle K-Core number k.
In Claim 2, we have a subgraph Gk containing ei with Triangle
K-Core number equals κ̃(ei), so κ̃(ei) is exactly κ(ei), and
Gk is obviously the maximum Triangle K-Core of ei.

In steps 3 we could store all triangles in main memory,
then reuse them in step 11. However for a large graph, storing
all triangles in main memory might be impossible. In such
a case, we do not store triangles in step 3, and compute
each edge’s triangles again in step 11, then we test whether a
triangle is unprocessed by testing whether its three edges are
all unprocessed.

B. Updating Maximum Triangle K-Core

So far we have worked on static graphs. In scenarios when
edges are added and removed from a graph over time however,
rather than recomputing the Triangle K-Cores from scratch
after each change, we can use Algorithm 2 to efficiently update
edges’ maximum Triangle K-Cores. The detailed pseudo code
of Algorithm 2 is in Appendix (Section IX-A).

Adding/deleting one edge might add/delete multiple trian-
gles simultaneously, in Algorithm 2 we process added/deleted
triangles one by one (step 1). Initially all added/deleted
triangles are not updated, and when processing one triangle
T we set it to be updated (step 2). In step 3, we identify T’s
edges whose maximum Triangle K-Cores might change, and
store them in PotentialList. We use Rule 0 to help find the
edges whose maximum Triangle K-Cores might change. Rule
0 is derived from Theorem 1, the proof is omitted for brevity.

• Rule 0: when triangle t is added/deleted to graph G,
assume µ is smallest κ value of t’s three edges, then
only the edges in G whose κ value equals µ might have
their maximum Triangle K-Cores changed.

Then we process each edge e in PotentialList to update its
κ(e). All the triangles associated with edge e should obey

Theorem 1, so we process them based on Theorem 1 (steps
6-7). If κ(e) finally changes, we put e in ChangingList,
which stores edges whose κ(e) has been changed, and put
e’s neighbor edges whose maximum Triangle K-Cores might
change to PotentialList(step 8). We use Rule 0 to help select
the edges to be put in PotentialList. After processing all edges
in PotentialList, we could determine edges’ maximum Triangle
K-Core numbers in ChangingList(step 9).

Please note that if an added triangle is not updated, or a
deleted triangle is updated, we do not involve them in the
Algorithm 2. A brief illustration of Algorithm 2 is as follows.

Algorithm 2 Update maximum Triangle K-Cores
1: for each added/deleted triangle T do
2: Set T to be updated;
3: Put T’s edges whose maximum Triangle K-Cores might

change to PotentialList;
4: Add/delete T from the maximum Triangle K-Cores of edges

in PotentialList, update those edges’ κ value;
5: for each edge e in PotentialList do
6: Find e’s ”illegal” triangles that violate Theorem 1;
7: Process e’s ”illegal” triangles to obey Theorem 1, mean-

while update κ(e);
8: If κ(e) changes, put e in ChangingList, put e’s neighbor

edges whose maximum Triangle K-Cores might change to
PotentialList;

9: update κ(e) of each edge e in ChangingList;

Fig. 3. Example of Algorithm 2

Example: In Figure 3, the original graph is comprised with
solid edges, and edge AC is added. The original κ value for
each edge is {AB(0), BC(0), AE(1), AF(1), EF(1), CD(1),
CE(1), DE(1)}. The initial value for κ(AC) is 0. After adding
edge AC, two triangles are added, △ABC and △AEC.

Firstly, we process newly added △ABC, now all its three
edges are {AB(0), BC(0), AC(0)}, so we put all three edges
in PotentialList (Rule 0), and add △ABC to their maximum
Triangle K-Cores (step 4), their κ value increases to be 1.
Then we process each edge in PotentialList, assume AC is the
first edge. In step 6 we find △ABC on edge AC is ”legal”,
and △AEC is not taken into consideration because it is not
updated. In step 8, because κ(AC) changes to be 1, we put
edge AC’s neighbor edges AB, BC in PotentialList(they are
already in). In the following iterations we process left edges in
PotentialList (AB and BC) similarly, and update κ(AB) and
κ(BC) to be 1.

Then, we process newly added △AEC, now its three edges
are {AE(1), EC(1), AC(1)}, so we put all of them in Poten-
tialList, and add △AEC to their maximum Triangle K-Cores,



their κ value increases to be 2. Let’s process edge AC first, we
find △ABC on edge AC is ”illegal”, because △ABC is in
AC’s maximum Triangle K-Core while κ(AC) = 2 is greater
than κ(BC) = 1 and κ(AB) = 1, which violates Theorem 1.
So in step 7 we delete △ABC from AC’s maximum Triangle
K-Core and decrease κ(AC) to be 1. Similarly edges AE and
EC in PotentialList both are processed to decrease κ(AE) and
κ(EC) to be 1.

If we do not store triangles in Algorithm 1, then in Algo-
rithm 2 we need to recompute triangles from edges, we explain
this in Appendix (Section IX-A).

V. EXTENSIONS

Visualizing Clique-like Structures: We now describe how
Triangle K-Cores can be used for detecting and visualizing
interesting cliques-like structures within networks. Before de-
scribing our technique we briefly review the CSV method [1]
to visualize all potential cliques in graph.

CSV plot: CSV first estimates co clique size for each edge,
which is the size of maximum clique that each edge partici-
pants in. Then subsequently CSV plots vertices along X-axis
in a certain order, and the Y-axis value for each vertex is one
of its neighbor edges’ co clique size value. The final plot is
the clique distribution of the graph, and the flat peaks in the
plot indicate potential cliques.

However, estimating co clique size for each edge takes up
most of the time cost in CSV. Instead we propose to use each
edge’s maximum Triangle K-Core as a proxy to approximate
the maximum clique it participates in. In other words we
estimate e.co clique size as κ(e)+2 for each edge e, and then
plot the clique distribution using exactly the same method as
that of CSV. As we demonstrate in experiments our method
produces plots that are inherently similar or identical to that
of CSV at a fraction of the cost.
Dual View Plots: When edges are added to a dynamic graph
G, some clique structures might be changed, we propose to
use Dual View Plots to capture the change of cliques in the
graph.

The idea is, we first plot the cliques of the original graph
in plot(a), then after adding edges, we only plot the changed
cliques in plot(b). By comparing plot(a) and plot(b), we could
visually analyze how cliques in plot(b) are formed from
cliques in plot(a). We use the the same plot method as CSV
to plot clique distribution. The steps are as follows:

We illustrate the benefits of Dual View Plots in the experi-
mental section.
Detecting Template Pattern Cliques: In this section we
describe a mechanism wherein allows users to detect cliques
of patterns to their interest. In evolving graphs, these cliques
could include, for example, cliques formed by a group of new
actors (nodes), cliques formed by merging two existing cliques
etc. At a higher level of abstraction, such cliques can allow a
user to probe an evolving network to discover interesting or
anomalous behavior[22]. The benefit of our method is it gives
users flexibility to define the patterns on their own.

Algorithm 3 Dual View Plots
1: Execute Algorithm 1 to compute κ(e) for each edge e;
2: For each edge e, e.co clique size = κ(e) + 2;
3: Plot clique distribution plot(a) of G;
4: When edges are added, execute Algorithm 2 to update edges’ κ

value;
5: Recompute co clique size for each edge e, if e is newly

added edge, e.co clique size = κ(e) + 2, otherwise
e.co clique size = 0;

6: Plot clique distribution plot(b) based on new co clique size of
each edge;

7: In plot(b) select one Clique C of interest, locate the vertices of
C in plot(a), and analyze how Clique C is formed;

Several examples of template pattern cliques in evolving
graphs are illustrated below and in Figure 4. Here the original
graph is denoted as OG, the new graph is denoted as NG. In
Figure 4 black vertices/edges are original vertices/edges, red
vertices/edges are newly added vertices/edges.
1. New Form Clique is formed by new edges, as illustrated in
Figure 4(a) where ABCDE is a New Form Clique.
2. Bridge Clique is formed by vertices from two disconnected
cliques in OG, as illustrated in Figure 4(b) where ABCDE is
a Bridge Clique.
3. New Join Clique is formed by a clique in OG and new
vertices in NG, as illustrated in Figure 4(c) where ABCDEF
is a New Join Clique.

Algorithm 4 Detecting template pattern Cliques in Graph G

1: Define and detect the characteristic triangles of the template
pattern cliques;

2: for each characteristic triangle Tc do
3: Mark Tc’s edges and vertices as special;
4: Define and detect the possible triangles formed by special ver-

tices;
5: for each possible triangle Tp do
6: Mark Tp’s edges as special;
7: Use the special vertices and special edges to build a new graph

Gspe;
8: Execute Algorithm 1 on Gspe to calculate each special edge’s κ

value;
9: for each edge e in G do

10: if e is a speical edge then
11: e.co clique size = κ(e)+2;
12: else
13: e.co clique size = 0;
14: Use the same plot method as CSV to plot clique distribution of

graph G;

We propose Algorithm 4 to detect the template pattern
cliques. In step 1, we introduce the concept ”characteristic
triangles” of the template pattern cliques. The characteristic
triangles should satisfy the following two requirements:
(1) a characteristic triangle is a 3-vertex clique of such
template pattern.
(2) for any vertex v in the template pattern clique, there is a
characteristic triangle containing v in the same clique.

From the requirement 1, we know that every vertex in a



characteristic triangle belongs to the template pattern clique;
from the requirement 2, we know that any vertex of such a
template pattern clique belongs to a characteristic triangle.
So the vertices of all characteristic triangles are exactly the
vertices of all such template pattern cliques. We should note
that if users are unable to define characteristic triangle for a
template pattern clique, Algorithm 4 could not be used.

In steps 2-3 we mark all characteristic triangles and their
edges and vertices to be special. Also, we notice that besides
characteristic triangles, some other types of triangles are also
possible in template pattern cliques, so we define and detect all
these possible triangles of the template pattern cliques in step
4, note that the vertices of possible triangles are among the
the vertices of characteristic triangles. In steps 5-6 we mark
all possible triangles and their edges as special. In step 7,
we build a subgraph Gspe made of special triangles, special
edges and special vertices. In step 8 we detect cliques in the
subgraph Gspe using Algorithm 1. In steps 9-13 we compute
co clique size for special edges, and set co clique size of non-
special edges to be 0, because they do not participate in any
template pattern cliques. Finally we plot the distribution of the
template pattern cliques.

(a) New Form (b) Bridge (c) New Join

(d) New Form (e) Bridge (f) New Join

Fig. 4. Several template pattern cliques and their characteristic triangles

In the following we will detect the 3 template pattern
cliques introduced before. We need to specify the characteristic
triangles and possible triangles in Algorithm 4, and then detect
the template pattern cliques using Algorithm 4.

Detect New Form Cliques: the characteristic triangle of a
New Form Clique obviously has 3 new edges and 3 original
vertices, as illustrated in Figure 4(d), and no other types of
triangles are possible in New Form cliques.

Detect Bridge Cliques: for the characteristic triangle of
a Bridge Clique, its vertices should be in two disconnected
cliques in OG, so the triangle has 3 original vertices, 2 new
edges, and 1 original edge, as illustrated in Figure 4(e). We
find that there is another type of possible triangle in Bridge
Clique, that is triangle comprised of 3 original edges, such as
△BCD in the Figure 4(b).

Detect New Join Cliques: the characteristic triangle of a
New Join Clique should be comprised of a clique in OG and
new vertices, so the only possibility is that the triangle contains
a new vertex, and two connected original vertices (2-vertex
clique) in OG, as Figure 4(f) shows. There are two types of
possible triangles in New Join Clique. One type is made of

all new edges, such as △ABC in the Figure 4(c), and another
type is made of all original edges, such as △DEF in the
Figure 4(c).

Please note that Algorithm 4 not only works for evolving
graphs, but also for static graphs. If edges and vertices have
different attributes, we could mark different attributes as red
or black as in Figure 4, and detect similar template pattern
cliques using Algorithm 4. In Experiments section we will
illustrate detecting template pattern cliques on static and
dynamic graphs.

VI. RELATIONSHIP TO DN-GRAPH

Before we discuss the empirical evaluation we would like
to highlight an interesting connection between our approach
and the recent approach proposed by Wang et al[3]. It is
interesting to note that this connection was initially observed
during our empirical evaluation, where we found both DN-
Graph and our method to essentially converge to identical
values of co clique size (density). We are now in a position
to also provide a theoretical justification for this connection.

DN-Graph G’(V’, E’, λ) is a subgraph pattern proposed by
Nan Wang et al[3], it satisfies two requirements
(1) every connected pair of vertices in G’ has at least λ
common neighbors; (2) for vertex v not in G’, adding v to G’
will decrease the λ value of G’, for vertex v’ in G’, removing
v’ from G will not increase the λ value of G’.

A subgraph with Triangle K-Core number λ only satisfies
requirement (1), so it is a relaxation of DN-Graph. Require-
ment (2) actually makes DN-Graph a locally maximum densest
subgraph.

However, there are two problems with DN-graph: (1) Not
every vertex in a graph belongs to a DN-Graph subgraph. In
Figure 5, only BCDE is a DN-Graph, there is no DN-Graph

Fig. 5. DN-Graph example

covering vertex A, so DN-Graph might not be helpful if we
want to get every vertex’s local density. (2) Detecting all DN-
Graphs in a graph is NP-Complete[3].

To tackle problem (2), Nan Wang et al.[3] propose to detect
λ(e), which is the maximum λ value of the DN-Graph that
edge e participates in. However, detecting λ(e) is still difficult,
so they propose to compute a valid upperbound of λ(e),
denoted as valid λ̃(e), iteratively. Interestingly, we find that
κ(e) is actually valid λ̃(e) (the proof is below).

Definition 5: valid λ̃(e)
Inside △(u, v, w), if λ̃(u, v) ≤ min(λ̃(u,w), λ̃(v, w)), we say
w supports λ̃(u, v). λ̃(u, v) is valid if and only if |{w| w
supports λ̃(u, v)}| ≥ λ̃(u, v).

Claim 3: For any edge e, κ(e) is valid λ̃(e).
Proof: Since the maximum Triangle K-Core of e is a

relaxation of the maximum DN-Graph containing e, κ(e) is



upperbound of λ(e), denoted as λ̃(e). In graph G we assign
λ̃(e) as κ(e) for every edge e.

Next we prove κ(e) is valid λ̃(e). For edge e(u, v), as-
sume its maximum Triangle K-Core is subgraph Ge. For any
△(u, v, w) containing e in Ge, according to Theorem 1, we
have κ(v, w) ≥ κ(e), κ(u,w) ≥ κ(e), so λ̃(v, w) ≥ λ̃(e) ,
λ̃(u,w) ≥ λ̃(e). According to Definition 5, vertex w supports
λ̃(e). There are at least κ(e) triangles containing edge e in
Ge, so there are at least κ(e) vertices supporting λ̃(e). λ̃(e)=
κ(e), therefore λ̃(e) is valid, and κ(e) which equals λ̃(e) is
valid λ̃(e).

As a result of this connection we empirically observe that
for almost all the real-world graphs we have evaluated both
DN-Graph variants TriDN and BiTriDN essentially converge
to identical density values as our method. The main compu-
tational advantage of our method is in avoiding the costly
iterative approach to estimate λ and to directly compute κ(e).

VII. EXPERIMENTS

In this section we present our experimental results. All ex-
periments, unless otherwise noted, are evaluated on a 3.2GHz
CPU, 16G RAM Linux-based system at the Ohio Supercom-
puter Center (OSC). The main datasets we evaluated our
results on can be found in Table I.

TABLE I
DATA SETS

Graph Dataset Vertices Edges
Synthetic 60 308

Stocks 425 1680
PPI 4741 15147

DBLP 6445 11848
Astro-Author 17903 196972

Epinions 75879 405741
Amazon 262111 899792

Wiki 176265 1010204
Flickr 1,715,255 15,555,041

LiveJournal 4,847,571 42,851,237

A. Comparison with CSV and DN-Graph

In our first set of experiments we compare the perfor-
mance of our Triangle K-Core algorithm (Algorithm1) with
other recent approaches such as CSV[1] and DN-Graph vari-
ants(TriDN and BiTriDN (an improvement over TriDN))[3]
both in terms of efficiency and efficacy. As noted in Section VI
we can theoretically show that the DN-Graph variants (TriDN
and BiTriDN) proposed by Wang et al[3] converges to the
same value as our algorithm. Table II documents the execution
time performance of these algorithms on various datasets,
while Figure 6 conveys a qualitative comparison by realizing
the density plots produced by each algorithm (note that since
DNGraph and Triangle K-Core converge to the same values
the density plots are identical). First, for all the datasets it is
clear that CSV is the slowest while Triangle K-Core is the
fastest to finish (note for the three largest datasets we could

TABLE II
TIME COST COMPARISON (SECONDS)

Graph CSV TriDN BiTriDN T-K-Core
Synthetic 0.043 0.0012 0.0011 0.0010

Stocks 0.51 0.017 0.010 0.006
PPI 2.51 0.211 0.121 0.097

DBLP 1.47 0.062 0.046 0.034
Astro-Author 17393.7 73.8 7.79 1.03

Epinions - 262.13 15.71 4.09
Amazon - 34.9 10.59 3.81

Wiki - 435.8 17.15 7.89
Flickr - - *60 hours 747

LiveJournal - - - 443

not run CSV or TriDN due to memory thrashing issues on the
OSC machine and BiTriDN was taking too long to converge3

Second, when comparing our results with CSV plots on the
qualitative visual assesment (the interested reader is refered to
Figure 6) we observe that while the order in which vertices
are processed may on occasion be slightly different – arising
due to the differences in the estimation procedure of co-clique
size and resulting in a shift of the main trends – the main
trends themselves are quite similar and easy to discern.

B. Protein-Protein Interaction (PPI) Case Study

We also do a case study on PPI network, the plot is in
Figure 7. The 3 red circles in the plot indicate 3 approximate
cliques, we draw the 3 cliques (from left to right) in Figure 7.
We find that clique 1 is exactly the same DN-Graph detected
in [3]. The names in the parenthesis are the names used in [3].
Clique 2 is shown to be 10-vertex clique in the plot, in fact it
is an exact 10-vertex clique. Clique 3 has 10 vertices, but it is
shown to be 9-vertex clique, because the edge between APC4
and CDC16 is missed.

C. Experimental Results of Update Algorithm

To evaluate the effectiveness of our update algorithm we
randomly add/delete 1% of edges from the five largest datasets
in Table I, and in Table III we compare the time costs of
re-computing and updating the maximum Triangle K-Cores
incrementally. Results reported are averaged over 5 runs. Here
Re-compute time is actually the execution time of steps 8-
18 in Algorithm 1, and Update time is the execution time
of the Algorithm 2. The results clearly demonstrate that the
incremental algorithm is effective.

D. Dual View Plots: Wiki Case Study

In Figure 8, we present an example to illustrate how Dual
View Plots can highlight the change of clique-like structures
within a dynamic graph setting.

3We had a job time limit imposed by the Ohio Supercomputer Center job
scheduler. The Flickr results for DNGraph are taken from[3], to give the
reader a ballpark figure – the machine they used had a comparable processor
but with larger memory. The reason for this high processing time for the
DNGraph variants is attributed to the fact that each iteration is expensive (55
min per iteration for Flickr) and a number of iterations (66 are needed for
convergence[3]).



(a) Synthetic Dataset

(b) Stocks Dataset

(c) Astro-Author Dataset

(d) PPI Dataset

(e) DBLP Dataset

Fig. 6. Qualitative Comparison between CSV and Triangle K-Core Note
that in the figure we note regions in the plot where the two plots are near
identical or similar (S) and regions where there is a distinct phase shift (PS).

(a) PPI clique distribution

(b) PPI clique 1

(c) PPI clique 2

(d) PPI clique 3

Fig. 7. Cliques in PPI dataset

We use two consecutive snapshots of Wiki datasets for this
purpose. A snapshot of Wiki dataset is comprised of vertices,
which are Wiki articles, and references among them. Fig-
ure 8(a) represents the clique distribution plot of 1st snapshot,
and it corresponds to plot(a) in Algorithm 3. Figure 8(b) visu-
alizes the cliques containing new edges in the 2nd snapshot,
and it corresponds to plot(b) in Algorithm 3. The users could
use the tool to choose a subset of clique-like structures of
interest to enable cognitive correspondence.

We illustrate this in Figure 8(b) by selecting the 3 cliques
with highest density on the plot – denoted using a green



TABLE III
UPDATE ALGORITHM TIME COST (SECONDS)

Graph Total Edges Edges
Changed

Re-Compute Update

Astro-Author 196972 1814 0.27 0.005
Epinions 405741 3953 0.70 0.06
Amazon 899792 7958 0.61 0.01
Flickr 15,555,041 14996 561 1.4

LiveJournal 42,851,237 41996 306 2.4

triangle, a red rectangle, and an orange ellipse for expository
convenience. The Dual View Plot tool can then locate their
corresponding vertices in Figure 8(a) using the same markers,
allowing the user to gain insights into how these clique-like
structures evolved. For example, one can observe that the ver-
tices (green triangle) are located in two places in Figure 8(a);
some vertices are in a 10-vertex clique, and one single vertex
is in a 5-vertex clique. Drilling down as shown in Figure 8(c),
”Astrology” is the single vertex, the red edges are new added
edges. Essentially between two consecutive snapshots, a new
Wiki page and the corresponding Wiki links were established
thereby forming a larger clique. The details about the other 2
clique-like structures are presented Figure 8(d) and Figure 8(e)
and are also self explanatory – the two cliques are formed
by merging vertices from different original cliques, they both
indicate an expanding trend on specific topics.

E. Dynamic Template Pattern Cliques: DBLP Study

The DBLP graph data set is consisted of authors(vertices)
and their collaborations(edges) in each year. In the following
we detect some template pattern cliques in DBLP data set,
and show that such cliques reveal some interesting hidden
information about paper topics.

To illustrate the New Form Clique, we use the DBLP 2003
and 2004 (dynamic) data. New Form Clique Plot for DBLP
in 2004 is shown in Figure 9. The red circle highlights the
densest (6-vertex) New Form clique. The authors are Rudi
Studer, Karl Aberer, Arantza Illarramendi, Vipul Kashyap,
Steffen Staab, Luca De Santis. They are from 5 different
countries, and they collaborated for the first time in 2004.

In a similar manner we plot the Bridge Clique distribution of
DBLP between the years 2003 and 2004 in Figure 10. The first
major clique on the plot (red circle) is an interesting 6-vertex
bridge clique. In 2003, the 6 authors were in two independent
groups: Group 1: Divesh Srivastava, Graham Cormode, S.
Muthukrishnan, Flip Korn; and Group 2: Theodore Johnson
, Oliver Spatscheck. In Group 1, the authors primarily worked
on data streams, and in Group 2 the researchers mainly worked
on networking in 2003. In 2004, the 6 authors worked together
on ”Holistic UDAFs at Streaming Speeds”, which is a topic
”merged” by data stream and network.

Using datasets DBLP 2000 and DBLP 2001, we plot the
New Join Cliques in DBLP 2001 in Figure 11. The densest
New Join clique (denoted by a red circle) shows a 9-vertex
clique. in 2000, the 3 authors Quan Wang, David Maier,

(a) Distribution of original cliques (Plot(a))

(b) Distribution of changed cliques (Plot(b))

(c) Clique details (green triangle)

(d) Clique details (red rectangle)

(e) Clique details (orange ellipse)

Fig. 8. Dual View Plots for Clique Changes



Fig. 9. Plot of New Form Cliques in DBLP 2004

Fig. 10. Plot of Bridge Cliques in DBLP 2004

Fig. 11. Plot of New Join Cliques in DBLP 2001

Leonard D. Shapiro worked on a paper about Query Pro-
cessing. In 2001, the 3 authors were joined by 6 other authors
who did not appear in DBLP 2000 dataset, Paul Benninghoff,
Keith Billings, Yubo Fan, Kavita Hatwal, Yu Zhang, Hsiao-
min Wu, and they worked on one paper ”Exploiting Upper
and Lower Bounds in Top-Down Query Optimization”, which
is an extension of the previous work in 2000.

F. Static Template Pattern Cliques: PPI Case Study

We next discuss how domain-driven template pattern cliques
based on Triangle K-Cores can be exploited in the case of
static data such as Protein Protein Interaction (PPI) data. In
PPI dataset, each vertex represents a protein, and each protein
belongs to a complex, which includes proteins of similar
functions. Now we define a variant of Bridge Clique to be
a clique that connects vertices from two different complexes.
Here we define an edge to be ”new edge” when it connects
two vertices from different complexes, otherwise it is ”original
edge”. Then we apply the previously described Bridge Clique
detection algorithm on PPI dataset, and get the Bridge Clique
distribution plot in Figure 12(a).

We highlight two peaks using red circles, the Bridge Clique
1 in left red circle is comprised of vertices from the following
two complexes:

(a) Plot of Bridge Cliques in PPI dataset

(b) Details of bridge clique 1

Fig. 12. Detect Bridge Cliques in PPI dataset

• 20S proteasome complex: PRE1
• 19/22S regulator complex: RPN11, RPN12, RPN9,

RPT1, RPN5, RPN5, RPT3, RPN8
In Figure 12(b), we draw the details of Bridge Clique 1 in
the dashed-line rectangle, where the green vertices belong to
the complex ”19/22S regulator”, the blue vertices belong to
complex ”20S proteasome”, black edges are intra-complex
edges, red edges are inter-complex edges. Besides drawing
Bridge Clique 1, we also draw other vertices in complex ”20S
proteasome”, and find that the vertex ”PRE1” is an important
bridge node connecting the two complexes.

The proteins in right red circle comprise 2 Bridge Cliques,
the first is Bridge Clique 2:

• Gac1p/Glc7p complex: GLC7
• mRNA cleavage and polyadenylation specificity factor

complex: PAP1, CFT2, CFT1, PTA1, MPE1, YSH1,
YTH1, REF2

the second is Bridge Clique 3:
• mRNA cleavage factor complex: RNA14
• mRNA cleavage and polyadenylation specificity factor

complex: PAP1, CFT2, CFT1, PTA1, MPE1, YSH1,
YTH1, FIP1

We find that Bridge Clique 2 and 3 have a lot of overlap
vertices, which indicate that all the vertices in them are very
closely related in function.

VIII. CONCLUSIONS

In this paper, we define and introduce the notion of a
Triangle K-Core, a simple topological motif and demonstrate
how to extract such structures efficiently from both static and
dynamic graphs. We empirically demonstrate on a range of
real-world data that this motif can be used as a proxy for prob-
ing and visualizing relevant clique-like structure from large
dynamic graphs and networks. Finally, we discuss a method



to extend the basic definition to support user defined clique
template patterns with applications to network visualization,
correspondence analysis and event detection on graphs and
networks.

REFERENCES

[1] N. Wang, S. Parthasarathy, K.-L. Tan, and A. K. H. Tung, “CSV:
Visualizing and Mining Cohesive Subgraphs,” ACM SIGMOD, pp. 445–
458, 2008.

[2] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS:
ordering points to identify the clustering structure,” ACM SIGMOD, pp.
49 – 60, 1999.

[3] N. Wang, J. Zhang, K. Tan, and A. K. H. Tung, “On Triangulation-based
Dense Neighborhood Graphs Discovery,” PVLDB, 2010.

[4] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis
and an algorithm,” Advances in Neural Information Processing Systems,
vol. 14, 2001.

[5] V. Satuluri and S. Parthasarathy, “Scalable Graph Clustering Us-
ing Stochastic Flows: Applications to Community Discovery,” ACM
SIGKDD, 2009.

[6] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs,” SIAM Journal on Scientific Comput-
ing, vol. 20, 1998.

[7] I. Dhillon, Y. Guan, and B. Kulis, “A Fast Kernelbased Multilevel
Algorithm for Graph Clustering,” ACM SIGKDD, 2005.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco: W. H. Freeman,
1979.

[9] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy, “Ap-
proximating Clique is Almost NP-Complete,” FOCS, 1991.

[10] J. Wang, Z. Zeng, and L. Zhou, “CLAN: An Algorithm for Mining
Closed Cliques from Large Dense Graph Databases,” ICDE, p. 73, 2006.

[11] J. Abello, M. G. C. Resende, and S. Sudarsky, “Massive Quasi-Clique
Detection,” Proceedings of the 5th Latin American Symposium on
Theoretical Informatics, 2002.

[12] Z. Zeng, J. Wang, L. Zhou, and G. Karypis, “Coherent closed quasi-
clique discovery from large dense graph databases,” ACM SIGKDD,
2006.

[13] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: den-
sification laws, shrinking diameters and possible explanations,” ACM
SIGKDD, 2005.

[14] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group
formation in large social networks: membership, growth, and evolution,”
ACM SIGKDD, 2006.

[15] S. Asur, S. Parthasarathy, and D. Ucar, “An event-based framework for
characterizing the evolutionary behavior of interaction graphs,” ACM
TKDD, vol. 3, no. 16, 2009.

[16] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu, “GraphScope:
parameter-free mining of large time-evolving graphs,” ACM SIGKDD,
2007.

[17] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “Facetnet:a
framework for analyzing communities and their evolutions in dynamic
networks.” WWW, 2008.

[18] G. M. Namata, B. Staats, L. Getoor, and B. Shneiderman, “A dual-
view approach to interactive network visualization,” ACM CIKM, pp.
939–942, 2007.

[19] X. Yang, S. Asur, S. Parthasarathy, and S. Mehta, “A Visual-Analytic
Toolkit for Dynamic Interaction Graphs,” ACM SIGKDD, 2008.

[20] J. Abello, F. V. Ham, and N. Krishnan, “ASK-GraphView: A Large
Scale Graph Visualization System ,” IEEE TVCG, 2006.

[21] V. Batagelj and M. Zaversnik, “An O(m) Algorithm for Cores Decom-
position of Networks,” CoRR, arXiv.org/cs.DS/0310049, 2003.

[22] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, “Web graph sim-
ilarity for anomaly detection,” Proceeding of the 17th international
conference on World Wide Web, 2008.

IX. APPENDIX

A. Triangle K-Core Update Algorithm
Before executing the update algorithm, for each edge e,

we firstly initialize e.order, which indicates the ”time stamp”

when e is processed in Algorithm 1. If e.order is less than
e’.order, then e is processed earlier than e’. e.order is initial-
ized as the index of edge e in list Edges after execution of
Algorithm 1.

Algorithm 5 Update Algorithm for Adding Edges
1: for each added triangle tnew do
2: Create empty lists ChangingList, PotentialList, TempList;
3: Find the smallest value µ of tnew’s edges’ κ value;
4: Put tnew’s edges whose κ value equals µ in PotentialList in

order;
5: AddToCore(tnew, e0); // e0 is the first edge of PotentialList
6: κ(e0) + +;
7: for each edge e in PotentialList do
8: ori κ(e) = µ;
9: Construct triangles set e.addTris;

10: for each triangle ta in e.addTris do
11: AddToCore(ta, e);
12: κ(e) + +;
13: Construct triangles set e.delTris;
14: for each triangle td in e.delTris do
15: if κ(e) > ori κ(e) then
16: DelFromCore(td, e);
17: κ(e)−−;
18: Remove e from PotentialList;
19: if κ(e) > ori κ(e) then
20: put e to ChangingList;
21: Insert e.post edges to PotentialList in order;
22: else
23: TempList = Simulate Algo1(e);
24: Insert edges in TempList between e’s previous and next

edge in Edges list;
25: while ChangingList is not empty do
26: TempList = Simulate Algo1(ChangingList.min edge);
27: Insert edges in TempList in Edges list, between the last edge

with κ(e) = µ and first edge with κ(e) = µ+ 1;

Algorithm 6 Simulate Algo1(einit)
1: Create an empty list TempList;
2: Add einit to TempList;
3: for each edge e in TempList do
4: Construct triangles set e.addTris;
5: for each edge e′ that shares a triangle T in e.addTris with e

and e’ is in ChangingList do
6: if κ(e′) > κ(e) then
7: DelFromCore(T, e’);
8: κ(e′)−−;
9: if κ(e′) = κ(e) then

10: Move e’ from ChangingList to TempList;
11: Return TempList;

Algorithm 5 is to update edges’ maximum Triangle K-Cores
when adding edges. In step 4, according to Rule 0, we put
some edges of tnew in PotentialList because their maximum
Triangle K-Cores might change. All edges in PotentialList are
sorted in the increasing order of e.order, that is because we
will simulate Algorithm 1 to recompute on PotentialList, we
need to maintain the order. The newly added triangle tnew is
not yet in any edge’s maximum Triangle K-Core, so in steps
5-6, we add it to the maximum Triangle K-Core of the first
edge of PotentialList.



Steps 7-24 update κ(e) for each edge e in PotentialList. In
step 8, ori κ(e) stores the original maximum Triangle K-Core
number of e before update, according to Rule 0, this value is
equal to µ. In step 9 we construct the following set of triangles
that violate Theorem 1 (IsInCore(t, e) tests whether triangle t
is in edge e’s maximum Triangle K-Core):

• e.addTris ={△t | △t is on edge e, and △t con-
tains edge e’ that κ(e′) > κ(e) ∧ IsInCore(t, e′) ∧
!IsInCore(t, e)}

Steps 10-12 then process these ”illegal” triangles in e.addTris.
After that, κ(e) might increase and lead to the following set
of triangles that violate Theorem 1:

• e.delTris ={△t | △t is on edge e, and △t contains
edge e’ that e′.order < e.order ∧ κ(e′) < κ(e) ∧
IsInCore(t, e′) ∧ IsInCore(t, e)},

Steps 14-17 then process these ”illegal” triangles in e.delTris.
In step 19, if κ(e) increases, some of e’s neighbor edges

might change κ value, according to Rule 0, these edges are in
the following set,

• e.post edges = {Edge e′ | e’ shares a triangle with e, and
κ(e′) = µ ∧ e′.order > e.order}

we put these edges in PotentialList.
If κ(e) does not change, then edge e is processed now, in

step 23 we use method Simulate Algo1 to simulate Algorithm
1 to update e and its neighbors’ maximum Triangle K-Cores.
Simulate Algo1 will return a list of edges whose κ value is
determined.

When all edges in PotentialList have been processed, we
update maximum Triangle K-Cores of edges in ChangingList
(step 26), ChangingList.min edge is the edge in ChangingList
with the minimum κ value. In step 27 we put all edges in
ChangingList in the corresponding positions in sorted list
Edges.

Algorithm 7 is to update edges’ maximum Triangle K-Cores
when deleting edges. In step 4, according to Rule 0, we put
some edges of tdel in PotentialList. In steps 5-8, we remove
deleted triangles from its edges’ maximum Triangle K-Cores.
In step 11, we construct two sets of triangles on e:

• e.addTris = {△t | △t is on edge e, and contains edge
e’ that, κ(e′) = ori κ(e) ∧ e′.order < e.order ∧
IsInCore(t, e′)∧!IsInCore(t, e) }

• e.delTris = {△t | △t is on edge e, and contains
edge e’ that, κ(e′) < ori κ(e) ∧ IsInCore(t, e′) ∧
IsInCore(t, e) }

When step 13 is satisfied, all the triangles in e.addTris
violate Theorem 1, so we add the first triangle of e.addTris
to e’s maximum Triangle K-Core to obey Theorem 1. Then
κ(e) changes and we test step 20, if step 20 is satisfied, all
the triangles in e.delTris violate Theorem 1, so we remove
the first triangle of e.delTris from maximum Triangle K-Core
of e to obey Theorem 1. In steps 28-30, if κ(e) changes,
according to Rule 0 we find the following set of edges whose
maximum Triangle K-Core might change, and insert them in
PotentialList.

Algorithm 7 Update Algorithm for Deleting Edges
1: for each deleted triangle tdel do
2: Create empty lists ChangingList, PotentialList;
3: Find the smallest value µ of tdel’s edges’ κ value;
4: Put tdel’s edges whose κ value equals µ in PotentialList in

order;
5: for each edge e in PotentialList do
6: if IsInCore(tdel, e) then
7: DelFromCore(tdel, e);
8: κ(e)−−;
9: for each edge e in PotentialList do

10: ori κ(e) = µ;
11: Construct triangles sets e.addTris and e.delTris;
12: while true do
13: if κ(e) < ori κ(e) then
14: if e.addTris is not empty then
15: AddToCore(e.addTris.first, e);
16: κ(e) + +;
17: remove e.addTris.first from e.addTris;
18: else
19: break;
20: if κ(e) = ori κ(e) then
21: if e.delTris is not empty then
22: DelFromCore(e.delTris.first, e);
23: κ(e)−−;
24: remove e.delTris.first from e.delTris;
25: else
26: break;
27: Remove e from PotentialList;
28: if κ(e) < ori κ(e) then
29: Put e in ChangingList;
30: Insert e.share edges to PotentialList in order;
31: Insert edges in ChangingList in Edges list, between the last

edge with κ(e) = µ− 1 and first edge with κ(e) = µ;

• e.share edges = {Edge e′ | e’ shares a triangle with e,
κ(e′) = µ}

Finally we put the edges in ChangingList in correct positions
in list Edges.

In Algorithm 5 and 7, after each iteration, each edge’s
order value needs to be re-computed, which will be costly.
In our implementation, we only update edges whose order
value have been changed, that is, when a set of edges {e1, e2,
...en} are inserted between two edges Ea, Eb, then ei.order =
Ea.order + (Eb.order − Ea.order) ∗ i/(n+ 1).

If we do not store triangles in Algorithm 1, when updating
edge e in PotentialList we need to re-construct e’s triangles,
and the triangle information we need to know is whether
a triangle of e is in e’s maximum Triangle K-Core. We
recover this information as following: we firstly get triangle t’s
”process time”, which is the smallest order value of its edges,
then we apply the following Rule to find all e’s triangles in
e’s maximum Triangle K-Core.

• Rule 1: if κ(e)=k, then we sort e’s triangles in the in-
creasing order of their ”process time”, the last k triangles
will be in e’s maximum Triangle K-Core.

B. Proof of Correctness of Triangle K-Core Update Algorithm

Rule 0: when triangle t is added/deleted to graph G, assume
µ is smallest κ value of t’s three edges, then only the edges in



G whose κ value equals µ might have their maximum Triangle
K-Cores changed.

Proof of Rule 0: When triangle t is added/deleted to graph
G, we first prove the following two lemmas:

Lemma1: for edges of t, only the edges with smallest κ
value µ might change change κ value, and the change is 1.

Proof : According to Theorem 1, only the edges in t with
smallest κ value could have triangle t in their maximum
Triangle K-Cores, so adding/deleting t will only affect those
edges in t, and their κ value would increase/decrease by 1.

Lemma2: If one edge e with κ(e) = µ changes κ(e) by 1,
then for any neighbor edge e’ of e, e’ might change κ value
only when κ(e′) = µ, and the change is 1.

Proof : Here we prove Lemma 2 when κ(e) increases by
1, the case when κ(e) decreases by 1 could be proved in the
similar way. Assume e’ and e share a common triangle T’.
If κ(e′) >= µ+1, then according to Theorem 1, originally T’
is not in maximum Triangle K-Core of e’. When e increases
κ(e) to µ+ 1, if T’ is added in maximum Triangle k-core of
e’, then κ(e′) + 1 >= µ+2 > κ(e), this violates Theorem 1,
so T’ should not be added in maximum Triangle K-Core of
e’ and κ(e′) should stay the same.
If κ(e′) <= µ−1, then according to Theorem 1, originally T’
is not in maximum Triangle K-Core of e. When e increases
κ(e) to µ + 1, T’ should still not be in maximum Triangle
K-Core of e, and thus κ(e′) is not affected.
So only when κ(e′) = µ, κ(e′) could change, The change is
due to adding(deleting) T’ to(from) the maximum Triangle
K-Core of e’, so the change could only be 1.

Lemma 1 shows that the edges with κ = µ firstly change
κ, and Lemma 2 shows that the change is then propagated to
edges with κ = µ, so Rule 0 is proved.

Rule 1: if κ(et)=k, then we sort et’s triangles in the
increasing order of their ”process time”, the last k triangles
will be in et’s maximum Triangle K-Core.

Proof of Rule 1: For edge et, during iteration i of Algorithm
1 when κ̃(et) > k, if one triangle T on et is processed in
step 17, then during that iteration edge ei is processed before
et, that means κ(ei) <= k < κ̃(et), so step 13 is true, T
is removed from et’s maximum Triangle K-Core in step 14.
This means for a triangle T on et, if it is processed before
κ̃(et) reaches k, it is not in et’s maximum Triangle K-Core.
So when κ̃(et) reaches k, it has k unprocessed triangles in its
maximum Triangle K-Core, Rule 1 is proved.

Proof of Correctness of Algorithm 2: The correctness
of Algorithm 2 is guaranteed by achieving following two
objectives:
1: identifying all those edges whose κ value might change
(these edges are stored in PotentialList);
2: re-computing the κ value of those edges in PotentialList;

Next we show that how the two objectives above are
achieved.
1. An edge e might change κ value only when its triangle(s)
is added to or deleted from its current maximum Triangle K-
Core, this would happen when e belongs to an added/deleted
triangle T, or e’s neighbor edges change κ value. The former

case is handled by step 3, and the latter case is handled in
step 8, so objective 1 is achieved.
2. To re-compute the κ value of those edges in PotentialList,
we simulate running Algorithm 1 on them. In order to do so,
we store edges in PotentialList in the same order as they are
processed in Algorithm 1, and simulate the steps in Algorithm
1 on them (please refer to Algorithm 5 and Algorithm 7
for details). Since in Algorithm 1 each edge’s triangles are
processed to obey Theorem 1, we also process edges stored
in PotentialList based on Theorem 1.


