
Minimizing Lookup RPCs in Lustre File System using

Metadata Delegation at Client Side

Vilobh Meshram, Xiangyong Ouyang and Dhabaleswar K. Panda
Department of Computer Science and Engineering

The Ohio State University
{meshram, ouyangx, panda}@cse.ohio-state.edu

Abstract

Lustre is a massively Parallel Distributed File Sys-
tem and its architecture scales well to large amount
of data. However the performance of Lustre can be
limited by the load of metadata operations at the
Metadata Server (MDS). Because of the higher ca-
pacity of parallel file systems, they are often used to
store and access millions of small files. These small
files may create a meta-data bottleneck, especially
for file systems that have only a single active meta-
data server. Also,in case of Lustre installations with
Single Metadata Server or with Clustered Metadata
Server the time spent in path traversal from each
client involves multiple LOOKUP Remote Procedure
Call (RPC) for path traversal before receiving the ac-
tual metadata related information and the extended
attributes adding additional pressure on the MDS.

In this paper we propose an approach to minimize
the number of Lookup RPC calls to MDS. We have
designed a new scheme called Metadata Delegation
at Client Side (MDCS), to delegate part of metadata
and the extended attributes for a file to the client so
that we can load balance the traffic at the MDS by
delegating some useful information to the client. Ini-
tial experimental results show that we can achieve up
to 45% improvement in metadata operations through-
put for system calls such as file open. MDCS also
reduces the latency to open a Lustre file by 33%.

1 Introduction

Modern distributed file systems architectures like
Lustre [5, 3], PVFS [7], Google File System [13] or the
object based storage file systems [12, 16] separate the
management of metadata from the storage of the ac-
tual file data. These architecture have proven to eas-
ily scale the storage capacity and bandwidth. How-
ever the management of metadata remains a bottle-
neck [10, 19]. Studies has shown that approximately

75% of all the file system calls access metadata [18].
Therefore, the efficient management of metadata is
crucial for the overall system performance. Along
with this it will be very beneficial if we can minimize
the time spent in communication between the inter-
acting Client and Server nodes in case of file system
calls which access metadata.

Lustre is a POSIX compliant, open-source dis-
tributed parallel filesystem.Due to the extremely scal-
able architecture of the Lustre filesystem, Lustre de-
ployments are popular in scientific supercomputing,
as well as in the oil and gas, manufacturing, rich me-
dia, and finance sectors. Lustre presents a POSIX
interface to its clients with parallel access capabili-
ties to the shared file objects. As of this writing, 18
of the top 30 fastest supercomputers in the world use
Lustre filesystem for high-performance scratch space.
Lustre is an object-based filesystem. It is composed
of three components: Metadata servers (MDSs), ob-
ject storage servers (OSSs), and clients. Figure 1 il-
lustrates the Lustre architecture. Lustre uses block
devices for file data and metadata storage and each
block device can be managed by only one Lustre ser-
vice. The total data capacity of the Lustre filesystem
is the sum of all individual OST capacities. Lustre
clients access and concurrently use data through the
standard POSIX I/O system calls.

MDS provides metadata services. Correspond-
ingly, an MDC (metadata client) is a client of those
services. One MDS per filesystem manages one meta-
data target (MDT). Each MDT stores file metadata,
such as file names, directory structures, and access
permissions. OSS (object storage server) exposes
block devices and serves data. Correspondingly, OSC
(object storage client) is client of the services. Each
OSS manages one or more object storage targets
(OSTs), and OSTs store file data objects.

In our studies with Lustre filesystem, we noticed a
potential performance hit in the metadata operation
part caused by repeated LOOKUP RPC calls from

1



Lustre clients to the MDS. Since path LOOKUP is
one of the most often seen metadata operations in
a typical filesystem workload, this issue may result
in performance degradation in Lustre MDS perfor-
mance.

Meta-Data Server

(MDS)

Object Storage Targets

(OST)

Clients

LDAP Server

configuration information,
network connection details
& security management

directory operations,
meta-data & concurrency

file I/O
& locking

frecovery,
file status
& file creation

Figure 1: Basic Lustre Design

In this paper we propose a new approach called
“Metadata Delegation at Client Side” (MDCS) in
this paper. With this new strategy, we are able to
minimize the number of LOOKUP RPC [9] calls and
hence the request traffic on MDS. We delegate meta-
data related attributes to the special clients which we
call “Delegator Client”, which are the client nodes
that open/create files initially. In case of increased
workload at the MDS, we distribute the load by as-
signing the ownership to different clients depending
upon the client which at first created or opened the
file. So in case of an environment where a file is sub-
sequently accessed by many clients at regular inter-
vals, we can distribute the workload from MDS to
the Delegator Client and the Normal Client who are
subsequently accessing the files will fetch the meta-
data related attributes from the Delegator Client and
hence

In a summary, our contributions in this paper are:

• We have identified and revealed a potential per-
formance hit in Lustre MDS that is caused by
repeated LOOKUP RPC calls to MDS.

• We have proposed a new approach (MDCS) to
address the potential performance issue.

• We have implemented this MDCS mechanism
into Lustre filesystem. Initial experiments show
up to 45% improvement in terms of metadata
operation throughput over the basic Lustre de-
sign.

The rest of paper is organized as follows. In sec-
tion 2, we describe the background of Metadata op-
eration in Lustre File System and some well known
problems in metadata access from MDS. In section 3,
we explain how the path name lookup is performed
in Lustre and also explain the approach used by us
to minimize the number of RPC’s by making use
of Design presented in Section 4. In section 4, we
present our detailed designs and discuss our design
choices. In section 5, we conduct experiments to eval-
uate our designs and present results that indicate im-
provement. In section 6, we discuss the related work.
Finally we provide our conclusion and state the direc-
tion of the research we intend to conduct in future.

2 Background

2.1 Lustre Metadata Server and its
components

Lustre Metadata Server (MDS) [5, 8, 3] is the criti-
cal component of the Lustre File System. Lustre File
System has an important component known as Lus-
tre Distributed Lock Manager (LDLM) which ensures
cache metadata integrity i.e. atomic access to meta-
data. In Lustre we also have a LDLM component
at the OSS/OST [5, 8, 3] but since in this paper we
focus more on the Metadata operation we will con-
sider LDLM which is present at the MDS. In case of
a Single Metadata Server deployment a single MDS
manages the entire namespace so when a client wants
to lookup or create a name in that namespace its the
sole owner of the entire namespace. Whereas in case
of a Clustered Metadata Server design each directory
can be striped over multiple metadata servers, each
of which contains a disjoint portion of the namespace.
So when a client wants to lookup or create a name
in that namespace, it uses a hashing algorithm to de-
termine which metadata server holds the information
for that name.

A single MDS server can be a bottleneck. Also the
number of RPC calls made in the path name lookup
can contribute a significant portion in Lustre File Sys-
tem performance. In case of an environment where
many Clients are performing interleaving access and
I/O on the same file the time spent in path name
lookup can be huge. We have addressed this problem
in this paper.

2



Number of
transactions

Transactions
per second

1,000 333
5,000 313

10,000 325
20,000 321

Table 1: Transaction throughput with a fixed
file pool size of 1000 files

2.2 Single Lustre Metadata Server
(MDS) Bottlenecks

The MDS is currently restricted to a single node, with
a fail-over MDS that becomes operational if the pri-
mary server becomes nonfunctional. Only one MDS
is ever operational at a given time. This limitation
poses a potential bottleneck as the number of clients
and/or files increase. IOZone [1] is used to measure
the sequential file IO throughput, and PostMark [6]
is used to measure the scalability of the MDS per-
formance. Since MDS performance is the primary
concern of this research, we discuss the PostMark ex-
periment with more details. PostMark is a file system
benchmark that performs a lot of metadata intensive
operations to measure MDS performance. PostMark
first creates a pool of small files (1KB to 10KB), and
then starts many sequential transactions on the file
pool. Each transaction performs two operations to ei-
ther read/append a file or create/delete a file. Each of
these operations happens with the same probability.
The transaction throughput is measured to approxi-
mate workloads on an Internet server. Table 1 gives
the measured transaction throughput with a fixed file
pool size of 1,000 files and different number of trans-
actions on this pool. The transaction throughput re-
mains relatively constant at varied transaction num-
ber. Since the cost for MDS to perform an operation
does not change at a fixed file number, this result is
expected. Table 2, on the other hand, changes the
file pool size and measures the corresponding trans-
action throughput. By comparing the entries in Ta-
ble 2 with their counterparts in Table 1, it becomes
clear that a large file pool results in a lower transac-
tion throughput. The MDS caches the most recently
accessed metadata of files (the inode of a file). A
client file operation requires the metadata informa-
tion about that file be returned by MDS. At larger
number of files in the pool, a client request is less
likely to be serviced from the MDS cache. A cache
miss results in the MDS looking up its disk storage
to load the inode of requested file, which results in
the lower transaction throughput in Table 2.

Number of
files in pool

Number of
transactions

Transactions
per second

1,000 1,000 333
5,000 5,000 116

10,000 10,000 94
20,000 20,000 79

Table 2: Transaction throughput with varying
file pool

3 RPC Mechanism in Lustre
Filesystem

In the following section we discuss about the RPC
mechanism in Lustre Filesystem. Our experiments
show that nearly 1500-2000 usecs are spent in RPC
on a TCP transport.

3.1 Existing RPC Processing with
Lustre

When we consider the RPC processing in Lustre we
also talk about the how lock processing works in Lus-
tre [5, 8, 3, 19] and how our modifications can benefit
to minimize the number of LOOKUP RPC. Lets con-
sider an example where a client C1 wants to open the
file /tmp/lustre/d1/d2/foo.txt to read. In this case
/tmp/lustre is our mount point. During the VFS
path lookup, Lustre specific lookup routine will be
invoked. The first RPC request is lock enqueue with
lookup intent. This is sent to MDS for lock on d1.
The second RPC request is also lock enqueue with
lookup intent and is sent to MDS asking “inodebits”
lock for d2. The lock returned is an inodebits lock,
and its resources would be represented by the file-id
(fid) of d1 and d2. The subtle point to note is, when
we request a lock, we generally need a resource id
for the lock we are requesting. However in this case,
since we do not know the resource id for d1, we ac-
tually request a lock on its parent “/”, not on the d1
itself. In the intent, we specify it as a lookup intent
and the name of the lookup is d1. Then, when the
lock is returned, the lock is for d1. This lock is (or
can be) different from what the client requested, and
the client notices this difference and replaces the old
lock requested with the new one returned.

The third RPC request is a lock enqueue with open
intent, but it is not asking for lock on foo.txt. That
is, you can open and read a file without a lock from
MDS since the content is provided by Object Storage
Target (OST). OSS/OST also had a LDLM compo-
nent and, in order to perform I/O on the OSS/OST
we request locks from an OST. In other words, what

3



happens at open is that we send a lock request, which
means we do ask for a lock from LDLM server. But,
in the intent data itself, we might (or not) set a spe-
cial flag if we are actually interested in receiving the
lock back. The intent handler then decides (based
on this flag), whether or not to return the lock. If
foo.txt exists previously, then its fid, metadata in-
formation (such as ownership, group, mode, ctime,
atime, mtime, nlink, etc.) and striping information
are returned.

If client C1 opens the file with the O CREAT flag
and the file does not exist, the third RPC request
will be sent with open and create intent, but still
there will be no lock requests. Now on the MDS side,
to create a file foo.txt under d2, MDS will request
through LDLM for another EX lock on the parent
directory. Note that this is a conflicting lock request
with the previous CR lock on d2. Under normal cir-
cumstances, a fourth RPC request (blocking AST)
will go to client C1 or anyone else who may have the
conflicting locks, informing the client that someone
is requesting a conflicting lock and requesting a lock
cancellation. MDS waits until it gets a cancel RPC
from client. Only then does the MDS get the EX lock
it was asking for earlier and can proceed. If client C1
opens the file with LOV DELAY flag, MDS creates
the file as usual, but there is no striping and no ob-
jects are allocated. User will issue an ioctl call and
set the stripe information, then the MDS will fill in
the EA structure.

3.2 How Do We Improve RPC Pro-
cessing

In the Client side metadata delegation approach dur-
ing the creation of the file, we cache some information
both at the Client and the MDS. At the MDS side
we keep track of which Client have created which files
and so if needed the metadata information for those
files can be delegated to these Clients in future. Such
clients are known as “Delegator Clients”. Where as
the term “Normal Clients” is used for clients who ac-
cess the file in later runs to perform some I/O. So
Normal clients are diverted to the Delegator Clients
by the MDS if the load at MDS increases. Along with
the caching we also maintain some book-keeping in-
formation at the Clients to keep track of the lock
related information, the pathname and the inode in-
formation which get for the respective dentry object.
So apart from the Dentry Cache maintained by the
Operating System we have additional book-keeping
information to map the file handle to pathname in-
formation.

So if we consider the above example and we want to

traverse /tmp/lustre/d1/d2/foo.txt, we will perform
similar steps and update the book-keeping informa-
tion. In the first iteration if the file does not exist it
is created. For subsequent access of the same file by
different clients, for the first round we will have to
go through the entire path name lookup so that we
populate our cache and the book-keeping informa-
tion. So if the same file is accessed in an interleaving
manner by the clients who have already traversed the
path once we can minimize the additional LOOKUP
RPC’s as we can service them by making use of the
book-keeping information. In case of Basic Lustre
for the intermediate component in the path we do
a LOOKUP RPC whereas in our approach we can
service the request for an intermediate component
by making use of the book-keeping information and
the local cache maintained at the Client. The size of
this book-keeping information will be very small and
won’t consume much of the memory at the Client
side.

4 Design of MDCS

Consider a scenario when the Client 1 tries to open
a file say /tmp/lustre/test.txt where /tmp/lustre is
the mount point. Figure 2 gives a detailed descrip-
tion of the MDCS design. In Step 1, the Client does a
LOOKUP RPC to MDS as discussed in detail in Sec-
tion 3. In Step 2, the processing is done at the MDS
side where the Lock Manager will grant the lock for
the resource requested by the Client. A second RPC
will be sent from the Client to the MDS with the
intent to create or open the file. So at the end of
step 2 Client 1 will get the lock, Extended attribute
information and other metadata details. Conceptu-
ally step 1 and step 2 are similar to what we have
in the current Lustre Design but in our approach we
modify step 2 slightly. In our approach in step 2 we
make an additional check at the MDS to see if this is
a first time access to the file. First time access means
this will be the first time when the metadata related
information for this file will be created on the MDS
and neither the metadata caches maintained by the
kernel have the metadata related information cached.
So if this is a first time access then we keep a data
structure to keep track of who owns the file and do
some validation whether it is a first time access. So
at the end of step 2 we get the needed information
from MDS to the Client 1. We have written a Com-
munication module,which is a kernel module which
will be used for one sided operations. We have also
implemented a hashing functionality in the commu-
nication module to speed up the lookup process both

4



a MDS and Client Side. We make use of the commu-
nication module for one sided operation like remote
memory read, remote memory write.

So in Step 3 we expose the buffers with the in-
formation such as extended attributes, etc that will
be useful for clients who will subsequently access the
file that was open by Client 1. We call such a client
who exposes the needed buffer information as the new
owner of the file and use the term “Delegation Client”
in this paper. Now when the Client 2 tries to open the
same file it performs an RPC in step 4 as we do in step
1. The Client accessing the file we call it as “Normal
Client” in the paper does a lookup in the hash table
at the MDS side that we updated in step 1 and finds
that Client 1 is the owner of the file. So instead of
spending additional time at the MDS side we return
the needed information to Client 2. Now at the end
of step 5, i.e., in step 6 the Client 2 will contact Client
1 and fetch the information which was stored in the
buffers exposed by the Delegator Client for this spe-
cific file. We use our communication module to speed
up this process using a one sided operations in step
6 and step 7. Once Client 2 gets the needed informa-
tion from the Client 1 it can proceed ahead with its
I/O operations. The design can also help in minimiz-
ing the request traffic at the MDS end by delegating
some load at the client. In our approach since we
are maintaining a hash table to do lookup; if we see
a matching filename we divert the client asking for
the metadata information to the Delegator Client. If
the hash table also does not have the needed map-
ping information then it is the first time that the
file is being accessed otherwise we return the cached
information to this new client depending on the in-
formation we cached for the file when the file was first
opened or created by the delegator client. This ar-
chitecture allows the authoritative copy of each meta-
data item to reside on different clients, distributing
the workload. In addition, the delegation record is
much smaller, allowing the MDS cache to be more ef-
fective as the number of files accessed increases. This
architecture will work well when many clients are ac-
cessing many files, as the workload will be distributed
amongst clients. However, using a delegate in a sce-
nario where all clients are accessing one file moves
the hot-spot from the powerful MDS to a client. In
future work we can add a mechanism for the meta-
data server to determine the popularity of a single
file. An access counter will be associated with each
inode. Each client request will increase the counter
by 1, and its value will decay over time. A high ac-
cess value will be a sign of a very popular file, and
the MDS will recall the delegated inode with high ac-
cess value. Any following request to that file will be

serviced by the MDS directly from its cache without
network redirection. On the other hand, a delegate
client can voluntarily return all inodes it delegates
to the MDS if it thinks it is overburdened. In ad-
dition, the MDS must be able to recover from client
failure by reclaiming the MDS record from the failed
node during recovery. We plan to work on this in our
future work.

5 Experimental Results

We have implemented our design into Lustre-1.8.1.1
to minimize the number of RPC calls during a meta-
data operation. In this section, we conduct exper-
iments to evaluate the metadata operation perfor-
mance with our proposed design. One node acts as
Lustre Metadata Server (MDS), and two nodes are
Lustre Object Storage Servers (OSS). Lustre filesys-
tem is mounted in other eight nodes who acts as
Lustre client nodes. Each node runs kernel 2.6.18-
128.7.1.el5 with Lustre 1.8.1.1. Each node has dual
Intel Xeon E5335 CPU ( 8 cores in total ) and 4GB
memory. They are interconnected with 1GigE for
general purpose networking. In our testing we con-
figure Lustre to use “tcp” transport in different runs.

In order to measure the metadata operations per-
formance such as open, we have developed a par-
allel micro-benchmark. We have extended the ba-
sic “fileop” testing tool coming with the IOzone [1]
benchmark to support parallel running with multiple
processes on many Lustre client nodes. The extended
“fileop” tool creates a file tree structure for each pro-
cess. This tree structure contains X number of Level
1 directories, with each Level 1 directory having Y
number of Level 2 directories. The total level of sub-
directories can be configured at runtime. Within each
of the bottom level directory Z files are created. By
varying the size (fan-out) of each layer, we can gen-
erate different number of files in a file tree. We have
developed an MPI parallel program to start multi-
ple process on multiple nodes. Each process works
on a separate directory to create its aforementioned
file tree. After that, each process walks through its
neighbor’s file tree to open each of the file in that
sub-tree. This is to simulate the scenario that multi-
ple client processes take turns to access a shared pool
of files. After that the wall clock time on all the pro-
cesses are summarized and the total IOPS for open
system call is reported.

In order to perform the tests we created some num-
ber of files from a specific Client and those files were
accessed subsequently by other clients in an interleav-
ing manner. Using the Postmark benchmark we could

5



Figure 2: Modified Lustre with Metadata Delegation to Clients

not simulate the kind of the above scenario as in the
Postmark benchmark [6] we create some N number of
files and as soon as the open/create or read/append
operation is complete the file pool is deleted. So we
make use of the above mentioned microbenchmark to
perform the test and get the experimental results.

In order to see the benefits of the proposed ap-
proach in minimizing the RPC we carried out 3 dif-
ferent types of test using our microbenchmark. 1)
IOPS in open using our parallel benchmark for dif-
ferent number of client processes. 2) IOPS in open
using our parallel benchmark for different number file
pool sizes. 3) Time spent in open for varying Path
name.

5.1 File Open IOPS: Varying Number
of Client Processes

In this test, we first create the aforementioned file
tree each containing 10000 files for every client pro-
cess, then let each process access its neighbor’s file
tree. Figure 3 shows the aggregated number of IOPS
for open system call on Lustre filesystem. We vary
the number of client processes from 2 to 16 which
are evenly distributed on 8 client nodes. With 2 pro-
cesses, only two client nodes are actually used. With
16 processes, 2 client processes run on each of the 8
client node.

As seen in Figure 3, the modified Lustre with
MDCS improves the aggregated IOPS over the ba-
sic Lustre significantly. Compared to the basic Lus-
tre, our design reduces the number of RPC calls in
metadata operation path, therefore helps improve the
overall performance. With two client processes, the
new approach (MDCS) promotes file open IOPS from

  0

  500

  1,000

  1,500

  2,000

  2,500

  3,000

  3,500

  4,000

2 8 16

N
u

m
b

e
r 

o
f 

o
p

e
n

()
 /

 s
e

c
o

n
d

s

Number of Client Processes

Basic Lustre
MDCS: Modified Lustre

Figure 3: File open IOPS, Each Process Accesses
10000 Files

2528 per seconds to 3612 per seconds, an improve-
ment of 43%. The improvements with 8/16 pro-
cesses are 23% and 25%, respectively. As more client
processes access the shared Lustre filesystem concur-
rently, the MDS sees higher degree of contention for
request processing. As a result, the total file open
IOPS slightly drops for MDCS. With basic Lustre,
on the other hand, the Metadata Server has the po-
tential to handle 8 concurrent client processes, given
a slightly higher file open IOPS with 8 concurrent
client processes. When 16 processes are used, how-
ever, MDS’s performance drops due to the high con-
tention, similar to what we see with MDCS approach.

5.2 File Open IOPS: Varying File
Pool Size

In this test we carry out similar basic steps as men-
tioned in 5.1. But in this test we vary the number of

6



files in each file tree per process, while using the same
16 client processes. We wanted to understand the
significance of this factor while considering the per-
formance aspect into consideration. Figure 4 shows
the experimental results. It clearly demonstrates the
benefits of our MDCS design. With the capability to
minimize RPC calls to the centralized MDS, we can
achieve 35% better IOPS in terms of file open.

We also observe that, by varying the file pool size
for a constant number of processes we don’t see a huge
deviation in the number of IOPS for the open. We
speculate this is caused by the fact the file pool size
used in our test isn’t big enough to stress the mem-
ory on MDS, such that most of the files’ metadata
information are stored in MDS’s memory cache. As
a result, the aggregated metadata operation through-
put remains constant with different file pool size. In
our future study we will experiment with larger file
pool to push the memory limit of MDS.

  0

  500

  1,000

  1,500

  2,000

  2,500

  3,000

  3,500

  4,000

5,000 10,000 100,000

N
u

m
b

e
r 

o
f 

o
p

e
n

()
 /

 s
e

c
o

n
d

s

Number of Files in File Pool

Basic Lustre
MDCS: Modified Lustre

Figure 4: File open IOPS, Using 16 Client Processes

5.3 File Open IOPS: Varying File
path Depth

In this test we want to measure the performance ben-
efit of the new MDCS approach when accessing files
with different File path depth, i.e., number of com-
ponents in the file path. We start with creating a file
tree for each of the client process containing 10,000
files, with file path depth to be 3 or 4. After that
each process begins to access files within its neighbor
process’s file tree.

Figure 5 compares the time spent to open one file,
either with basic Lustre or with the MDCS modified
Lustre filesystem. First of all, it shows MDCS can sig-
nificantly reduce the time cost to open one file by up
to 33%. We also observe that pathname component
factor has a significant importance in the total cost
of a metadata operation. Each file path component

has to be resolved using one RPC to the MDS, hence
the deeper the file path leads to a longer processing
time.

  0

  5

  10

  15

  20

  25

3 4

T
im

e
 t
o
 F

in
is

h
 O

n
e
 O

p
e
n
()

 (
m

ill
is

e
c
o
n
d
s
)

Number of Components in File Path (File Path Depth)

Basic Lustre
MDCS: Modified Lustre

Figure 5: Time to Finish open, Using 16 Processes
Each Accessing 10000 Files

6 Related Work

The Lustre Design with a Single MDS and a Clus-
tered Metadata [5, 8, 3, 4] are the currently used
designs of the Lustre File System. The authors
in [20, 17] talk about the evaluation of the perfor-
mance model of Lustre File System. The authors in
[14, 15, 11] explore the interaction of MPI-IO and
Lustre File System. The scenario which we focus
in this paper i.e. the scenario where the pathname
lookup RPC can consume a lot of factor in actual
performance numbers can be common in MPI kind
of environments. In this paper we propose an ap-
proach called as Client Side Metadata Delegation in
which we propose a scheme to minimize the number
of LOOKUP RPC calls for the interacting clients and
hence reduce the request traffic on the MDS.

There is an effort going on in the Linux Com-
munity [2] regarding a new system call named
name to handle to allow a user process to get a
file handle (i.e. binary blob returned from a new
name to handle syscall) from the kernel for a given
pathname, and then later use that file handle in an-
other process to open a file descriptor without re-
traversing the path.

While this wouldn’t eliminate the actual MDS open
RPC but it could avoid the path traversal from each
client saving a considerable amount of time in the
pathname lookup. We try to solve the problem in
the Lustre Design itself by MDCS.

7 Conclusion and Future Work

In this paper we propose a new approach called as
Client Side Metadata Delegation to minimize the

7



number of RPC and hence to minimize the traffic
and load at MDS. In case of Single MDS, when a file
is subsequently accessed in an interleaving manner
by various client, by minimizing the lookup RPC’s
can definitely help to improve the performance. This
approach proposed in the paper is also applicable to
Clustered Metadata design.

We evaluated the potential benefits of proposed ap-
proach by using a parallel I/O microbenchmark. Ap-
proximately 1500-2000 µsecs are spent in an RPC on
a TCP transport.This factor may vary depending on
the fan-out of the directory structure and the path
elements in the path component. We used varying
fan-out and pathname length to perform metadata
operations since we are more concerned about the
load the the MDS. After analyzing the experimental
results we came to the conclusion that the amount of
time saved in RPC is approximately equal to (num-
ber of path elements) * (number of clients accessing
the file).

As part of the future work, we intend to conduct
the experiments in larger scale to understand the
memory pressure at the MDS by taking into account
the Client Side Metadata Delegation approach. We
also want to create a Distributed lock management
API at the Client side to synchronize the metadata
delegated to the Delegator Client and the local copies
of the metadata which the Normal Clients have with
them.

References
[1] IOZONE. http://www.iozone.org/.

[2] Lustre Devel Queries. http://lists.lustre.org/pipermail/lustre-
devel/2011-January/003703.html.

[3] Lustre File System,High-Performance Storage Ar-
chitecture and Scalable Cluster File System.
http://www.raidinc.com/pdf/whitepapers/.

[4] Lustre Networking :High-Performance Features
and Flexible Support for a Wide Array of Net-
works. https://www.sun.com/offers/details/lustre-
networking.xml.

[5] Lustre Wiki Page. http://wiki.lustre.org/.

[6] POSTMARK. http://www.shub-
internet.org/brad/FreeBSD/postmark.html.

[7] PVFS2. http://www.pvfs.org/.

[8] Sun Microsystems, Inc.,Lustre 1.8 Operations Manual.
http://wiki.lustre.org/manual/.

[9] Andrew D. Birrell and Bruce Jay Nelson. Implementing
remote procedure calls. ACM Trans. Comput. Syst., 2:39–
59, February 1984.

[10] Philip Carns, Sam Lang, Robert Ross, Murali Vilayannur,
Julian Kunkel, and Thomas Ludwig. Small-file access in
parallel file systems. In Proceedings of the 2009 IEEE In-
ternational Symposium on Parallel&Distributed Process-
ing, pages 1–11, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[11] Phillip Dickens and Jeremy Logan. Towards a high per-
formance implementation of mpi-io on the lustre file sys-
tem. In Proceedings of the OTM 2008 Confederated In-
ternational Conferences, CoopIS, DOA, GADA, IS, and
ODBASE 2008. Part I on On the Move to Meaningful
Internet Systems:, OTM ’08, pages 870–885, Berlin, Hei-
delberg, 2008. Springer-Verlag.

[12] M. Factor, K. Meth, D. Naor, O. Rodeh, and J. Satran.
Object storage: the future building block for storage sys-
tems. In Local to Global Data Interoperability - Chal-
lenges and Technologies, 2005, pages 119 – 123, 2005.

[13] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The google file system. SIGOPS Oper. Syst. Rev., 37:29–
43, October 2003.

[14] W.-K. Liao, A. Ching, K. Coloma, Alok Choudhary, and
L. Ward. An implementation and evaluation of client-
side file caching for mpi-io. In Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE Inter-
national, pages 1 –10, 2007.

[15] J. Logan and P. Dickens. Towards an understanding of
the performance of mpi-io in lustre file systems. In Clus-
ter Computing, 2008 IEEE International Conference on,
pages 330 –335, 2008.

[16] M. Mesnier, G.R. Ganger, and E. Riedel. Object-based
storage. Communications Magazine, IEEE, 41(8):84 – 90,
2003.

[17] Juan Piernas, Jarek Nieplocha, and Evan J. Felix. Evalu-
ation of active storage strategies for the lustre parallel file
system. In Supercomputing, 2007. SC ’07. Proceedings of
the 2007 ACM/IEEE Conference on, pages 1 –10, 2007.

[18] Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson.
A comparison of file system workloads. In Proceedings
of the annual conference on USENIX Annual Technical
Conference, ATEC ’00, pages 4–4, Berkeley, CA, USA,
2000. USENIX Association.

[19] Sage A. Weil, Kristal T. Pollack, Scott A. Brandt, and
Ethan L. Miller. Dynamic metadata management for
petabyte-scale file systems. In Proceedings of the 2004
ACM/IEEE conference on Supercomputing, SC ’04, pages
4–, Washington, DC, USA, 2004. IEEE Computer Society.

[20] Tiezhu Zhao, V. March, Shoubin Dong, and S. See. Eval-
uation of a performance model of lustre file system. In
ChinaGrid Conference (ChinaGrid), 2010 Fifth Annual,
pages 191 –196, 2010.

8


