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Abstract. High-end computing systems have seen a tremendous growth in the recent
years. Petaflop systems are already available and the researchers are actively working
to address the challenges in achieving Exaflop performance. Programming models are a
critical component in helping applications running on these machines achieve maximum
performance. In order to achieve maximum performance, the programming model must
enable simultaneous use of both processors and interconnection network. Over the years,
MPI has become the standard for parallel application development. One-sided commu-
nication was introduced in MPI-2 to enable MPI developers to increase the utilization
of system resource through overlap. However, studies have shown the limitations of the
current model for both applications and higher-level libraries which would want to take
advantage of the ubiquitous nature of MPI. As part of the MPI-3 effort, the Remote
Memory Access group has proposed several extensions to the existing one-sided com-
munication interface to address these limitations. In this paper, we present a design and
implementation of some of the key semantics proposed for MPI-3 one-sided communi-
cation over InfiniBand. We have implemented our designs in the MVAPICH2 library. Ex-
perimental evaluation shows that our implementation of the dynamic windows provides
similar communication performance as the existing implementation for static windows.
The new flush semantics allow for better performance by reducing the local completion
time of Put by 90% and of Get by 28% for an 8byte Message. The implementation of
Get-Compute-Put benchmark using Request-based operations achieves 30% better per-
formance compared to the one using only Lock-Unlock. It achieves optimal computation-
communication overlap.

1 Introduction

High-end computing systems have seen a tremendous growth over the recent years. This has
been driven by the increasing demand for compute cycles on one end and by the advances
in processor, network and accelerator technologies on the other. As the capabilities of differ-
ent components in a system increase, it is important for scientific applications to utilize all
these components concurrently to achieve maximum performance. In particular, simultane-
ously utilizing the processors and interconnect is critical since network latencies are often the
scaling bottlenecks. Programming models hold the key in enabling such usage. MPI had in-
troduced non-blocking message passing and one sided communication semantics to address
these requirements by enabling computation and communication overlap. Earlier work [7, 8]
has shown how one sided communication semantics enable superior overlap in applications
than the message passing semantics. However, adaptation of these semantics has been limited
because of the overheads imposed by synchronization semantics of MPI-2 and a mismatch
with real-world use cases for one-sided communication. Other one-sided models like Global
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Address-Space Languages, and Global Arrays have failed to utilize the portable nature on MPI
because of these limitations. As part of the MPI-3 effort, the Remote Memory Access (RMA)
group has proposed several extensions to the existing model that promise to address many of
these limitations.

Modern networks have played an indispensable role in scaling modern computing clusters.
InfiniBand is a commodity interconnection network based on open standards. It has gained
acceptance by the HEC community over the years. It is the primary interconnect in around
40% of the Top500 supercomputing clusters in the work. The Remote Direct Memory Access
(RDMA) operations offered by InfiniBand free the processor from managing data transfers.
This allows communication libraries to achieve higher performance and overlap.

1.1 Motivation

The proposed MPI-3 one-sided interface promises to address the limitations of the MPI-2 one-
sided interface. The newer additions include dynamic window creation, light weight synchro-
nization (local and remote) and variety of other communication operations. However, in order
for wide spread acceptance of this proposed interface, the performance advantages of MPI-3
one-sided interface need to be clearly highlighted. We believe that this is a strong motivation
for designing and implementing some of the key MPI-3 interfaces on a widely used commodity
platform.

1.2 Contributions

This paper makes several important contributions. They are listed as follows:

1. To the best of our knowledge, this is the first design and implementation of key aspects of
the proposed MPI-3 one-sided interface.

2. We present an analysis of the proposed MPI-3 extensions and through our experimental
evaluation we establish that they solve several issues faced by the MPI-2 standard.

3. We present a new Get-Compute-Put benchmark using the new Request based operations.
4. Our design of the proposed semantics is integrated in the MVAPICH2 library [2], to

demonstrate a working prototype in an open-source production MPI library.

The semantics implemented in this paper are marked in Figure 1. Experimental evaluation
shows that our implementation of dynamic windows provides similar communication perfor-
mance as the existing implementation for static windows despite the added flexibility. The new
flush semantics allow for better performance by reducing the local completion time of a Put
by 90% and of a Get by 28% for an 8byte Message. Our new Get-Compute-Put benchmark
using Request-based operations achieves 30% better performance compared to the one using
only Lock-Unlock. It achieves optimal computation-communication overlap.

2 Background
2.1 MPI-2 One-Sided Communication Semantics

The MPI-2 one-sided interface enables direct access to the memory of other processes through
a “window”. A window is a region in memory that each process exposes to other processes
through a collective operation: MPI Win create. MPI-2 one-sided communication interface de-
fines three types of data transfer operations. MPI Put and MPI Get transfer the data to and from
a target window respectively. MPI Accumulate combines the data movement to target with a
reduce operation. All of these operations are non-blocking and are not guaranteed to complete,
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MPI 3 One Sided Communication 

Accumulate Ordering Undefined Conflicting Accesses Separate and Unified Windows 

Window Creation 

• Win_allocate 
• Win_create_dynamic, Win_attach, 
Win_detach 

Synchronization 

• Lock_all, Unlock_all 
• Win_flush, Win_flush_local,  
Win_flush_all, Win_flush_local_all 

• Win_sync  

Communication 

• Get_accumulate 
• Rput, Rget, 
Raccumulate,Rget_accumulate 

• Fetch_and_op, Compare_and_swap 

Fig. 1. Proposed MPI-3 One-Sided Communication Standard Extensions

either locally or remotely, until a consequent synchronization operation. The period between
two synchronization steps is termed as an epoch. Synchronization modes provided by MPI-2
can be classified into passive (no explicit participation from the target) and active (involves
both origin and target). In the passive mode, an epoch is bounded by calls to MPI Win lock
and MPI Win unlock and as the name suggests, this does not require any participation from
the remote process.

2.2 Draft MPI-3 One-Sided Communication Semantics

The One-sided communication interface drafted by the MPI-3 RMA Working Group [1] re-
tains all of the calls from MPI-2 while extending it in several ways. In this section, we only
describe the calls that are the focus of this paper. Two new window creation mechanisms
have been introduced: MPI Win allocate allocates the memory required for the window unlike
MPI Win create which required the user to pass allocated memory; MPI Win create dynamic
allows users to dynamically attach and detach memory from a window through MPI Win attach
and MPI Win detach calls. MPI Rput, MPI Rget, MPI Raccumulate, MPI Rget accumulate
behave like the corresponding regular communication operations but return request objects
which enable the user to check for individual local completions. MPI Win flush local and
MPI Win flush calls have been introduced, which enable checking of bulk local and remote
completion of communication operations to a target on a particular window without ending the
access epoch. These calls can be used with passive synchronization only. MPI Win flush all
and MPI Win flush local all provide similar functionality but for a window at all the target
processes.

The draft standard introduces a unified memory model to enable efficient implementations
on cache-coherent systems. In this model, the target is guaranteed to get updated data from
memory as soon as the operation initiated by an origin process has completed, without requir-
ing any other MPI calls. The draft standard now enables ordering of overlapping accumulate
operations in an epoch by default. All other operations are unordered. The user can relax the
ordering by specifying appropriate info arguments during the window creation process. The
new standard deems overlapping accesses as undefined rather than erroneous. This resolves
compatibility issues with other programming models/languages which control the semantics
of such accesses at a higher level (compiler/language).

3 Related Work

One-sided communication interface was originally introduced in MPI-2. Many libraries im-
plement them over send/Receive Operations [10, 11]. Though these achieve reasonable per-
formance, they cannot provide asynchronous progress and overlap. Several designs were pro-
posed [6, 4, 9] to overcome these limitations by using RDMA-like features provided by modern
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interconnects. Though some applications have been modified to take advantage of the one-
sided communication semantics [7, 8], their general adoption has been sparse. Researchers
have pointed out the limitations of the one-sided semantics in MPI-2 [3, 12] for use by appli-
cation developers and library writers. As part of the MPI-3 effort, the Remote Memory Access
(RMA) group [1] has proposed extensions to the One-Sided Communication model to address
many of these limitations. Our study in this paper focuses on providing an efficient implemen-
tation to some of the newly proposed MPI-3 one-sided semantics over InfiniBand.

4 Design and Implementation

In this work, we have considered a subset of the newly proposed features for MPI one-sided
interface and have explored their designs and implementation on InfiniBand Clusters.

4.1 Dynamic Windows

Window creation is a collective operation. In MPI-2, the memory attached to a window is
specified during window creation. It cannot be changed at a later point of time. We call this a
“static” window. MPI-3 allows “dynamic” windows where each process can asynchronously
attach or detach memory from a window.

The design of dynamic windows requires that the origin knows the address location of
the buffer at the remote side. One option is to adopt a push model where we broadcast the
registration information of any newly attached buffer at a process to all other processes in
the communicator. However, this causes unnecessary messages on the network when only a
small subset of processes access the window. This also does not scale with system size. The
second design option is to use a rendezvous exchange when a process accesses a remote buffer
for the first time. The origin process sends a Request-For-Info packet to the target. The target
process responds with the registration information in a Response-With-Info packet. The origin
process caches this information locally and initiates the communication transfer using RDMA.
Later accesses to the buffer can be directly issued as RDMA operations. For small messages
the request can be piggy-backed onto the actual data for the first message thus saving the
round-trip time. The overhead of this initial exchange is easily amortized as buffers attached
to a window are usually targets of multiple communication operations over the application’s
run-time. We follow this second design option in our implementation.

4.2 Flush Operations

All communication operations in MPI one-sided interface are non-blocking. In MPI-2, their
completions are bound to synchronization operations. This is heavy-weight. MPI-3 addresses
these issues through flush operations. Using flush operations, local completion can be distin-
guished from remote completion and does not require closing of access epochs. MPI Win flush local
and MPI Win flush local all ensure local completion of operations issued on a given window
while MPI Win flush and MPI Win flush all ensures remote completions.

Ensuring local and remote completions of different operations in InfiniBand have different
requirements. Local and remote completion of RDMA reads and ATOMICS imply a corre-
sponding event on the Completion Queue (CQ). This indicates that the operation completed
both remotely and locally. However, CQ event for an RDMA write only means a local com-
pletion and does not ensure completion of the operation in the remote memory. The following
excerpt from the InfiniBand specification [5] specifies the requirements to ensure remote com-
pletion. “An application shall not depend of the contents of an RDMA write buffer at the re-
sponder until one of the following has occurred: a) Arrival and Completion of the last RDMA
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write request packet when used with Immediate data, b) Arrival and completion of a subse-
quent send message, c) Update of a memory element by a subsequent ATOMIC operation”.

Therefore, the remote completion of an MPI Put requires extra handling when imple-
mented over an RDMA Write. In our design, we issue a completion message which is ac-
knowledged by the remote process. This ensures correct remote completion. For large remote
memory accesses, we use an optimization by utilizing InfiniBand ATOMIC operations. Using
ATOMIC operations, we can asynchronously provide remote memory completion.

The implementation of MPI Win flush local (MPI Win flush local all) and MPI Win flush
(MPI Win flush all) depends on the communication operations issued on the window and
how these operations are executed in the library. When only RDMA reads are issued, both
flush local and flush require to block for the corresponding CQ events only. When there are
only RDMA writes, flush local will require to block for CQ events while flush will have to wait
for response to an extra send operation issued after the writes. When the communication oper-
ations are implemented as send operations by the library, flush local requires to block for CQ
events, while flush blocks for a response from the remote process, on the last send operation
that was issued.

4.3 Request-based Operations

Request-based operations provide an easy mechanism to wait for completion of certain opera-
tions. This makes it much more finer grained than flush local, which waits for local completion
of all operations. We have shown sample pseudo-code for using this request-based operations
in Figure 2. In this example, N blocks of data are fetched from remote memory, computed
on, and written back to remote memory. The programmer should be able to pipeline the three
phases: get, compute and put, completely hiding the communication cost using the new request
based interface, as shown in Figure 2(c).

As discussed in the previous section 4.2, local completion in InfiniBand can be easily
detected by the corresponding event on the completion queue. For RDMA read, a local com-
pletion means that the data is available in the local buffer and is ready to be used by the upper
layer. This satisfies the request completion semantics of an MPI Rget. For MPI Rput, a local
completion means that the user send buffer is free to be reused. Whether it is implemented
over RDMA write or send, these requirements are satisfied by a local completion event on
InfiniBand.

5 Experimental Results

In this section, we provide a detailed performance analysis of our designs. The tests were
carried out on Intel Westmere platform. Each node has 8 cores running at 2.67GHz and is
equipped with two Mellanox QDR MT26428 HCAs. Each node has 12GB of DDR3 RAM.
The operating system used is Red Hat Enterprise Linux Server release 5.4. We have integrated
and evaluated our designs with MVAPICH2 1.6 version.

5.1 Performance on Dynamic Windows

In this section, we compare the performance of MPI Put and MPI Get operations on the static
and dynamic windows. Results in Figures 3(a) and 4(a) show the small message latency of Put
and Get operations, respectively. We observe similar performance for both static and dynamic
windows. The overhead of exchanging the registration information during the first commu-
nication call on the dynamic windows is clearly amortized. Large messages follow a similar
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MPI Win lock
for i in 1, N

MPI Get (ith Block)
end for
MPI Win unlock

Compute (N Blocks)

MPI Win lock
for i in 1, N

MPI Put (ith Block)
end for
MPI Win unlock

(a) No Overlap

MPI Win lock
for i in 1, N

MPI Get (ith Block)
end for
MPI Win unlock

MPI Win lock
for i in 1, N

Compute (ith Block)
MPI Put (ith Block)

end for
MPI Win unlock

(b) Overlap using Lock-Unlock

MPI Win lock
for i in 1, N

MPI Rget (ith Block)
end for

MPI Wait any (get requests)
while a get request j completes

Compute (jth Block)
MPI Rput (jth Block)
MPI Wait any (get requests)

end while
MPI Wait all (put requests)
MPI Win unlock

(c) Overlap using Request Operations

Fig. 2. Get-Compute-Put on N Blocks of Data

trend and have not been represented in the graphs. A comparison of bandwidth performance is
shown in in Figures 3(b) and 4(b). As operations after the first exchange can be directly issued
to the network as RDMA operations, we see similar overlap for operations on dynamic win-
dows as on static windows. We can achieve more than 80% overlap for message sizes greater
that 128Kbytes. Figures 3(c) and 4(c) show these results.
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Fig. 3. Put Performance on Dynamic Windows

5.2 Performance of Flush Operations

The results presented in this section show how the newly introduced flush operations can enable
applications to check for completions more efficiently. Figure 5(a) compares the time for an
MPI Put and its completion using MPI Win Unlock, MPI Win Flush local and MPI Win Flush.
We see that a check for local completion, using MPI Win Flush local, which blocks on a CQ
event, takes only 0.34 usec for a 4byte message, while a check for remote completion using
MPI Win Flush/MPI Win Unlock takes 3.6 usec. We block for a response from the remote
process in the case of remote completion. Hence the new semantics allow for a 90large mes-
sages, we observed that local and remote completions take similar time.
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Fig. 4. Get Performance on Dynamic Windows

Figure 5(b) compares the completion times for a MPI Get operation. MPI Get imple-
mented over RDMA read requires to block for a local CQ event and this means both local
and remote completions. However, when MPI Win unlock is used, MPI Get is implemented
as a send/receive exchange with unlock operation piggybacked onto it. Hence we see that
completion of smaller messages using MPI Win Flush local and MPI Win Flush take 28%
less time compared to completion using MPI Win unlock. For larger messages, the transfer
are implemented using RDMA and Unlock is sent as a separate message. The latencies for
larger messages have been observed to be similar in all the cases. Hence, we have not include
the corresponding graphs.
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Fig. 5. (a) Local and Remote Completion of Put using Flush Operations. (b) Local and Remote
Completion of Get using Flush Operations (c) Overlap using Request Based Operations in a
Get-Compute-Put Model

5.3 Overlap using Request-based Operations

Results in this section show how Request-Based Operations can be used to achieve superior
overlap compared to MPI-2. We use the Get-Compute-Put pattern discussed in Section 4.3.
“No Overlap” refers to 2(a), “Overlap w/ Lock-Unlock” refers to Figure 2(b) and “Overlap w/
RequestOps” refers to Figure 2(c). “Optimal Overlap” is the best theoretically possible overlap
performance which is equal to the computation time. The number of blocks N used was 25
and with computation time set to greater than the communication time. Results in Figure 5(c)
show that the code using Request-based Operations can achieve close to optimal overlap and
performs close to 30% better than the version using only MPI Win lock and MPI Win unlock
calls for 4 MB message size.
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6 Conclusion and Future Work
MPI-2 had introduced one-sided interface to enable applications to leverage RDMA feature
offered by modern interconnects. However, the MPI-2 one-sided interface was not widely
adopted due to several limitations. The proposed MPI-3 one-sided communication interface
resolves many of these limitations. In this paper, we presented a design and implementation
of a key subset of newly proposed one-sided interfaces. Through micro-benchmark evaluation,
we have shown that the newly proposed interfaces can provide improved performance over the
MPI-2. In the near future, we would like to show these benefits using a real-world application,
re-designing it to new the new functions and semantics.
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