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Abstract—It is an established fact that the network topology
can have an impact on the performance of scientific parallel
applications. However, little work has been done to design an
easy to use solution inside a communication library supporting
a parallel programming model where the complexities of
making the application performance network topology agnostic
is hidden from the end user. Similarly, the rapid improvements
in networking technology and speed is resulting in many
commodity clusters becoming heterogeneous with respect to
networking speed. For example, switches and adapters belong-
ing to different generations (SDR - 8 Gbps, DDR - 16 Gbps
and QDR - 36 Gbps speeds in InfiniBand) are integrated
into a single system. This leads to an additional challenge to
make the communication library aware of the performance
implications of heterogeneous link speeds. Accordingly, the
communication library can perform optimizations taking link
speed into account. In this paper we propose a framework to
automatically detect the topology and speed of an InfiniBand
network and make it available to users through an easy to use
interface. We also make design changes inside the MPI library
to dynamically query this topology detection service and to
form a topology model of the underlying network. Accordingly,
we have re-designed the broadcast algorithm to take into
account this network topology information and dynamically
adapt the communication pattern to best fit the characteristics
of the underlying network. To the best of our knowledge, this is
the first such work for InfiniBand clusters. Our experimental
results show that, for large homogeneous systems and large
message sizes, we get up to 14% improvement in the latency of
the broadcast operation using our proposed network topology-
aware scheme over the default scheme at the micro-benchmark
level. At the application level, the proposed framework delivers
up to 8% improvement in total application run-time especially
as job size scales up. The proposed network speed-aware
algorithms are able to attain micro-benchmark performance
on the heterogeneous SDR-DDR InfiniBand cluster to perform
on par with runs on the DDR only portion of the cluster for
small to medium sized messages. We also demonstrate that
the network speed-aware algorithms perform 70% to 100%
better than the naive algorithms when both are run on the
heterogeneous SDR-DDR InfiniBand cluster.

Keywords-Network Topology, InfiniBand, Topology Aware
Collective Algorithms

I. INTRODUCTION

Across various scientific domains, application scientists
are constantly looking to push the envelope of their research
by running large scale parallel jobs on supercomputing
systems. The need to achieve high resolution results with
smaller turn around times has been driving the evolution
of supercomputing systems over the last decade. Current
generation supercomputing systems are typically comprised
of thousands of compute nodes based on modern multi-core
architectures. Interconnection networks have also rapidly
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evolved to offer low latencies and high bandwidths to meet
the communication requirements of parallel applications.
Together, these systems are allowing scientists to scale their
parallel applications across tens of thousands of processes.

InfiniBand has emerged as a popular high performance
network interconnect and is being increasingly used to de-
ploy some of the top supercomputing installations around the
world. Most supercomputing systems are organized as racks
of compute nodes and use complex network architectures
comprised of many levels of leaf and spine switches, as
shown in Figure 1. The Message Passing Interface(MPI) [1]
has been the dominant programming model for high perfor-
mance computing applications, owing to its ease of use and
scalability. The current MPI Standard, MPI-2.2, defines a set
of collective operations that may be used to communicate
data among a group of participating processors. Owing to
their ease of use and portability, these collective operations
are very commonly used by application developers and sci-
entific applications are also known to spend a considerable
fraction of their run-times in MPI collective operations. The
performance of collective operations is very critical to the
overall application performance, particularly at large scales.
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Figure 1. Typical InfiniBand Fat-tree Topology

Most MPI libraries such as MPICH2, Open-MPI, MVA-
PICH2 [2] use aggressive techniques to optimize the latency
of collective operations [3], [4]. Researchers have proposed
various multi-core aware shared-memory based techniques
to minimize the communication latency of collective oper-
ations. However, these techniques are limited to leveraging
the node-level hardware topology and do not consider the
network topology. In [5], [6], researchers have demonstrated
that the network topology plays a critical role in affecting the
latency of collective performance and scientific applications.
We believe that it is critical to design MPI libraries in a net-
work topology-aware manner to improve the communication
costs of collective operations at large scales to deliver high
performance to parallel applications. However, the topology
information of InfiniBand networks is not readily available



to parallel applications. Hence, it is also necessary to detect
the topology of large scale supercomputing systems and
expose this information to MPI libraries efficiently.

Many supercomputing systems are also becoming increas-
ingly heterogeneous, either in terms of processing power or
networking capabilities [7], [8]. Most MPI libraries, includ-
ing MVAPICH2, operate in a compatibility mode when the
networks are detected to be heterogeneous. However, this
may degrade the performance of collective operations and
parallel applications. An alternative is to design MPI com-
munication libraries that are aware of the network speeds
of all the links that are being used for a given parallel job.
This information may be leveraged to compute lower latency
routes along the network to optimize the communication
latency of collective operations. Figure 2 indicates the design
space available for developing topology-aware algorithms.
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Figure 2. Design Space for Topology Aware Algorithms

These scenarios lead to the following open challenges:
1) Is it possible to design a Network Topology Detection

Service to automatically detect the topology of large
scale InfiniBand clusters?

2) Can we re-design the communication schedule of
collective operations (say Broadcast) in a network
topology-aware manner to achieve better perfor-
mance?

3) Can the communication schedule for collective oper-
ations (say Broadcast) be re-designed in a network
speed-aware manner to deliver best performance?

4) How much benefit can these enhancements provide
for broadcast operations at the micro-benchmark and
application level?

In this paper, we take on these challenges. We propose a
light-weight Network Topology Detection service that can be
queried by MPI libraries to learn about the topology of the
network, for a given parallel job. We also propose topology-
aware algorithms for the MPI Bcast operation that leverage
this information and re-order the communication graph to
achieve lower communication latency. To the best of our
knowledge, this is the first such work for InfiniBand clusters.
Our experimental results show that, for large homogeneous
systems and large message sizes, we get up to a 14% im-
provement in the latency of the broadcast operation using our
proposed topology aware scheme over the default one at the

micro-benchmark level. At the application level, we see up to
an 8% improvement in total application performance as we
scale up the job size. For a heterogeneous SDR-DDR cluster,
we see that the proposed network speed-aware algorithms
are able to deliver performance on par with homogeneous
DDR clusters for small to medium sized messages. We also
see that the network speed-aware algorithms perform 70%
to 100% better than the naive algorithms when both are run
on the heterogeneous SDR-DDR InfiniBand cluster.

II. MOTIVATION
The broadcast algorithms in MVAPICH2 currently use the

k-nomial exchange for small and medium sized messages
and the scatter-allgather algorithm for larger messages.
Figure 3 shows the communication pattern for the k-nomial
algorithm with 32 processes, with rank 0 as the root. The
tree-based algorithms are useful for minimizing the latency
for small and medium messages, because they can complete
the entire operation in (O(logN)) steps, where N is the
number of participating processes. However, the tree based
algorithms also have an imbalanced communication pattern.
As demonstrated in Figure 3, Rank 16 receives the data
from the root and becomes the co-root of a sub-tree that
includes all processes - ranks 17 through 31. Similarly, rank
4 is another co-root that receives data from the root, but
is responsible for broadcasting the data for a smaller sub-
set of processes - ranks 5 through 7. It is to be noted
that if either ranks 16 or 4 get delayed in receiving the
data from the root due to poor process placement or slower
network link, this delay gets propagated down the tree and
affects the latency of the entire broadcast operation. This
effect becomes more significant at larger scales as the trees
become more imbalanced. The scatter phase of the scatter-
allgather algorithm also uses a binomial-tree algorithm.
The imbalanced tree affects the latency of large message
broadcasts in a similar manner.

0

16 4 3

20 24 28 19 5 7

21 23 25 27 29 31

Figure 3. K-nomial (K=4) Tree Topology with 32 Processes

In our previous work [5], we proposed designing
topology-aware collective algorithms by creating inter-
nal communicators that mirror the network topology and
scheduling the communication recursively across these com-
municators. While such an approach was shown to be
effective to improve the latency of collective operations,
as we can see in Table I, it is quite possible that the
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nodes are allocated across several racks in the system.
In such cases, it might not be beneficial to create rack-
level communicators, because the number of racks are of
the same order as the number of nodes for a given job.
This observation leads us to the following challenge: Is it
possible to leverage the network topology information to re-
organize the communication pattern of collective operations
to improve their latency?

Table I
AVERAGE JOB DISTRIBUTION ON RANGER IN APRIL 2011

Job Size Average Hosts Average Racks
<256 2 2

256 - 512 28 22
512 - 1K 58 40
1K - 2K 106 58
2K - 4K 224 74

III. BACKGROUND
In this section, we give an overview of the network archi-

tectures of large scale supercomputing systems, InfiniBand,
the effect of topology on communication costs and collective
message exchange algorithms used in MVAPICH2.
A. Network Architectures

Large scale supercomputers such as the TACC Ranger and
Glenn at OSC have tens of thousands of computing cores.
These cores are organized hierarchically across different
racks, with each rack consisting of a few chassis, each
chassis includes tens of compute blades. Each blade is based
on a suitable multi-core architecture. Processes that belong
to different blades, but within the same chassis are connected
to one port of the leaf-switch and can communicate with
a single hop within the leaf-switch. Processes that belong
to the same rack, but different chassis will be connected
to the same leaf-switch, but any communication will incur
an additional hop within the leaf switch. Communication
between processes that belong to different racks involve
multiple hops across the leaf-level and the spine switches
and will incur higher latency. In Figure 1, we give a high-
level view of the topology of modern large-scale clusters.
In Table II, we include MVAPICH point-to-point latency
for communication between two processes that belong to
different parts of the cluster. We can see that the cost of
communication between processes that are across different
racks is almost 81% higher than when compared to the cost
of an intra-switch communication. In this work, we focus on
clusters that are organized in a hierarchical tree-like manner.
However, large scale clusters can be organized in various
architectures such as the torus [9]. Such architectures offer
high bi-section bandwidth for near-neighbor communication
patterns, but network contention can significantly impact the
performance of applications when the processor allocation is
scattered across different racks in the cluster. While we focus
on tree-based topologies in this paper, it is equally important
to discover the topology on other types of networks and de-
sign collective message exchange algorithms that are aware

of the topology in order to improve the overall performance
of real-world applications.
B. InfiniBand

InfiniBand is a very popular switched interconnect stan-
dard being used by almost 41% of the Top500 Supercomput-
ing systems [10]. InfiniBand Architecture (IBA) [11] defines
a switched network fabric for interconnecting processing
nodes and I/O nodes, using a queue-based model. It has
multiple transport services including Reliable Connection
(RC) and Unreliable Datagram (UD), and supports two types
of communication semantics: Channel Semantics (Send-
Receive communication) over RC and UD, and Memory
Semantics (Remote Direct Memory Access - RDMA com-
munication) over RC. Both semantics can perform zero-
copy data transfers, i.e. the data can directly be transferred
from the application source buffers to the destination buffers
without additional host level memory copies.
C. Broadcast Algorithms used in MVAPICH2

In MVAPICH2 [2], we use optimized multi-core aware,
shared-memory based algorithms to implement the One-to-
All Broadcast operation. However, these optimizations are
limited to identifying and grouping processes that are within
the same compute node and we have no knowledge of the
topology at the switch-level. For each communicator, we
create an internal shared-memory communicator to contain
all the processes that are within the same compute node. We
assign one process per compute node as the node-level leader
process and create a node-level-leader communicator to in-
clude such processes. We schedule the MPI Bcast operation
across these communicators to minimize the communication
latency. The intra-node phase of the MPI Bcast operation
can either use the direct shared-memory approach or a k-
nomial algorithm through basic point-to-point operations.
For the inter-leader phase, we use the k-nomial algorithm
for small and medium sized messages, and a scatter-allgather
approach for larger messages.
D. WindJammer

The example application, Windjammer, issues two large
broadcast calls in its main loop. Windjammer is a par-
allel Neighbor-Joining MPI C++ program used to build
approximate evolutionary trees, known as phylogenetic trees,
from either DNA or amino acids sequences, known as
taxa. The Neighbor-Joining algorithm was first described
in 1987 [12]. Windjammer is based on the scalar NINJA
program developed by Wheeler [13]. In particular, it re-
lies heavily on the Wheeler optimization described as “d-
filtering”. The application is used to evaluate our proposed
broadcast algorithms.

IV. DESIGN
In this section, we describe the details of our network

topology-/speed- aware design and implementation of the
broadcast algorithm. The overall design of our network
topology-aware framework is as shown in Figure 4.
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Table II
MVAPICH COMMUNICATION PERFORMANCE ACROSS VARYING LEVELS OF SWITCH TOPOLOGY ON TACC RANGER

Process Location Number of Hops MPI Latency (us)
Intra-Rack Intra-Chassis 0 Hops in Leaf Switch 1.57

Inter-Chassis 1 Hop in Leaf Switch 2.04
Inter-Rack 3 Hops Across Spine Switch 2.45

5 Hops Across Spine Switch 2.85

High Performance Computing Applications

MPI Library

Topology Aware 
Collective Algorithms

Communicator 
Re-ordering Module

High Performance Network Layer

Data Collection ScriptsInfiniband Network

Topology Detection Service

Figure 4. Overall Framework

A. Designing Topology Detection Service

InfiniBand network topology data is not available in a
mode easily used by other programs. The physical connec-
tions between entities in the fabric are discoverable with the
ibnetdiscover utility from the OFED distribution[14].
This program dumps the physical topology data, which
includes port-to-port switch connectivity by GUID and port
numbers, in a human-readable, free-form ASCII text file.
Logical routing data is available by querying each switch in
turn and dumping its Linear Forwarding Table (LFT) with
the ibroute utility from OFED. The LFT on each switch
specifies which outbound port on that switch to forward
received packets for each unique entity in the fabric.

The required routing data is generally not available to
users of IB systems who do not have administrative privi-
leges. To get IB routing data available to general users of a
system, we have taken a two-step approach. First, we have
developed a set of scripts to be run by the administrator that
use ibnetdiscover and ibroute to dump the physical
routing data and LFTs from each switch. Then, we have
developed a routing query server that ingests this data at
startup and continuously as it is generated and provides a
query service for the routes that it describes. Clients may
connect to the server over TCP/IP sockets and make queries
of the form:

query hosta:hostb

The service returns the GUIDs of the switches traversed
between the hosts “hosta” and “hostb”. E.g.,

query i101-101:i102-201
i101-101 0x00144fa50f240050 0x00144f0000a60369
0x00144f0000a6037a 0x00144f0000a6036a
0x00144fa43db80050 i102-201

The server is multi-threaded and starts a new thread for
each client connection. It is designed to handle a large
number of simultaneous connections in order to support
large-scale machines with many simultaneous jobs request-
ing data.

The LFT data in each switch is created and programmed
by the Subnet Manager[15] during its startup. But any
event like the insertion or removal of a host or switch, the
activation or deactivation of a switch port, or other change
in the fabric could affect the LFT. Given the potentially
dynamic nature of the LFT data, the data collection scripts
watch the Subnet Manager logs for changes in the fabric and
re-dump the data whenever it changes. The topology query
service watches for new raw data and reloads it whenever
new data is available.

Future plans for the service include the addition of ingress
and egress port data for each hop in the route between nodes,
direct query of topology details using the OpenSM plugin
interface, and supporting commands for a network-topology-
based job scheduling service.

B. Designing Network-Topology/-Speed Aware Broadcast
Algorithms

A topology discovery service similar to the one described
in Section IV-A alone does not provide any benefit to end
applications unless the implementations of various program-
ming models these applications use, such as the MPI library,
utilize this topology information to make intelligent routing
choices while performing communication that spans the
network. As we saw in Section III-C, MVAPICH2 uses some
form of tree based pattern as the underlying communication
scheme for almost all message sizes while performing the
broadcast operation. As we saw in Section II, delaying a
message at one of the tree nodes with many children tends
to have a greater impact on the performance of the broadcast
operation than delays created at the other nodes of the tree.
In this context, we propose certain heuristics which are
aimed at reducing the delay in this critical section of the
broadcast algorithm.
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The central idea is to to map the logical broadcast tree to
the physical network topology in-order to reduce the possible
delays in the critical sections of the broadcast operation
described earlier. Note that we are not trying to achieve a
perfect mapping of the logical tree to the physical topology.
We are only trying to map certain critical regions of the
broadcast which have been shown to have most impact on
the performance of the broadcast operation as a whole. To
this end, we re-order the ranks in the node-level-leader
communicator described in Section III-C with information
about the network in such a way as to allocate the fastest
/ shortest network links to the nodes in the critical region
thus reducing possible network delays. We choose the classic
Depth First Traversal (DFT) and Breadth First Traversal
(BFT) methods as our heuristics to discover the critical
sections of the broadcast operation as they lend themselves
naturally to the tree based communication pattern used by
the broadcast operation.

For each node-level leader in the broadcast, we create
a new network aware communicator for it on an on-
demand basis. When a node-level leader initiates a broadcast
exchange operation for the first time, we create a new
communication graph with the node level leader as the root
and use either the depth first or the breadth first graph
traversal method (as requested by the user) to traverse it.
Figure 5 depicts the flow on control inside the MPI library
with the addition of the topology aware collectives. Due to
the nature of the traversal algorithms and the underlying
communication graph, we will reach the nodes having most
children before the other ones. For maintaining correctness
of the application, the node on which the root of the
broadcast operation resides is fixed. For each child process,
we pick a node that is closest to its parent process. We
use an N x N delay matrix (N = number of node level
leaders) to define the ’closeness’ of two processes. As we are
focusing on delays caused due to reduced physical capacity
of the network and the number of hops in the critical
communication path, there are two broad methods in which
we can create the delay matrix. In the coming sections, we
discuss the design of these solutions in detail.

1) Delay Matrix for Network Topology Aware Broadcast:
It is common for the various processes belonging to an MPI
job to get distributed across various switch blades on large
networks, like the one used by the Ranger supercomputing
system at TACC. As the current state of the art collective
communication algorithms do not take the network topology
into account, it is possible that the messages intended for
nodes in critical sections of the broadcast operation are
required to traverse multiple hops before they reach the
intended destination resulting in large delays and variable
performance. In this context, we query the topology detec-
tion service to create the delay matrix based on the number
of hops between any pair of node-level leaders. In order
to avoid overwhelming the topology detection service, only

Start of Broadcast
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Use Default 
Communicator

Completion of 
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YesTopology Aware 
Communicator 
Exists for Root

Use Topology Aware 
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Perform Collective 
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Figure 5. Control Flow with Topology Aware Collectives

Rank-0 of the node-level leader communicator queries it. A
delay matrix is created locally and broadcasted to all other
node-level leaders on the job. This is done only once at job
initialization time and cached at each process for future use.

2) Delay Matrix for Network Speed Aware Broadcast:
Heterogeneity adds a different dimension to the problem,
requiring us to define the delay matrix in such a way as
to take this into consideration. To this end, the node-level
leaders perform an Allgather operation to obtain the link rate
of the IB HCA’s on all nodes taking part in the job. Once
each node-level leader has the rate of all other nodes on the
job, they create the delay matrix by taking the inverse of the
of the speed of the HCA with the lower speed among a pair
of nodes. This is done only once at job initialization time
and cached at each process for future use.

V. EXPERIMENTAL RESULTS

In this section, we describe the experimental setup, pro-
vide the results of our experiments, and give an in-depth
analysis of these results.

A. Experimental Setup
Our experiments were conducted on the Ranger super-

computer at the Texas Advanced Computing Center and
on the Glenn supercomputer at the Ohio Supercomputing
Center. Ranger is a 3,936 node cluster with a total core
count of 62,976. Each node is a SunBlade x6420 running a
2.6.18.8 Linux kernel with four AMD Opteron Quad-Core
64-bit processors (16 cores in all) on a single board, as an
SMP unit. Each node has 32 GB of memory. The nodes
are connected with InfiniBand SDR adapters. Ranger also
runs the latest version of the topology discovery service
that we described in Section IV-A. Thus, Ranger provides
us a homogeneous environment to evaluate our network
topology-aware broadcast algorithms.

Glenn, on the other hand, consists of multiple generations
of InfiniBand adapters - SDR (8 Gbps) and DDR (16 Gbps).
It is a 9532 core (1624 node) IBM Opteron cluster. The
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original system consists primarily of 877 dual socket, dual
core 2.6 GHz compute nodes with 8 GB of RAM with an
SDR two level InfiniBand fat-tree interconnect. The system
was expanded to approximately twice its original size with
the addition of 650 dual socket, quad core 2.5 Ghz compute
nodes with 24 GB of memory connected via a DDR two
level InfiniBand fat-tree. The SDR and DDR fat trees are
connected via several links between the spine switches of
the two trees. Thus, Glenn provides us a heterogeneous
environment enabling us to evaluate our network speed-
aware broadcast algorithms. Due to technical reasons, we
were not able to get the topology discovery service up and
running on the Glenn cluster. We use the OSU Benchmark
suite and the WindJammer [16] application to evaluate the
effectiveness of our algorithms.

Earlier work [17] has shown that noise (both in the
network and on the host) is a factor that affects the perfor-
mance of all parallel jobs that run on modern commodity
supercomputing systems. In this context, we ran all the
experiments that compare and contrast the performance of
the default version of the broadcast algorithm with our
modified topology-aware version in an interleaved fashion
instead of in a block manner to mitigate the impact of
network noise on the results. We also repeated the same
series of experiments on different days over a period of
a month to ensure the repeatability and consistency of the
results.

B. Impact of Network-Topology/-Speed Aware Algorithms
on Performance of Collective Benchmarks

In this section we look at the impact network topology-
/speed- aware broadcast algorithms have on the performance
of the broadcast operations on homogeneous and heteroge-
neous clusters.

1) Homogeneous Clusters: We evaluate the performance
of the network topology-aware broadcast algorithms de-
scribed Section IV-B1 here. We ran the benchmark for
different core counts and message sizes to evaluate how the
proposed scheme scales as the size of the job as well as the
message increases. We observed that the impact of network
topology on the performance of smaller messages were not
that significant. This follows from the fact that most of the
time spent in the network for small messages get spent in
the startup phase. But as the size of the message increases,
we slowly begin to see the impact of the topology-aware
schemes on the performance of the broadcast operation.

Figure 6 (a) shows this trend for various message sizes
when the benchmark was run on 1024 cores. The same trend
exists for jobs of size 256 and 512 as well. We do not
include these graphs due to their repetitive nature. Figure 6
(b), on the other hand, shows how the performance of the
proposed topology-aware scheme scales as the size of the job
increases for a fixed message size of 1 MB. As we can see,
the topology-aware schemes do not have a significant impact

at smaller job sizes. This is due to the fact that the broadcast
trees similar to the ones seen in Section III-C are not large
enough for the perturbations caused by delay in delivery of
packets to the intermediate nodes to affect the performance
of the broadcast operation as a whole. But as the size
of the system scales, the impact that the topology-aware
version of the algorithms have on the performance of the
broadcast operation also increases. This is very significant
as the size of supercomputing systems are expected to scale
to exascale levels very soon. The same trend exists for
messages upwards of 4 KB. We do not include these graphs
here due to their repetitive nature. Our experimental results
show that, for large system sizes and message sizes, we get
up to a 14% improvement in the latency of the broadcast
operation using our proposed topology-aware scheme over
the default one.

2) Heterogeneous Clusters: In this section, we evaluate
the performance of the network speed-aware broadcast al-
gorithms described Section IV-B2. We ran the benchmark
for the broadcast operation on different combinations of
homogeneous and heterogeneous configurations to evaluate
the performance of the proposed scheme. Figures 7 (a)
and (b) shows the performance comparison of the proposed
network speed-aware algorithm and the default network-
speed un-aware algorithm on a heterogeneous 128-core
allocation on the Glenn cluster consisting of hosts with
DDR or SDR HCAs. We also show the performance of the
default algorithm on a homogeneous 128-core allocation on
Glenn just as a point of reference. We see that the network
speed-aware broadcast algorithms are able to perform two
times better than the network-speed un-aware version on a
heterogeneous allocation. At the same time, we also see that
its performance is on par with the performance of default al-
gorithm on the homogeneous allocation for small to medium
sized messages. But as the size of the message increases,
the operation becomes more bandwidth bound and hence
more dependent on the raw speed offered by the network.
Consequently, the performance of the network speed-aware
algorithm on the heterogeneous cluster begins to perform
worse than that of the default algorithm on the homogeneous
allocation. The slight degradation in performance seen for
messages less than 128 bytes is due to difference in size of
the messages that can be sent in an inline fashion by the
IB HCA. While the newer DDR HCA is able to handle an
inline size of 128 bytes, the older SDR HCA is only able
to handle a maximum inline size of 64 bytes.

Figures 8 (a) and (b) shows the same results for a 256
process run of the broadcast operation.

C. Application Level Results
In this section, we look at the performance benefits

obtained for the WindJammer application described in Sec-
tion III-D with the network topology-aware version of the
broadcast algorithm on Ranger with 128 and 256 processes.

7



 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1M512K256K128K

B
ro

ad
ca

st
 L

at
en

cy
 (

us
)

Message Size (Bytes)

No-Topo-Aware
Topo-Aware-DFT
Topo-Aware-BFT

Figure 6. Impact of Network-Topology Aware Algorithms on Broadcast Performance for various: (a) Message Sizes at 1K Job Size and (b) Job Sizes

 5

 10

 15

 20

 25

 30

1K 256 64 16 4

B
ro

ad
ca

st
 L

at
en

cy
 (

us
)

Message Size (Bytes)

Homogeneous-No-Speed-Aware
Heterogenous-No-Speed-Aware

Heterogenous-Speed-Aware-DFT
Heterogenous-Speed-Aware-BFT

 0

 100

 200

 300

 400

 500

 600

64K32K16K8K4K

B
ro

ad
ca

st
 L

at
en

cy
 (

us
)

Message Size (Bytes)

Homogeneous-No-Speed-Aware
Heterogenous-No-Speed-Aware

Heterogenous-Speed-Aware-DFT
Heterogenous-Speed-Aware-BFT

Figure 7. Impact of Network-Speed Aware Algorithms on a 128 process Broadcast Performance for: (a) Small Messages and (b) Medium Messages
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Figure 9 depicts the performance of the default network-
topology un-aware algorithm as well as the proposed net-
work topology-aware algorithm for various system sizes.
As we saw with the micro-benchmark results on homoge-
neous clusters in Section V-B1, the impact of the network
topology-aware version of the algorithm is not felt that much
at smaller system sizes. But as the system size scales, the
improvement seen in performance also increases. We see
that, at 256 processes, an improvement of up to 8 % is seen
at the application level by using the topology-aware version
of the broadcast algorithm over the default one.

Figure 9. Impact of Network-Topology Aware Algorithms on WindJammer
Application

We will include the experimental results at the application
level on the Glenn cluster in the final version of the
paper. Due to scheduling conflicts, our experiments did not
complete before the submission deadline.

D. Overhead of Creating Topology Aware Communicator
In this section we analyze the various overheads involved

in creating the topology aware communicator. Table III
shows the time spent by the MPI library in various phases of
topology discovery for various number of leader processes.
The total job size would be 128, 256 and 512 respectively
on a 8 core system and 256, 512 and 1024 respectively on a
16 core system. As we can see, most of the cost involved in
topology discovery is a one time cost making the approach
scalable.

VI. RELATED WORK
Extensive research has been conducted around the map-

ping problems in parallel and distributed computing. The
general idea being to map a task graph to a network
graph while minimizing the overhead of communication and
balancing computational load. This problem can be reduced
to a graph-embedding problem which has been proved to be
NP − Complete [18], [19].

From the 70’s through the 90’s, researchers pro-
posed different solutions to solve the mapping problem
based on heuristic algorithms (local optimization [20],
[21], greedy [22], [23], branch-and-bound [24] etc.) and

physical optimization algorithms (graph contraction [25],
[26],simulated annealing [27], [28], neural networks [29],
genetic algorithm [30] etc.). But most of these works
targeted interconnect topologies such as hypercubes, array
processors or shuffle-exchange networks, while modern sys-
tem topologies are mainly meshes, tori and fat-trees. With
Petascale clusters, the communications are becoming the
bottleneck. It’s becoming critical to improve the mapping
of communication graphs on these interconnect topologies
to reduce the impact of contention on large scale parallel
applications.

Recent works of Bhatele [31], [6], [32] et. al. demon-
strated the importance of topology-aware mapping for com-
munication bound applications on tori networks. They have
presented a framework for automatic mapping of parallel
applications using a suite of heuristics that they developed.
Their framework was based on two steps: 1. Obtaining
the communication graph using profiling libraries, 2. Based
on the communication patterns and topology information,
apply heuristics to obtain mapping solution. The topology
information was obtained through system calls. Their work
mainly focused on torus networks. In this paper, we have
presented our approach to automatically obtain topology
information and adapt MPI collective operations. Our work
directly focuses on commodity networks and takes into
account heterogeneous network speeds.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we designed a Network Topology Detec-
tion Service to automatically detect the topology of large
scale InfiniBand clusters. We re-designed the communication
schedule of the Broadcast operation in a network topology
and speed-aware manner. Our experimental results show
that, for large homogeneous systems and large message
sizes, we get up to a 14% improvement in the latency of
the broadcast operation using our proposed topology-aware
scheme over the default one at the micro-benchmark level.
At the application level, we see up to an 8% improvement
in total application performance as we scale the job size
up. For a heterogeneous SDR-DDR cluster, we see that the
proposed network speed-aware algorithms are able to deliver
performance on a par with homogeneous DDR clusters
for small to medium sized messages. We also see that
the network speed-aware algorithms perform 70% to 100%
better than the naive algorithms when both are run on the
heterogeneous SDR-DDR InfiniBand cluster.
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Table III
OVERHEAD OF TOPOLOGY DISCOVERY IN MPI LIBRARY (TIME IN MS)

Number of Leaders 8 16 32
Phase Initial Subsequent Subsequent Initial Subsequent Subsequent Initial Subsequent Subsequent

Call (Same Root) (Different Root) Call (Same Root) (Different Root) Call (Same Root) (Different Root)
Discover Connected 5.1 NA NA 4.2 NA NA 6.9 NA NA

Switches
Compute Delay 5.7 NA NA 23.7 NA NA 103.1 NA NA

Matrix
Broadcast Delay 0.5 NA NA 4.8 NA NA 5.9 NA NA

Matrix
Create Topology 0.13 NA 0.13 1.5 NA 1.5 2.4 NA 2.4

Aware Communicator
Total Time 11.6 0 0.13 30.8 0 1.5 115.5 0 2.4
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