
Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-1

Teaching Object-Oriented Software Design within

the Context of Software Frameworks

Zoya Ali, Joseph Bolinger, Michael Herold, Thomas Lynch, Jay Ramanathan, Rajiv Ramnath
The Ohio State University, aliz@cse.ohio-state.edu, bolinger@cse.ohio-state.edu, herold@cse.ohio-state.edu,

lynch.268@osu.edu, jayram@cse.ohio-state.edu, ramnath@cse.ohio-state.edu

Abstract – Object-oriented software design and

programming is an essential part of a computer science

curriculum. We have observed that novice software

developers, such as fresh college graduates who have

been taught object-oriented design, are able to apply

good design principles in theory. However, this rarely

extends into their professional practice, when they are

asked to design software intended to run inside a

software framework. In fact, we observe that even

advanced software developers abandon good design

practices when developing software while using a

framework, and focus on simply “making it work.” This

paper presents and discusses a methodology developed

for designing software in the context of frameworks to

overcome these issues. We show how design patterns can

serve as the bridge between the paradigms imposed by

the framework and the ideal, unconstrained design of the

system. We also suggest an evaluation method for

observing the results of using this methodology when

used by the students.

Index Terms – Design patterns, Mobile applications

development, Object-oriented design, Software frameworks

INTRODUCTION

Object-oriented (O-O) software design and

programming is an essential part of a computer science

curriculum. The idea behind O-O design is that programs are

intended to solve problems in the real world; thus basing

software components on real world objects will make the

software easier to both figure out (analyze) and design. In

all the CS curricula that we have examined we have found

that O-O design is taught with the intention of using it to

develop software using an O-O language – such as C++,

Java, C# and so on.

However, little software of any consequence is

developed directly using only a programming language.

Most commercial software is being developed using a

software framework by extending and customizing the

default, generic functionality that it provides. We have

observed that novice software developers, such as fresh

college graduates, who have been taught object-oriented

design are able to apply good design principles in theory, but

rarely in professional practice. When they are asked to

design software intended to run inside a software

framework, such as .NET, J2EE, or the Android SDK, they

often fail to apply O-O design principles. In fact, we observe

that even software developers who are not novices abandon

good design practices when developing software while using

framework, and focus almost all of their energy on simply

“making it work.”

The rationale behind using object-oriented design when

developing an application is to conform the program to a

real world problem. Basing software components on real

world things makes the software easier to understand as well

as design. Further, since the components have been modeled

around the real world, they are not only more likely to be

stable (as the real world is not changing quickly), they also

are more capable of capturing the evolving nature of the

application components.

Frameworks provide means for developing applications

where functionality and architecture can be reused across

multiple applications. While an object-oriented framework is

a set of collaborating object classes that embodies an

abstract design and provides solutions for a family of related

problems, a framework specific to an environment, such as

mobile devices, provides design solutions around device

capabilities and services. A framework typically consists of

a mixture of abstract and concrete classes. Abstract classes

usually reside in the framework, while the concrete classes

reside in the application. A framework, then, is a semi-

complete application that contains certain fixed aspects

common to all applications in the problem domain, along

with certain variable aspects unique to each application

generated from it [1].

We can say that design patterns and frameworks not

only help in understanding and constructing real world

applications, but also provide additional reusability of both

design and implementation. We can selectively override or

modify certain functionalities of the framework to provide

specific functionality. This is achieved by using a set of

object-oriented techniques to achieve “inversion of control”.

Inversion of control means that the program or, more

precisely, the architecture of the framework enables

customization of the application processing by event handler

objects invoked through frameworks mechanisms. For

example, a user’s touch event to indicate his action will be

handled by a concrete event listener that interfaces with the

framework. When an event occurs, the framework

dispatches control to the respective handler class by

invoking its methods, which perform application-specific

processing on the events. Inversion of control allows the

framework, rather than each application, to determine which

mailto:ramnath@cse.ohio-state.edu

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-2

set of application-specific methods to invoke in response to

external events [2].

In this paper, we present and discuss a methodology we

developed for designing software in the context of

frameworks. This methodology is intended to be taught to

the students at our university. We show how design patterns

can serve as the bridge between the paradigms imposed by

the framework and the ideal, unconstrained design of the

system. The methodology is aimed to help students come up

with better designs for their applications when using any

framework. We want students to not only learn the

implementation of frameworks, but also learn to use

frameworks to their advantage by exploring the framework

itself.

APPROACH

In this paper we explore how to teach students in colleges to

write good software. In particular, we want to teach them to

write software written within the Android SDK framework.

The main reason we chose the Android framework was to let

students develop applications which they can not only

develop, but also publish them in the Android market for

others to use. This is different from traditional curricula, as

students get to see the progress of their application in a real

market. Also, since Android is an open development

platform, it enables users to develop rich and innovative

applications that take advantage of both device capabilities

and framework APIs [3]. However, simply using the

framework guidelines does not help build a well-designed

application, as frameworks provide only generic guidelines.

We need to use design patterns that result from application

design to overcome complexities and serve as a bridge

between paradigms imposed by the frameworks and the

ideal and unconstrained design of the applications.

To come up with the methodology we used one

developer who was new to the Android framework. The

developer was asked to develop a simple Tic-Tac-Toe game

using the Android framework. We observed that, being a

first time user of the framework, he found it to be

complicated to fit their design easily into the framework.

This led him to abandon good design principles and

encouraged him to just fit their application into the

framework. When we evaluated the code, the program was

complex and difficult to understand, had tight coupling

between classes and took lot of time to debug. Figure1.

shows the initial design with classes and responsibilities.

Based on these issues in the design we decided that we

needed to explain the framework in terms of design patterns.

The initial difficulties faced were: (i) to understand the

applicability of the framework to the application (ii)

mapping of generic Android functionalities to specific

application functionalities.

Thus, our instruction became a three-step process. First,

we would have the students design their application through

the use of object-oriented design. Second, we would have

FIGURE 1
INITIAL DESIGN

the redesign the application through the use of design

patterns. Third, we have them adjust their use of the design

pattern to match that within the framework.

I. Designing with Object-Oriented Design

By using the problem statement, students are encouraged to

think about it in the standard object-oriented way and use

their previous experience to come up with objects, classes,

responsibilities, collaborators, methods, etc.

II. Designing with Design Patterns

Then we introduce the common design patterns found within

the Android framework. One such pattern is the model-view-

controller (MVC) pattern [4]. MVC is a design pattern

originally developed in the 1970s for Smalltalk. Today, it is

predominantly seen in mobile and web applications. The

idea behind this pattern is to isolate the domain logic of the

application from the way the data is presented to the user

(i.e. the application’s user interface), so that these two very

important components of any application can be designed,

implemented and maintained separately. This can be seen in

Figure 2.

As we observed in our example, the logic of playing the

game Tic-Tac-Toe based on its rules forms the domain logic

for the application. This is the model of the application. A

visual representation of the Tic-Tac-Toe grid represents the

view with which the users interact. The controller is a

component, interposed between the model and the view, that

receives the user actions and translates these commands to

actions on the model. Then, the controller takes the resulting

FIGURE 2

THE MODEL-VIEW-CONTROLLER DESIGN PATTERN [5]

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-3

updates to the model and notifies the view that it has to

update.

After teaching the students this design pattern, we can

show the advantages of the technique. It is can be explained

that by simply swapping out the view, one could easily

change the entire presentation of the game without changing

any of the backend of the controller or the model. By

following this pattern, any redesign of the view can be easily

done without affecting the underlying rules of the

application. Thus letting the student think about the

application in terms of the MVC pattern.

III. Resultant Pattern or Solution

Next, in order to better understand the framework and

smoothly amalgamate our design of the application with the

framework, we need to educate the students about the design

pattern as dictated by the framework. In order to integrate

the application into the framework, one would need to

understand the framework and compare it with a standard

design pattern. In our case of using MVC, we describe the

implementation of the pattern within the Android framework

and how one can develop a mapping from the MVC

reference to the version implemented within the framework.

Showing the students how the pattern works within the

Android framework helps them learn two independent

things. First, how they can leverage the pattern within the

framework, which is an important part of learning Android

development. Second, gaining complete understanding of

the pattern by seeing how it is implemented within a larger

system. By comparing the Android MVC implementation

with their own, it shows how the Android developers think

differently about the pattern than students do. This is an

important part of internalizing the use of design patterns.

METHODOLOGY

The Android developers have developed a distinct set of

patterns for use by application developers. These are:

Activities, Services, Broadcast Receivers, and Content

Providers [3]. We will briefly describe these patterns to

provide background for this section.

 Activities correspond to a particular “screen” and they

are invoked directly or indirectly through Intents.

 Intents are a mechanism for calling a method, passing

data, or receiving results.

 Services are application components that run in the

background and do not require a user interface or

interaction with the user. Two examples are playing

music in background and getting user location from

GPS hardware.

 Broadcast Receivers enable an application to interact

by receiving data from other applications. For example

receiving call while the application is running.

FIGURE 3
THE ACTIVITY LIFECYCLE WITHIN AN ANDROID

APPLICATION [3]

 Content Providers globally expose and update

persistent data as a simple table on a relational database.

Given these patterns, developing an application for the

Android framework is very different than developing a

generic application. Thus, we needed to provide a

methodology to the students for converting their object-

oriented design into an Android application design.

We came up with the following methodology to be used

by students in order to take advantage of the framework in

their design implementation:

1. Paraphrase the problem statement and extract all the

nouns and verbs from it. The nouns serve as candidate

objects, classes and attributes, while verbs serve as

responsibilities.

2. Merge the extracted nouns into classes. This may

require discarding irrelevant nouns or nouns

representing the same thing.

3. Merge extracted verbs into classes, instances and

responsibilities.

4. Assign responsibilities by identifying required methods

to complete those responsibilities.

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-4

FIGURE 4

FINAL DESIGN AFTER USING THE METHODOLOGY

5. Walk through the scenario to ensure that each scenario

is supported by methods and identify the collaborations

between them.

These steps are the same as standard object-oriented design.

To explain the compromises made with respect to

framework and design, we gave them three additional steps.

1. First, once the classes have been identified, developers

need to identify each activity corresponding to a certain

view and set of actions involved in that view. By

referencing the lifecycle of an activity within the

Android framework, as seen in Figure 3, the developer

needs to divide the define classes and methods from

their object-oriented analysis and integrate them into the

classes, as described in the activity lifecycle.

2. Second, map view classes with controller classes and

model classes with controller classes.

3. Third, externalize resources such as images and strings

from the application code in order to maintain them

 independently. Externalizing your resources also

allows you to provide alternative resources that support

specific device configurations, such as different

languages or screen sizes. This becomes increasingly

important as more diverse Android-powered devices

become available. This step has a design pattern

inherent in it. The framework directs you to organize

resources in your project's res/ directory, using various

sub-directories that group resources by type and

configuration. [3] Figure 4 shows the final resulting

classes and their responsibilities after using the

methodology.

PROPOSED EVALUATION

We plan to evaluate the usefulness of this methodology by

teaching it in a senior level software engineering class at The

Ohio State University. With class size ranging from 30 to 35

students, application development will be done as individual

assignments. We will use the Tic-Tac-Toe game application

and the Android framework to teach the methodology. Later

we will use a more complicated application to evaluate

students’ understanding of the framework and the

methodology.

We will use questionnaires, individual implementation

reports and a final exam to evaluate their understanding of

the methodology and the implementation. We will record

their learning curve by evaluating their second project

implementation. We will use questionnaires to learn their

previous experiences with frameworks and how it helped

them in the mobile application development. We will record

these twice: once prior to teaching the methodology and

again after the methodology is taught. We will use

individual reports to understand their implementation.

Lastly, exam results will be used to know how well they

understood the methodology.

CONCLUSION

In this paper, we illustrated how adaptation to a new

framework can be a challenge for novice developers and

how implementation of standard object-oriented designs into

a new framework may lead to bad design and misuse of the

framework.

Because of this, we developed a methodology that

guides the students on how to productively adapt the generic

guidelines as offered by the framework into the specific

functionalities as required in their application. This

methodology is intended to help the students overcome

problems like overly complex design, tight coupling, a rigid

controller function and low exploitation of the framework.

In this methodology, we encourage the students to use

design patterns as described in their object-oriented

application design and compare their designs to the

framework. We use this comparison as a bridge to map the

two. This not only resulted in better design of the

application, but also gave students a new insight in how to

approach a new framework and amalgamate their application

into it.

We do not say that simply following framework design

would result in a good application, as it requires

compromising and adapting at both application level and

framework level. These compromises allow a developer to

come up with a final application design that is easier to

understand, easier to debug, and allows code to be more

maintainable and reusable.

In order to evaluate the effectiveness of this

methodology, we proposed a method for evaluation. We will

use several qualitative approaches, including project

evaluations and questionnaires. We will also use quantitative

approaches, including a study of exam results from the

course.

REFERENCES

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-5

[1] Srinivasan, S., “Design Patterns in Object-Oriented Frameworks”,

Computer, Vol. 32, No. 10, February 1999, pp. 24-32.
[2] Burbeck, S. “Applications Programming in Smalltalk-80: How to Use

Model-View-Controller”, Softsmarts, Inc., 1987.

[3] Android Developer’s Guide. http://developer.android.com, retrieved
Febuary 2011

[4] Fayad M., Schmidt C.D., “Object-oriented application frameworks”,

Communications of the ACM Magazine Volume 40 Issue 10, Oct.
1997

[5] Apple Developer’s Guide. http://developer.apple.com, retrieved Febuary

2011

AUTHOR INFORMATION

Zoya Ali, Graduate Student, Department of Computer

Science and Engineering, The Ohio State University,

aliz@cse.ohio-state.edu

Joe Bolinger, Ph.D. Candidate, Department of Computer

Science and Engineering, The Ohio State University,

bolinger@cse.ohio-state.edu

Michael Herold, Ph.D. Student, Department of Computer

Science and Engineering, The Ohio State University,

herold@cse.ohio-state.edu.

Thomas Lynch, Ph.D. Student, Department of Computer

Science and Engineering, The Ohio State University,

lynch.268@osu.edu

Rajiv Ramnath, Director, C.E.T.I., Associate Professor of

Practice, Department of Computer Science and Engineering,

The Ohio State University, ramnath@cse.ohio-state.edu

Jayashree Ramanathan, Director, C.E.T.I., Associate

Research Professor, Department of Computer Science and

Engineering, The Ohio State University, jayram@cse.ohio-

state.edu

mailto:herold@cse.ohio-state.edu

