
Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-1

Teaching Students Software Engineering Practices

For Micro-Teams

Shweta Deshpande, Joe Bolinger, Thomas D. Lynch, Michael Herold, Rajiv Ramnath, Jayashree Ramanathan
The Ohio State University, deshpande.36@osu.edu, bolinger@cse.ohio-state.edu, lynch.268@osu.edu, herold@cse.ohio-

state.edu, ramnath@cse.ohio-state.edu, jayram@cse.ohio-state.edu

Abstract - Standard methodologies which have been

developed for large software development teams, and

Agile practices developed for small teams, make up the

software engineering practices taught in the Computer

Science classroom. However, given the sheer prevalence

of micro teams doing business-critical software

development in the field, software development best

practices for micro teams must be incorporated into the

software curriculum. To this end, we created a multiple-

case case study (comprising five micro team projects)

showing how micro teams handle the software

development process. Through each of these projects, we

seek to showcase what practices in existing software

development methodologies, are undertaken by the

developers of the projects, to achieve similar ends as

developers in large teams. Specifically, the case study

highlights how existing software development

methodologies need to be modified, adapted and

extended for micro teams. The case study and micro

team guidelines were presented to students in a software

engineering class within the Computer Science

department at a large R1 university. The teaching was

assessed using a mix of surveys and structured

interviews. Initial evaluations show promise. Students

were positively inclined to accept the lessons, and

showed good recall of the concepts taught in tests.

Index Terms - Software engineering, micro teams, case

study

INTRODUCTION

The software crisis in the 1960s was characterized by rapid

increase in complexity and computing power of hardware,

and difficulty in writing software utilizing those capabilities.

Often, projects were over budget, late, unmanageable, and

software did not fully meet requirements, was of low

quality, inefficient, failing, and code was not maintainable.

To deal with the crisis, software engineering techniques

were introduced – problems associated with software

development did not go away, but, over the decades, more

success stories than failures were observed due to the years

of developing and practicing software engineering

techniques [1].

What everybody agreed on, though, was that there is no

silver bullet [2] – no single technology or project

management approach to prevent all problems.

One of the very widely used software engineering

techniques is the software development process. A software

development process is basically a structure imposed on the

development of a software product. Software development

processes (or software life cycle models) are “used as

guidelines or frameworks to organize and structure how

software development activities should be performed, and in

what order”[3]. These processes are “intuitive or well

reasoned”, and are used to package the development tasks

and techniques for using a given set of software engineering

tools or environment during a development project.

According to Watts Humphrey, as software complexity

increases in scale, a “structured and disciplined” approach to

software development becomes essential for effective and

successful development of software. He says that if details

in software development are not managed, not even the best

people can be productive. Unmanaged software

development leads to endless hours of repetitively solving

technically trivial problems, and time consumed by

mountains of uncontrolled detail. Thus, people need the

support of an orderly process to do efficient work, and as a

result, a number of different software development

processes have been developed, practiced and widely

accepted over time [4].

An important aspect related to software development is

the people involved in it – the size of the development team.

We usually see that a lot of the software development

methodologies handle development activities for software

teams of varying sizes – large (> 25 developers), medium

(10 – 25 developers) or small (3-10 developers) [5]. But

studies show that a significant number of software projects

are done by micro teams, often with just a single developer

[6]. There are no software development methodologies that

target such micro teams, and using existing methodologies –

meant for the larger teams – with micro teams, leads to gaps

in implementation. There is, hence, a need to define a

framework that will provide guidelines to micro teams in

developing software.

Teaching students software engineering is an important

step in getting them ready to do software development in the

real world. As students, they do a number of projects (often

individually) to understand and master computer science

fundamentals and programming techniques, as well as

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-2

software engineering techniques. Since more often than not

they will come across projects involving micro-teams, it

becomes important to include micro-team software

development techniques in teaching software development

(or applied software engineering) to students [7].

RELATED RESEARCH

At present, a number of methodologies, accepted as

standard, can be divided into two broad categories:

traditional and agile. Traditional methodologies are

characterized by a predictive approach, comprehensive

documentation, and being process-oriented and tool-

oriented. Examples of this category include the waterfall

model (along with its variations), spiral model, and V-

model. Agile methodologies, on the other hand, are

characterized by people-orientation, adaptiveness,

conformance to actual requirements, a balance between

flexibility and planning, an empirical process, a

decentralized approach, simplicity, collaboration and small

self-organizing teams. Examples of this category include

extreme programming, Scrum, and RUP.

A. Teaching Software Engineering in the Classroom

A lot of effort has been put in to teach software

development methodologies in the classroom, either through

specialized software engineering courses or through

Capstone courses by integrating all aspects of software –

programming/hardware/design). Previous work includes

bringing XP to the classroom [8]-[10], and teaching

traditional and agile techniques “in-the-small” [11]. Even

then, if the idea behind these courses is to bring the real

world into the classroom, these practices don’t adequately

address micro-teams. Capstone courses have also been

designed: from teaching agile methodologies in the

classroom by lecturers using real projects [12], to industry-

academia collaborations in teaching software engineering

[13]. Again, these do not truly capture micro-teams – most

courses consist of projects done in teams of around four

developers. Rarely, if at all, are capstone projects done by

single developers.

B. Software Methodologies and Team Sizes

Of the existing software methodologies, generally

traditional ones are more suited to large development teams,

while the agile ones are geared towards medium to small

teams. Apart from the large/medium/small teams, though,

micro-teams have neither been clearly defined, nor are there

any methodologies focusing on them. Separate formal and

informal studies, as well as general observations and

experiences of software developers have proved that

software development does not always occur in large,

medium or small teams [3].

C. Definition of a Micro-Team

Our definition of a micro team as a team has two

dimensions – quantitative and qualitative. The quantitative

characteristics consist of the number and roles of persons

involved, while the qualitative characteristics consist of the

effects of the quantitative ones.

Quantitative Characteristics:

 The team consists of not more than 3 – 4 people

actively involved.

 There is at least and only one developer programming

full time.

 The rest of the team has any of the following roles: a

business analyst, a project manager, a surrogate

customer, or a technical advisor.

Qualitative Characteristics:

 The team is constrained by one developer’s knowledge

and perspective.

 The developer becomes single point of failure.

 Multi-person practices don’t work.

 Peer review is not possible.

A 2005 study published by the software consultancy

firm Quantitative Software Management shows that over

50% projects are done by teams sized 1.5 – 3 [14]. In

another 2009 study by Scott Ambler, more than a third of all

projects had team size 1 – 5 [15]. In yet another study made

by the author, a number of projects from the Free Software

Foundation were analyzed, of which over 80% projects were

developed by single developers [3].

The presence of micro-team projects on such a large

scale, along with the absence of any software development

frameworks dealing with them, highlights the need to create

an exclusive and complete software development

framework for micro teams that can lead to efficient

software development.

LESSONS FROM THE CASE STUDY

Our case study included five micro-team projects:

 Calendar: application integrating shared web calendar,

list functionality and maps

 Sensor Cloud: cloud application controlling wireless

sensor networks through Internet

 Website: website for a company

 Health Survey: web-based survey for heart patients

 Complex Flow Analysis: Application collecting data

and doing mathematical calculations

It brought forth a number of insights into the micro-team

software practices that were then taught to students as part

of the software engineering course. The learnings are

summarized below:

A. Workbook-oriented, intra-team communication: The

workbook approach works well for micro-teams for

communication and progress tracking.

B. Focus on developer-specific documentation: Projects

invariably get transferred from one developer to

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-3

another, either within a team or between teams. In

such a case, it is important to create developer’s

documentation.

C. Work products specification based on stakeholders: It

is a good idea to loosely draw up a list of work

products to be created that would best suit each team’s

composition and type and number of customers; this

enables the team to structure their process around

those work products.

D. Offsetting new developer costs: Since costs of

adding/replacing developers are very high, ways to

offset these costs need to be thought of.

E. Use of subject matter / technical experts: If the micro

team does not already have a technical advisor, means

of getting access to one from outside should be

available.

F. Technical design of solution: Ways to deal with the

constraints imposed by the knowledge of a single

developer need to be found in order to enable better

informed decisions on technical designs.

G. Style of development process: Again, since it is not

always known whether more power lies with the

customer or the development team, ways to deal with

both situations should be come up with beforehand to

minimize unanticipated situations.

H. Ease knowledge transfer process: Knowledge

transfer, one of the hardest problems in micro team

environments, should be addressed.

In the following subsections, we will discuss these learnings

in greater depth.

A. Intra-team Communication

In three of the five projects in the case study, the

development team used an internal workspace to record the

progress of the project. Items recorded include:

requirements, bugs, feedback from the customer and other

stakeholders, work products created in the process, and

other issues. The workbook approach served as a

communication space for the team and also ensured that

everyone on the development team was using consistent

terminology and had the same understanding about each

issue.

In contrast, the agile approach uses few more

formalized tools such as story charts, and pair programming

between developers for communication within the team.

Structured approaches use heavy documentation for

communication; several documents are created in each

development phase.

B. Developer-Specific Documentation

Often when a single developer is developing a project, the

emphasis on creating developer-specific documentation is

minimal. As opposed to this, when multiple developers are

developing a project, communication and coordination

between developers warrants creation of developer-specific

documentation. This lack of adequate documentation was

observed in four of the five projects we studied. Problems

were caused when these projects were handed over to the

next developer and they had no information about where the

project was in terms of solution implemented except for the

source code.

Similar to the micro team approach, agile teams

produce very light documentation. They only produce as

much as required, which is more than micro-team

documentation. Instead, agile approaches use practices such

as pair programming and team co-location. In contrast,

structured approaches make use of very heavy

documentation.

C. Number and Types of Work Products

The scope of the project and the number of stakeholders

involved in it determined how many work products were

created, and of what type. We found that the more the

number of stakeholders, more the number of work products

was produced [3]. The types of stakeholders also affected

the kinds of work products produced. For instance,

 Presence of more non-technical customers produced

user stories documents (as in Calendar).

 Presence of technical customers produced more formal

documents like requirements document, design

document (as in Cloud Sensor).

 Presence of only a single developer stakeholder in the

team meant that developer-related work products (i.e.

technical documentation) were never created.

The work products created in agile approaches also

depend on stakeholders, but some work products are always

produced – story cards, iteration charts, etc. The work

products created in structured processes, on the other hand,

are almost always fixed in number and type – only a few

work products, depending on the application type, may

differ in type and number.

D. Cost to Add/Replace New Developers

The cost of adding a new developer is very high for teams

with only single developers in comparison to teams with

more than one developer. When there is only one developer,

that developer must split his or her time between training

new developers and writing new code. In some cases, like

when replacing a sole developer, there is no one to code at

all. This situation arose in both Calendar and Health Survey

projects. At the point of transition, there was no developer

actively programming, with the new developers mostly just

undergoing training. This brought work to a complete halt

for some time in both the projects. The cost increased, then,

in terms of no new value being generated in terms of code ,

because no new code was being written. This cost is

relatively lower in agile and structured teams. The presence

of more than one programmer ensures that development,

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-4

though slowed down for some time, does not come to a halt,

and value in terms of new code is still generated.

E. Subject Matter Experts / Technical Experts

In micro teams, a subject matter expert (SME) or technical

expert might not always be part of the team; instead, they

may have to be specially brought in from the outside. In

four of the five projects, there existed a technical advisor

either inside the team or outside the team but related to the

project. The developer’s learning curve for the technology

and/or project shortened and the general development

process sped up due to the presence of such a person. In

agile and structured teams, on the other hand, SMEs and

technical experts are part of the team itself.

F. Technical Design of Solution

Since only a single developer worked on each project, the

technical design of the solution was constrained by their

knowledge. Systematic evaluation and identification of the

best framework is not done in most cases since there is only

one developer. For example, CakePHP was used on the

Health Survey project with very little comparison to any

other framework. As a result, any new developer who later

replaces the previous one is stuck with this design; they

have to learn it if it is not already known, and then have to

work on the design, whether or not it is the best solution.

Both agile and structured teams, on the other hand, have

more than one developer to evaluate and design a solution;

in fact, both of these types of team will, in most cases, have

a special architect or group of architects to take care of the

design.

G. Development Process Style

The style of development that the process follows in a micro

team environment clearly reflects the balance of power

between the customer and the team. A non-technical

customer was seen to be less powerful than the micro team

in two projects, and the development process reflected the

micro team’s style of work. However, in two other projects,

a technical customer was more powerful than the micro

team and had more control in how development took place.

In these two projects, it was the customer who wanted stand

up meetings every other day, so work had to structured

taking that into account.

Composition of the team also played a part. When a

majority of the team was made up of surrogate customers as

opposed to other roles, the balance again tilted in the

customer’s favor. In one project with one developer and

four customers (Complex Flow Analysis), the developer fit

into the customer’s schedule and meetings instead of

creating his own schedule and requirements and then asking

the customer to fit into that.

In contrast, agile teams reflect the team’s style of

working, but the process is shaped considerably by

customer input. Structured teams’ development processes

completely reflect the team’s style of work.

H. Knowledge Transfer

Of the five projects, four were handed over from one

developer to another. Knowledge transfer in these cases

proved to be a challenge because of one or more of three

reasons: lack of adequate documentation, no formal

knowledge transfer process followed (meaning both

developers sitting together to teach and understand), or

unavailability of the previous developer to answer

questions. One project (Health Survey) found the

knowledge transfer especially challenging because of the

presence of all the above three reasons.

This process is usually relatively easier in the agile

approach, as they have knowledge transfer processes that

include team interaction happening through tools such as

pair programming and team co-location. Since agile projects

usually prefer face-to-face communication, approaches such

as “rotating people in each iteration, completely replacing

the team gradually” and “a developer spending at least a

couple of months to work with the new team” [16] are

common.

In contrast, the structured approach usually has formal

knowledge transfer processes in place, with a lot of stress on

documentation-based knowledge transfer. This results in a

time consuming process.

In addition to these eight insights, a couple of other

observations came to the fore which showed how, in a some

ways, micro-teams are really not very different from their

larger counterparts.

I. Process Flexibility with Development Approaches

Development processes of any team – whether micro or

small following agile or large following structured

approaches – show flexibility with respect to the

development approaches that they follow. What differs,

though, is the degree of flexibility seen in each. Micro team

processes are seen to be the most flexible ones, closely

followed by agile approaches and last of all structured

processes. This flexibility depends on the team size. Smaller

the team size equates to lower momentum, which means it is

easier to change approaches. The opposite is true as well:

the larger the team, the greater the momentum, and the more

difficult it is to change approaches.

The development process followed within a micro

team is usually not clearly defined, and consists of only a

single developer. Hence, it is very flexible and allows

different parts of the same project to be developed using

different approaches.

In one of the projects (Complex Flow Analysis), the

commonly followed development approach of requirements-

design-implementation was followed for developing most

components. For developing one specific component,

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-5

though, a test-driven development approach was more

suitable, so the developer changed the development process

from traditional to test driven.

Another project (Cloud Sensor), also showed this

flexibility. In this project, a data storage component was

developed using a test-driven approach, while a security

component used the more common approach of

requirements-design-implementation. This would have been

more difficult in a larger team, because larger teams need

more coordination, and getting out of a fixed process would

be more difficult.

J. Customer Interaction

In all the projects studied, the development team had weekly

meetings with the customer, either over the phone or in

person. Each meeting served three purposes: demonstration

of the software built, discussion of other work done by

development team, and requirements discussion, including

both a determination of the next tasks on the to-do list and a

discussion of feedback from the customer and other users.

This was important because the development process had no

clearly defined path, so constant validation of work done

and specifying next steps was needed.

Defining long term steps and infrequent feedback on

work done (e.g. feedback every month as opposed to every

week) might lead to waste of time and effort in case there

was either a misunderstanding of the task or requirement by

a developer or a misunderstanding by the customer of what

the deliverable would be.

Agile teams also have frequent and impromptu

interactions with customers and considerably engage

customers in the process. Structured teams, on the other

hand, have interactions with customers that are much more

structured and scheduled.

TEACHING METHODOLOGY AND EVALUATION

Methodology

The micro-team practices that we learned from the case

study were presented to a software engineering class

through one of the projects from the case study. The entire

project was explained, starting from background and

inception, and continuing to implementation and

deployment over the course of four lectures. Micro-team

practices were explained within the context of the project.

The first time, the lecturer presented the material in

person to the class. A video recording was made for all four

lectures. In later offerings of the course, an inverted

classroom technique was used to include the material. The

students were provided with the videos of the material and

asked to watch them offline. After watching the videos,

discussions based on them took place in class.

Evaluation

For evaluating whether the students understood the concept

of micro-teams, our researchers conducted interviews of

students who had taken the software engineering course.

CONCLUSION

Micro-teams developing projects are frequently observed,

yet none of the commonly practised software engineering

practices, both traditional and agile, are geared towards

them. Neither do micro-teams feature in currently taught

software engineering curriculum, leaving a gap in bringing

the real world software practices to classrooms. This

prevalence of micro-teams is enough to necessitate studying

their distinctive practices and teaching students about those

practices. Our case study of such projects provided

significant insights about how micro-teams handle the

development process. These learnings offer a good way to

bring the micro-team aspect in software engineering

education of students. Encouraging reactions of students on

learning about such practices confirm the need and

importance of teaching them about micro-teams.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under NSF CCLI Grant No. 0837555

and the CERCS IUCRC Center for Enterprise

Transformation and Innovation (CETI), supported by the

NSF-IUCRC Program, Grant No. 0630188

REFERENCES

[1] Pressman, R. S., “Software Engineering: A Practitioner’s Approach”,
Pg. 11

[2] Brooks, F. P., "No Silver Bullet Essence and Accidents in Software

Engineering", Computer, 20, 4, April 1987, 10-19

[3] Scacchi, W., “Process Models in Software Engineering”,

Encyclopedia of Software Engineering, 2nd Edition, John Wiley and

Sons, Inc, New York, December 2001.

[4] Humphrey, W., “Managing the Software Process”, Addison-Wesley,

1989

[5] Ambler, S., “T Project Success Rates by Team Size and Paradigm:
Results from the July 2010 State of the IT Union Survey”,

http://www.ambysoft.com/surveys/stateOfITUnion201007.html

[6] Deshpande, S., “A Study of Software Engineering Practices for
Micro-Teams”, OhioLINK ETD, 2011

[7] Pollice, G., “Teaching Software Development vs. Software

Engineering”,
http://www.ibm.com/developerworks/rational/library/dec05/pollice/in

dex.html

[8] Bergin, J., Caristi, J., Dubinsky, Y., “Teaching Software
Development Methods: The Case of Extreme Programming”,

Proceedings of the 35th SIGCSE technical symposium on Computer

science education, March 2004, Vol 36, Issue 1

[9] Goldman, A., Kon, F., Silva, P., J., S., “Being Extreme in the

Classroom: Experiences Teaching XP”, Journal of the Brazilian

Computer Society, Nov 2004, Vol 10, No. 2

[10] Cleland, S., “Agility in the classroom: Using Agile Development

Methods to foster team work and adaptability amongst undergraduate

programmers”, Proceedings of the 16th Annual NACCQ, July 2003

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-6

[11] Kessler, R., Dykman, N., “Integrating Traditional and Agile

Processes in the Classroom”, Proceedings of the 38th SIGCSE
technical symposium on Computer science education, March 2007,

Vol 39, Issue 1

[12] Lu, B., DeClue, T., “Teaching Agile Methodology in a Software
Engineering Capstone Course”, Journal of Computing Sciences in

Colleges, May 2011, Vol 26, Issue 5

[13] Rusu, A., Swenson, M., “An Industry-Academia Team-Teaching
Case Study for Software Engineering Capstone Courses”, 38th

Frontiers in Education Conference, 2008

[14] Putnam, D., “Team Size Can Be the Key to a Successful Software
Project”, http://www.qsm.com/process_01.html

[15] Ambler, S., “Agile Practices Survey Results: July 2009”,

http://www.ambysoft.com/surveys/practices2009.html

[16] Fowler, M., “AgileHandover”,

http://martinfowler.com/bliki/AgileHandover.html

AUTHOR INFORMATION

Shweta Deshpande Graduate Student, Department of

Computer Science and Engineering, The Ohio State

University, deshpande.36@osu.edu

Joe Bolinger, Ph. D. Candidate, Department of Computer

Science and Engineering, The Ohio State University,

bolinger@cse.ohio-state.edu

Thomas D. Lynch, Ph. D. Student, Department of

Computer Science and Engineering, The Ohio State

University, lynch.268@osu.edu

Michael Herold, Ph. D. Student, Department of Computer

Science and Engineering, The Ohio State University,

herold@cse.ohio-state.edu

Rajiv Ramnath, Director, CETI, Associate Professor of

Practice, Department of Computer Science and Engineering,

The Ohio State University, ramnath@cse.ohio-state.edu

Jayashree Ramanathan, Director, CETI, Associate

Research Professor, Department of Computer Science and

Engineering, The Ohio State University, jayram@cse.ohio-

state.edu

