
Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-1

Connecting Reality with Theory - An Approach for

Creating Integrative Industry Case Studies in the

Software Engineering Curriculum

Joe Bolinger, Michael Herold, Rajiv Ramnath, Jayashree Ramanathan
The Ohio State University, bolinger@cse.ohio-state.edu, herold@cse.ohio-state.edu, ramnath@cse.ohio-state.edu,

jayram@cse.ohio-state.edu

Abstract - Case studies have been successfully integrated

into a wide variety of educational contexts and

disciplines. Today, case studies are increasingly

accepted as valuable teaching tools in science and

engineering curriculums to complement the underlying

theory of the field. Well-articulated cases can reinforce

abstract concepts, demonstrate the nature of real client

interactions, and showcase the relevance of soft skills to

students that lack significant practical experience.

However, assembling and delivering quality case studies

to students requires a great deal of practical disciplinary

knowledge, and a careful alignment of the case content

and delivery style with curricular objectives, course

learning outcomes, and the overarching institutional

format. In this paper, we summarize our experience

with an approach for constructing case study teaching

materials that are integrative and deep in content, but

also carefully aligned to the core principles and format

of a senior-level software engineering course. Our

approach ensures that the cases are complex enough to

retain their realism and intrinsic appeal, while

mirroring the format and objectives of the course such

that the cases reinforce key points in a familiar and

consistent fashion to the students.

Index Terms – Case study, case study teaching, creating case

studies, software engineering education.

INTRODUCTION

Case studies have a rich history in many educational settings

and their relevance to science and engineering disciplines

has been steadily growing [1]-[3]. The depth and practical

relevance of a well-presented case serves as a good

complement to the relatively dense theory that is a necessary

component of an engineering curriculum, and it can help

facilitate more interactive teaching methods and active

styles of learning [4]. Nonetheless, taking a history of real

world events and repackaging them into a set of useful

classroom materials is a difficult art form to master, which

requires both disciplinary and educational knowledge and

skills.

Despite the prevalence of example case studies and

high-level guidelines for authors of new cases [2, 3, 5]-[10],

there are few prescriptive methods for ensuring that cases

are created in a manner that is tightly integrated with the

core concepts and principles of a course. The most skilled

storytellers have a keen ability to tailor their tales to fit their

audience, and good cases should leverage this quality to the

extent possible.

The most compelling cases are not pulled off a library

shelf or selected from a general repository and told with the

generality of a scientific theory. Instead, they are localized

and idiosyncratic to some degree. They are told from a

perspective that the students of a particular institution can

relate to, and they resonate with these students in a manner

that is consistent with the theory and abstractions that they

have been taught. A properly crafted case is tailored to the

audience, and instructors are in need of tools that can help

them rework case materials in a fashion that is consistent

with the students’ total educational experience. Any lack of

consistency will be perceived as a distraction from the

heavy course load that engineering students already bear,

however interesting that temporary distraction may be.

In this paper, we begin by introducing two initial sets of

case study materials that were presented and used separately

in multiple offerings of the same course over a two-year

period. Next, we present a method for systematizing the

process of creating case study materials based on a careful

analysis of the course’s format, content, and learning

outcomes. Then we describe one of these cases in more

detail to show how it was used to develop a standardized

structure for cases, and to illustrate some of the valuable

software engineering relevant lessons that it brought into the

classroom. Finally, we discuss how this method has

allowed us to quickly transfer the experiences that our

graduate-level students gain through local industry-led

projects into useful case study materials that retain their

unique and localized flair, but also remain deeply integrated

with the principles and nomenclature of the course by

conforming to a standard model.

RELATED WORK

A key challenge to instructors in many fields, like software

engineering, is teaching students how to cope with the

human element of their future professional careers.

Software engineering is a people-oriented profession, in

which success relies as much on correctly identifying

problems to be solved as it does actually solving them [11].

mailto:ramnath@cse.ohio-state.edu

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-2

For instance, Carroll [7] notes how case studies of software

projects have an authentic quality to them, and that this

authenticity provides a very effective context in which to

teach students about software usability issues and a related

set of engineering methods. The authentic nature of cases,

including real people and places, complex problems, and the

reality of unexpected outcomes and odd circumstances, all

work together to make what is being taught more

convincing than it would be if simple and contrived

illustrations of the methods that were taught had been used.

Despite the popularity of the case method, methods for

developing cases are typically at a very high level of

abstraction [5, 6, 8, 9, 12]. They are often more like writing

guidelines than they are like meticulously constructed

recipes for successfully crafting new cases. This is to be

expected to some degree because the case approach to

teaching is a generally applicable one [1], and all of the

instructional value of a case stems from the content of the

narrative that is told [13, 14]. Nonetheless, the same story

can be retold in any number of formats or styles, and efforts

like [3, 7, 14] show that within various sub-disciplines of a

field there are most likely ways of formatting or structuring

case studies that are generally better or worse. Although

some educators are natural storytellers, there are many

excellent teachers that do struggle with this art form and

systematic and reusable methods can help.

TOWARDS A STANDARD METHOD

I. Initial Case Studies

When we began using case studies as part of one of our

software engineering courses, we took a simple and

straightforward approach. As part of our involvement in an

NSF-IUCRC program, we have access to a rotating

collection of graduate students that have been involved in

various industry-led projects. These projects can range in

complexity and duration from a few months to a few years,

and many have the potential to be transformed into very

compelling cases. To create our first set of cases, a couple

of graduate students that were involved in different projects

met with an instructor and discussed the goals of each case

and the basic format of the materials to be produced. These

students later played various roles in delivering parts of their

cases in subsequent offerings of the course, either through

in-person lectures and class discussions or though online

videos assignments that preceded follow-up debates in class.

To keep the course fresh, we used this effort as an

opportunity to develop a standard method to create case

materials that could be reused as more and more projects

matured. This standard process would allow us to keep the

material interesting for the class, and also give the students

that worked on the projects another avenue to present, share,

and benefit from their work. After the first set of case

materials were fully assembled, they were presented in

multiple offerings of the same course, and a qualitative

evaluation was carried out in one these offerings that

showed a generally positive student response [15].

The initial version of our method focused heavily on

what content to include in the cases. Since experienced

students were the primary authors of the case materials, not

the instructors, it was important that they be given clear and

reliable guidelines for identifying the appropriate content

that they could pull from their experiences and share.

However, at that time we neglected the importance of

format. It was not until after we had completed both of the

initial cases that we realized the importance of the

presentation format, and how difficult it could be to make

the same logical point through the lens of different case

narratives and distinct authors.

The method we developed relies on a structured

analysis of the course that the case will be presented in,

which breaks down the course into themes, topics, and

methods (more detail can be found in [15]). Essentially, the

themes and topics correspond to the core conceptual issues

that the course addresses while the methods refer to concrete

items that students are expected to learn in order to increase

their level of understanding about the overarching topic.

For instance, one documented learning outcome of our

course is that students will master the concept of system

quality attributes (or non-functional requirements), how to

extract them through the process of requirements analysis,

and how to apply architectural patterns and tactics in order

FIGURE 1
COURSE TOPICS AND CASE COVERAGE FRAMEWORK

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-3

to achieve these quality attributes. This topic is discussed in

class through a variety of logical techniques and

frameworks that help the students better grasp and apply the

concept, such as the utility tree technique that is a part of the

Architecture Tradeoff Analysis Method (ATAM) [16].

Breaking down the course in this fashion allows the

author of a new case to do two things. First, he or she can

use it to filter their experiences so that the final case

materials are relevant to the course and extraneous details

can be omitted. In other words, elements of any case study

materials can be clearly mapped directly to the course

topics. Second, it allows the author to phrase the case

narrative in a way that will be familiar with the students.

For example, if a potential case provides a good example of

how a team of software developers have tailored their

engineering practices to deal with the forces in their

environment (another key topic in our course), the course

break-down shows that it should be illustrated to the

students through the use of a certain kind of spider diagram

[17] because the students will have already learned about

that particular type of diagram.

Figure 1 provides an example of how our course was

broken down at one point in time and how two cases, ECO

and SID, were used to illustrate various topics in the course

by reinforcing the techniques and methods that were

discussed as a part of the coursework. For example, it

shows that the ECO case was used to discuss business

strategy through the application of the Value Chain model

[18], while the SID case was not used to discuss strategic

concerns. It also shows that each case covers and supports

the course in different ways.

II. Why Format Matters

Our method allowed us to create these two cases, determine

which cases were better examples of various topics, throw

out excess detail, and rephrase the narratives in terms that

would be consistent to the students. However, the format of

both cases was substantially different as a result of the

distinct authors, despite having developed a common frame

of reference. Figures 2 and 3 are excerpts from each of

theses cases that were both intended to make roughly the

same point. Specifically, their purpose was to show how a

particular non-functional requirement had an effect on their

respective system’s design, and they both do so through a

UML diagram that acts as a catalyst for discussion.

The SID case was developed shortly before ECO and it

was presented in a relatively story-like and narrative format.

It was presented much like an average project report would

be, without any superimposed structure. In contrast, the

ECO case was presented though a structured pattern-based

format. In this fashion, each chunk of the ECO project that

was presented to students was accompanied by a relevant

pattern and a discussion of how the generic strategies

embodied by each pattern helped solve a real problem. As a

result each aspect of the case was presented in a very

consistent and predictable format consisting of the

introduction of an abstract pattern, a discussion of a real

problem, and finally a resolution of the problem using

relevant techniques from the course.

This gave the entire ECO case a more modularized or

short-storybook feel, while the SID case appeared more like

a novel. It is unlikely that either approach is universally

better than the other. However, the chunked nature of the

pattern-based approach appears to have been well received

by the students during our initial evaluation, and we have

also found that following it makes it easier for our graduate

students to document their project experience as cases

without as much confusion and cogitation that we

experienced when we created our first pair of cases.

Figure 3 shows a concrete example of the pattern-based

approach used in the ECO case. At this point, the Pareto

Principle is introduced as a generic pattern for organizing

teams of software developers and resources [19]. The figure

is annotated to show that the design of ECO was achieved

largely through the use of an off-the-self framework with

minor extensions (solid green section), and with a relatively

small, but critical, set of custom built components that were

most critical to the project’s success (dashed red section).

This quickly leads the students into discussions of how

project risks are often reflected in software architecture,

how teams decide where to put the most skilled developers

FIGURE 2
SID CASE EXAMPLE

FIGURE 3

ECO CASE EXAMPLE

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-4

or do cross-training, and the additional trade-offs associated

with build versus buy decisions.

 After the SID and ECO cases had been successfully

used a number of times we continued our effort to develop

additional cases. As noted, we found that the pattern-based

approach was not only useful as a means to communicate

with the students, but that it was also a very useful

technique for creating the case materials. It would be

relatively unusual for full-time instructors, like ours, to play

significant roles in the projects that are ultimately used as

cases. Consequently, the quality of a case is heavily reliant

on the ability of those that were involved to recall their

experiences and to generate the bulk of the case study

material on behalf of the instructor. Although some amount

of expert re-work is possible, instructors cannot simply

make up potentially interesting aspects of the case if the

primary sources neglected to mention them or articulate

them clearly.

During the creation of the ECO and SID cases, there

was a fairly high amount of discussion between the

instructor and those contributing a case about what to

include, how to properly phrase things, etc. However, by

following the pattern-based format after the ECO case we

found that we could give contributors a script that they

could follow in order to more easily generate the majority of

a complete case study. It did not eliminate the back-and-

forth discussion entirely, but it did make the process

smoother and more efficient to a noticeable degree. A basic

outline of this script is shown in Table I.

Following the pattern-based approach, contributors of a

case are provided with a discrete set of patterns at the start

of the process that affords them a very explicit means to

navigate through their experiences, select appropriate

examples, and stimulate their creativity as an author. Rather

than being directly probed for relevant information by an

instructor, the patterns give the original sources of a case a

very direct mechanism to identify potentially relevant

experiences and to organize them into a coherent case.

Similarly, because patterns are conceptually at a high-level,

it is quite easy to restate them in terms that relate to concrete

topics in the course. Hence, it becomes easier for someone

that is familiar with the course but not necessarily the

particular case, like an instructor, to rework some details

without diluting from the authenticity of the case.

Due to the popularity of the patterns in various software

engineering sub-fields it is quite easy to find repositories of

patterns for this purpose. To date, we have primarily relied

on an Organizational Pattern Reference from [19], and, to a

lesser extent, a classic Software Design Pattern Reference

from [20]. The course our script is based on is heavily

focused on software architecture topics, which is why we

have chosen the pattern repositories that we have. However,

it can be adapted to other courses by locating alternative

repositories of patterns or heuristics, which are available for

many topics areas such as usability, physical architecture,

graphical user interface or interaction design, etc.

Although the pattern approach does prescribe a basic

structure for case materials, it does not constrain the format

entirely. For instance, it can be used to develop lectures,

debate topics, group activities, or whatever else fits with an

instructor’s teaching style. The key point is that it gives the

primary authors of cases enough structure and guidance to

document their stories precisely and consistently and then

hand them off. Re-packaging the completed case into

various artifacts, such as lectures or assignments, is

something that can safely be done by an instructor without a

significant loss of authenticity or quality.

III. A Dynamic Case Library

The pattern-based case method has given us a way to elicit

good examples of software engineering practices from

mature industry-driven projects in a simple and consistent

fashion. Beyond our two initial cases, we have created two

more cases using this method and another is in progress.

Figure 4 shows excerpts from the ECO case and two of the

new cases that were developed using the method. Of

course, the figure does not truly capture the fidelity of the

actual case materials. It shows only some visual cues that

are presented as part of interactive class discussions,

assignments, and other supplementary materials.

However, it does illustrate how each of the authors was

able to select relevant patterns (shown in quotes) from a

pattern repository and apply them in the context of their

respective project in order to describe how various factors

shaped their internal engineering process. Ultimately, this is

one of the lessons that we never want left out of a case or

underemphasized in its presentation: that processes must be

TABLE I

CASE STUDY SCRIPT

Section 1 - Context

1. Introduce the project and the sponsor / business

2. State the problem

3. Characterize the context / environment
a. By choosing 1 or 2 techniques from the Business Context

Category

Section 2 – Software Engineering Process

4. Introduce the people
5. Characterize the project

a. By choosing 2 or 3 patterns from the Organizational Pattern

Reference
b. For each, show how the pattern influenced the process by

choosing 1 technique from the Software Engineering Process

Category

Section 3 – Analysis & Design

6. Restate the problem from step 2

7. Characterize the analysis process

a. By choosing 2 or 3 techniques from the Software Engineering
Practices Category

b. For each, show why and how the pattern from step 5a was

relevant to the analysis activity
c. For each, show the result of the analysis activity and its relation

to the system’s high-level design

8. Characterize some of the software system’s low-level design
a. By choosing 1 or 2 techniques from the Software Engineering

Practices Category
b. For each, show how an implementation strategy can be

developed by using the Software Design Pattern Reference

c. For each, explain how the implementation satisfied the high-
level design

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-5

tailored to fit their projects. While this message can be

embedded in a case study regardless of its format, our

pattern-based script helps ensure that the primary sources of

a case’s content focus on this message (step 5 in Table I).

This is particularly important in situations where the

primary authors are neither instructors nor experts in the

case method, like ours.

In addition, our structured course framework allows the

available cases to be directly related to topics in the course

so that appropriate examples can be selected based on the

needs and preferences of the students at any given time.

Unlike related efforts to amass a library of historical cases,

our approach is dynamic and biased toward the generation

of new cases rather than archival and excessive reuse. By

following a repeatable method for creating new cases and

having a systematic means for relating them to course

topics, we hope to be able to leverage case materials on an

as-needed basis and cater to the varying needs and interests

of our students.

Cases that are timely, relevant to current social issues,

or embody hot topics in the field are likely to have a greater

appeal to students. A dynamic library of cases can leverage

this and shape the classroom experience in ways that dated

materials cannot. However, this flavor of relevancy comes

at a price. Exhaustive evaluation and continual

improvement of individual cases is no longer possible and

more attention must be paid to the process of creation.

Teaching through a dynamic case library requires

generational methods, like ours, which can be incrementally

improved.

CONCLUSIONS

Constructing case studies for an engineering classroom is

not as simple as telling a good story or even presenting it

well. Cases must be deeply integrated with the content of

the curriculum, reinforce core concepts in the vernacular of

the classroom, and capture the interests of the students.

While cases that reflect significant or well-known events

can be quite compelling, so are those that are recent, laden

with familiar characters and an accessible cast, and set in

places not far from home. Through our involvement in a

variety of industry-led students projects we have been

working to develop a generational method for creating

integrated case studies that leverage all of these qualities.

To date, we have completed three cases that conform to

our standard pattern-based case model and have more in

development. An evaluation of our first case based on the

standard model has given us some level of confidence that

the approach is effective and that the pattern-based case

template is well received by our students. However, a

complete evaluation of our process is challenging and is part

of our on-going work. For example, does the process make

creating case materials easier for those involved (graduate

students and instructors in our case), or reduce the

opportunities for error? We believe that it does given what

we have learned from our experiences transitioning from

developing case materials without a framework to following

a process that follows a pattern. However, each case is

unique in terms of complexity, the topics it can be used to

illustrate, and other factors that make evaluation a complex

and long-term endeavor.

Case studies are useful supplements to the large amount

of theoretical material that is necessary in engineering

disciplines. The reality of the situation that a case

embodies, through all of its complexities and subtle quirks,

can reinforce abstract concepts and practical scenarios in

ways that simplified examples cannot. Rather than reusing

static materials from a library of cases, we have presented

an approach for generating case studies quickly and

systematically. Most importantly, it provides a venue for

our senior-level students with recently acquired practical

experience to share the lessons that they have learned with

other students in a way that is deeply integrated, consistent,

and true to the principles and objectives of our program.

ACKNOWLEDGMENT

This research is supported by the National Science

Foundation under Grant No. 0753710 and the CERCS

IUCRC Center for Enterprise Transformation and

Innovation (CETI).

REFERENCES

[1] Herreid, C. F., "What is a case? Bringing to science education the
established teaching tool of law and medicine," Journal of College

Science Teaching, Vol 27, No 2, November 1997, pp. 92-94.

FIGURE 4

EXAMPLES FROM THREE CASES USING THE PATTERN-BASED METHOD

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-6

[2] Raju, P. K. and C. S. Sankar, "Teaching real-world issues through case

studies," Journal of Engineering Education, Vol 88, No 4, October
1999, pp. 501-508.

[3] Hilburn, T. B., Towhidnejad, M., Nangia, S. and Li Shen, "A case study

project for software engineering education," Proceedings of the 36th
Annual Frontiers in Education Conference, October 2006, pp. 1-5.

[4] Bonwell, C. C. and J. A. Eison, "Active learning: Creating excitement

in the classroom," ASHE-ERIC Higher Education Report, ED336049,
1991.

[5] Jiang, H., Ganoe, C. and J. M. Carroll, "Four requirements for digital

case study libraries," Education and Information Technologies, Vol
15, No 3, September 2010, pp. 219-236.

[6] Dolmans, D., Snellen-Balendong, H., Wolfhagen, I. and C. Vleuten,

"Seven principles of effective case design for a problem-based
curriculum," Medical Teacher, Vol 19, No 3, September 1997, pp.

185-189.

[7] Carroll, J. and M. Rosson, "A case library for teaching usability
engineering: Design rationale, development, and classroom

experience," Journal on Educational Resources in Computing, Vol 5,

No 1, March 2005.

[8] Herreid, C. F., "What makes a good case?" Journal of College Science

Teaching, Vol 27, No 3, December/January 1998, pp. 163-165.

[9] Herreid, C. F., "Cooking with Betty Crocker: A recipe for case writing,"
Journal of College Science Teaching, Vol 29, No 3,

December/January 2000, pp. 156-158.

[10] “Case collection.” 2010. National center for case study teaching in
science. http://sciencecases.lib.buffalo.edu/cs/collection. Accessed:

30 March 2011.

[11] Shaw, M., Herbsleb, J. and I. Ozkaya, "Deciding what to design:

Closing a gap in software engineering education," Proceedings of the

27th International Conference on Software Engineering, May 2005,
pp. 607-608.

[12] Herreid, C. F., "Twixt fact and fiction: A case writer’s dilemma,"

Journal of College Science Teaching, Vol 31, No 7, May 2002, pp.
428-430.

[13] Herreid, C. F., "Case studies in science: A novel method of science

education," Journal of College Science Teaching, Vol 23, No 4,
February 1994, pp. 221-229.

[14] Clancy, M. and M. Linn, "Case studies in the classroom," Proceedings

of the 23rd SIGCSE Technical Symposium on Computer Science
Education, March 1992, pp. 220-224.

[15] Bolinger, J., Yackovich, K., Ramnath, R., Ramanathan, J. and N.

Soundarajan, "From student to teacher: Transforming industry
sponsored student projects into relevant, engaging, and practical

curricular materials," Proceedings of the 2010 IEEE Conference on

Transforming Engineering Education: Creating Interdisciplinary
Skills for Complex Global Environments, April 2010.

[16] Bass, L., Clements, P. and R. Kazman, Software Architecture in

Practice. Boston: Addison-Wesley, 2003.

[17] Boehm, B. and R. Turner, Balancing Agility and Discipline. Boston:

Addison-Wesley, 2003.

[18] Porter, M., Competitive Advantage. New York: Free Press, 1998.

[19] Coplien, J. and N. Harrison, Organizational Patterns of Agile Software

Development. Upper Saddle River: Pearson Prentice Hall, 2005.

[20] Gamma, E., Helm, R., Johnson, R. and J. M. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software. Boston:

Addison-Wesley, 1995.

AUTHOR INFORMATION

Joe Bolinger, Ph.D. Candidate, Department of Computer

Science and Engineering, The Ohio State University,

bolinger@cse.ohio-state.edu

Michael Herold, Ph.D. Student, Department of Computer

Science and Engineering, The Ohio State University,

herold@cse.ohio-state.edu

Rajiv Ramnath, Director, C.E.T.I., Associate Professor of

Practice, Department of Computer Science and Engineering,

The Ohio State University, ramnath@cse.ohio-state.edu

Jayashree Ramanathan, Director, C.E.T.I., Associate

Research Professor, Department of Computer Science and

Engineering, The Ohio State University, jayram@cse.ohio-

state.edu

http://sciencecases.lib.buffalo.edu/cs/collection

