
Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-1

Providing End-to-End Perspectives in Software

Engineering

Michael Herold, Joe Bolinger, Rajiv Ramnath, Thomas Bihari, Jay Ramanathan
Department of Computer Science and Engineering, The Ohio State University

herold@cse.ohio-state.edu, bolinger@cse.ohio-state.edu, ramnath@cse.ohio-state.edu, bihari@cse.ohio-state.edu,

jayram@cse.ohio-state.edu

Abstract – In order to better prepare students for

professional practice, we have created a software

engineering curriculum that provides an end-to-end

perspective that begins with the business context of

software, and goes all the way to the ongoing

management of software services after deployment. This

paper examines how the theoretical aspects of this

broad-based curriculum may be effectively delivered

through a single course within a traditional computer

science program. This curriculum is under a diverse set

of constraints and requirements, such as the need for

pedagogical consistency, faculty development,

consideration of the learning style of computer science

students, and a need for an effective continuous

improvement process. Our approach uses “engineering-

oriented” analysis frameworks such as Porter’s 5-Forces

Model for the business aspects, and Attribute-Driven

Design for software architectures, an “inverted”

classroom mode of teaching where lectures are delivered

on line with interactions and exercises that promote

active learning reserved for the classroom, case studies

developed from real projects to serve as concrete

examples, open discussion boards and weekly short

quizzes for concept refinement and retention, and a

paper-based project where students apply the concepts

learned. Faculty development and replication outside the

current site are also discussed.

Index Terms – Active learning, Business context, Inverted

classroom, Software engineering education

1. BACKGROUND AND PROBLEM STATEMENT

During our combined 50 years in industry our take on

entry-level hires has been that traditional software

engineering programs were too narrowly focused - mostly

teaching the constructional aspects of small-scale software

development using structured development processes.

Students emerging from these programs suffer from lack of

awareness and misconceptions about software engineering.

For example, they are naïve when it came to software

processes, either wanting to follow a prescribed process

such as [1] or agile [2] by the book or follow no process at

all (i.e. rather than tailoring the process to the situation). As

a side observation, students could not easily internalize and

put into practice the principles of software engineering

covered in the standard textbooks [1]-[2], because students

did not have the experiences to relate the concepts to. Our

perception is supported by other work [3]-[7].

We felt, therefore, that there was a clear need for an

end-to-end curriculum that educated students in the

business-strategic context of computing, all the way to the

management of software services after deployment, while

covering the people and process aspects, as well as the

technical aspects in a nuanced and systematic manner.

Hence, we set about designing such a curriculum.

There were many risks in this effort. There were no

existing models of such a broad curriculum to borrow from.

There were limits to the number of credit hours we could

allocate to such a curriculum within our CS program; thus,

we could not simply put together material from the subject

areas, because it would not fit even in multiple courses. It

was hard to find faculty with the needed range of industry

experience and pedagogical expertise; hence we needed to

develop them (this is an old problem - see [4]. We needed to

ensure student acceptance of the large proportion of softer

topics. Finally, we needed to ensure ABET acceptance, to

not risk affecting the credibility of our program.

Through the aegis of an NSF-CCLI grant-funded

project we developed a practice-based curriculum to address

the above needs, risks and constraints. This redesigned

curriculum consisted of 4 courses (see Section 0). This

paper specifically covers one of the 4 courses in the

curriculum, namely the Software Engineering (SE) course,

which is the foundation course in the group.

The rest of the paper is structured as follows: Section 2

presents the context of this course. Section 3 describes the

topic areas, and Section 4 describes the delivery and

elements and how they complement each other. Section 5

presents evaluation and results. Section 6 covers related

research in order to position this work in the context of the

other excellent work done in this area, Section 7 concludes

with lessons learned and future work.

2. PROGRAM ENVIRONMENT

The computer science program at Ohio State may be

characterized as a traditional computer science program.

About 20 years ago, the program was strengthened primarily

by moving traditionally graduate-level courses – like

algorithms, networking, databases, computer architecture,

and computing theory into the undergraduate program.

Software engineering was also one of the courses moved

into the undergraduate program at that time. Introductory

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-2

courses are taught in a component-based language named

Resolve.

A majority of undergraduate students in the computer

science program, a significant number of graduate students

in our Masters’ program, as well as a few students in the

PhD program take this Software Engineering (SE) course.

All students have taken a very intensive group-project-based

course prior to SE, and are quite good at writing code and

managing the software process at a small team level. In

general, all students are highly technically oriented. Except

for a handful, most have not had much opportunity to

develop soft skills or work in situations where they have to

make decisions using incomplete information.

This (SE) course serves as a de facto
1
 foundation for a

collection of other SE courses – on requirements analysis,

software design, and enterprise technologies. The graduate

students in this course also typically take an enterprise

architecture course. The SE course is also a pre-cursor to a

set of Capstone courses (that we collectively term CAP),

where student teams work on real-world projects with actual

sponsors, in a senior-project like experience. There is no

explicit instruction component in CAP; students simply do

projects, and instructors and the sponsor provide feedback

as the project proceeds. CAP has been designed as the

project follow-on to SE. CAP is additionally important,

because it enables a longitudinal evaluation of SE.

Before the redesign, the instructors of this course were

mostly (traditional) computer science faculty (with a

research focus on software engineering). After the redesign

the instructors have been a Professor of Practice (a clinical-

track faculty member), and senior lectures (adjunct faculty)

all with considerable industry experience. The course was

developed and initially taught by the professor of practice.

Subsequent offerings of the course were taught by the senior

lectures.

3. COURSE TOPIC AREAS

We begin with examining competitive positioning and

strategy and business structure (value chain) using the

techniques in [8], followed by a balanced scorecard [9]

exercise, which, in turn, leads into domain and problem

analyses to develop a portfolio of applications traceable to

the competitive strategy and aimed at improving the

enterprise’s competitive position. One application from this

portfolio is selected and taken forward through the rest of

the software development lifecycle (SDLC).

This portfolio development exercise leads to

requirements identification of functional requirements

(using use cases) and solution analysis (using scenarios or

user stories) of the selected application. Emphasis is given

to deriving NON-functional requirements (NFR) from the

business and problem analysis, making them testable and

incorporating these tests in an acceptance plan.

1 When the University shifts to semesters, this course will be the formal
pre-requisite.

There is a short introduction to business-IT alignment,

along the three dimensions of planning, cultural and

structural dimensions, which leads into software processes.

Here we discuss incremental and iterative software

development, traceability, verification and validation and

work-product orientation [10]. Finally, we compare and

contrast agile and structured processes. The intent of this

progression is to give the students techniques to design a

hybrid business-aligned process consisting of a mix of

structured and agile elements [11]. Project management

techniques for other aspects of project management are also

covered. Thus, we discuss parametric and linear techniques

for effort estimation, as well as risk management [12].

Next, we introduce architecture, cover quality attribute

driven design [13] (noting that the quality attributes are the

same as the NFR identified earlier), and emphasize the use

of multiple views in documenting the architecture.

We discuss responsibility-driven design (RDD) [14],

and in the context of frameworks. We point out that these

frameworks are either explicit ones, such as .NET, or

implicit ones determined by the legacy software in the

enterprise. We show how architecture and design patterns

serve as the bridge that help translate the pristine designs

created by RDD to designs that fit within the constrains of

the framework.

Finally, we discuss the deployment and management of

applications within a data center, and present the

Information Technology Infrastructure Library (ITIL).

We make this obvious breadth manageable by focusing

on principles and techniques. We refer to these principles

and techniques as frameworks. We identified (and

customized) frameworks for each topic mentioned above.

TABLE shows the frameworks used in each of the course

topic areas.

Also necessary in managing the breadth is to let the in-

depth learning happen through discussion and application of

the frameworks in the project rather than through lecture.

The course delivery elements used to achieve this are

discussed in the next section.

4. COURSE DELIVERY AND MANAGEMENT ELEMENTS

Our strategy is to provide coverage of the SE topics

through the on-line lectures, and use challenge-based

instructional elements (projects and games) in class for the

TABLE I

 TOPIC AREAS AND CORRESPONDING FRAMEWORKS

COURSE TOPIC FRAMEWORKS
Business strategy, alignment Porter’s 5-Forces Model, Value

Chain, Balanced Scorecard

Requirements and Analysis Business Process Analysis, CRC

Cards

Software Process IBM Object-Oriented Technology

Center Process, Agile

Project Management Use-case points, Riskology

Architecture Attribute-driven design

Design Responsibility-driven design

IT Service management IT Infrastructure Library

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-3

actual learning. We’ve used a range of inter-linked elements

to develop, teach, evaluate and continuously improve the

extensive range of material in a single one-term class. These

elements also play a role in faculty development.

The key element that enables this course is the inverted

classroom [15]. Students are required to view online lectures

(now on YouTube.com) prior to coming to the classroom.

In-class time is reserved for quizzes, discussion and project

work. The inverted classroom also plays to the capabilities

of the faculty who are currently teaching the course. It takes

the lecture portion (where they are the weakest, not having

had the experience) out of their hands and replaces it with

in-class discussion, where they are responding to the

students and are able to bring in their experience and

specific examples – which are their strengths.

After the lecture has been assigned, an on-line

discussion board is opened up to discuss the lecture. Any

and all relevant questions and comments are permitted.

Faculty, the teaching assistant as well as other students

provide responses.

After each lecture, a short (10 minute) in-class open-

book, open-notes quiz attempts to verify that students have

indeed viewed and digested the lecture. All quizzes have

just one question of the form: “Explain <concept> using a

concrete example (one that has not already been presented

in the lecture or the discussion board)”. The thinking is that

students have to have internalized the lecture in order to

come up with an example. The relevance and degree of

detail of the example determines the grade on the quiz. The

grading is out of 10, and is rubric-based, so points should be

considered an indication of the students’ level of learning

rather than a percentage.

There is no textbook for this class. The course material

consists of video lectures created from audio-overlaid

PowerPoint slides, along with online reference material

consisting of specific sections in books, articles and papers.

In order to provide grounded examples of the concepts

and the frameworks in action, case studies have been

created from industry-sponsored projects done by CETI
2

using a prescriptive process described in [16]. So far, three

case studies have been completed, two have been used in the

classroom, and one (which we call ECO [16]) has been used

multiple times. A guest lecture on Agile at Microsoft

created by agile trainers at Microsoft is also a standard

offering in the class. This provides concrete examples of

agile concepts, and how they might be customized in

specific environments. We have had several other guest

lectures; most recently from a medical supplier company

that is going through an agile transformation. We record

these lectures, and have permission to replay them in

subsequent classes.
GAME-BASED INSTRUCTION IS ANOTHER INTEGRAL PART OF THE COURSE

PLAN. ONE COMPONENT OF THE COURSE – AGILE DEVELOPMENT – IS

2 CETI (http://www.ceti.cse.ohio-state.edu) is a NSF Industry-University

Collaborative Research Center (IUCRC), an industry-driven consortium

that researches the application of computing technology to address
enterprise-scale problems.

TAUGHT USING A LEGO®-BASED GAME WHERE STUDENTS BUILD AN

“ANIMAL” (SEE

FIGURE 1) based on simple story cards that request

features of the animal, such as “Give the animal legs”, or

“Make the animal one color”. The game illustrates the agile

development concepts of iterations, backlogs, relative

estimation, retrospectives and project velocity, and

principles such as close customer interaction.

Students do a project that involves application of all the

frameworks. The project is an “on-paper” project that

involves no software implementation. On several occasions

in the project, decisions needed to be made with incomplete

information.

Students use the Unified Modelling Language in all

diagrams where possible. Students are not expected to learn

all the facets of UML; rather students are asked to use UML

to effectively document decisions, in order to show how

each project decision meets its goal. For example, students

have to show how each NFR is met by one or more

architectural decisions.

5. EVALUATION AND ASSESSMENT

This course and the follow-on CAP courses are key to

ABET accreditation of our program. Assessment and

FIGURE 1

A LEGO®
 ANIMAL CREATED IN THE AGILE GAME

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-4

evaluation of the course is now therefore very important,

and is being done extensively, and both formatively and

summatively. Two types of formative assessments are being

used with respect to evaluating and improving student

learning. (1) Quizzes are marked up and returned in as

timely a manner as possible (usually in the class following

the class in which the quiz was given). Students who are

assessed to have not provided good answers are advised on

their answer as well as on the studying behavior expected of

them so they might learn better. (2) The project is divided

up into parts corresponding to the various SDLC phases,

and made due in intervals. These parts are also marked up

and returned for students to improve upon and re-submit

(without prejudice, unless there is clear evidence of lack of

effort), through discussion if necessary. The final grade for

the project is, in fact, only assigned at the end. The

summative assessment of the student consists of the quizzes,

the final project grade and a final examination.

The formative and summative assessments of the

students serve as assessment components of the course as

well. Three additional assessments have been put in place

for the course. First, at the beginning and end of the course,

the students were asked a simple open-ended question,

“Describe how you would identify, design and develop a

large-scale software application for an enterprise.” This

question is intended to baseline the student at the beginning

of the course with respect to knowledge of the end-to-end

concepts that the course will cover, and to test their concept

recall at the end of the course. Second, a small number of

students were interviewed at the end of the course about

their reaction to the course methods. Thirdly, we used the

official university Student Evaluation of Instruction to

assess student perceptions of the various dimensions of the

course, as well as to elicit open-ended comments.

A final component of the SE assessment is from the

new instructors of SE. After they have taught the course

(having been given a walkthrough of the syllabus and the

material) we assess their buy-in, comfort level and their

rating of SE through one-on-one interviews. Assessment

results are presented in Section 0.

Assessment Results and Evaluation

This course was run three times (in 2009) to work out

any kinks (and there were several) before we felt the

assessment data was representative of the course content

and design rather than of execution. Also, with the

assessments that depend on student feedback (such as the

interviews and SEIs), student response rate is not

particularly high (about 15%), with the responding

demographic potentially biased from actual student

population.

Quiz scores demonstrate good initial retention by

students. Average scores in the quizzes in the last term (40

students) were between 7.14/10 (quiz 3 on IT Alignment)

and 9.7/10 (Quiz 10 on the Case Study). We typically

discard the aberrantly low results of the first quiz (we

believe, and this is confirmed by anecdotal student

feedback, that this is due to the students not yet being used

to the inverted classroom method).

The “before-and-after” questionnaire showed

progression in the students’ conception of software

engineering. About 40% of the students had elevated their

conception of business context and requirements

identification from tactical (“automate a process”) to

strategic (“reduce buyer power”). About 75% of students

referred to specific techniques (“use attribute-driven design

to derive the architecture”) to perform tasks that they had

previously referred to in generic terms (“design the

system”). A high 95% of “after” responses showed

awareness of NON-functional requirements. About 25% of

students included risk management in their concept of

project management.

Two areas of “systemic” lack of student understanding

were identified from the project, specifically, (a) acceptance

tests for non-functional requirements and (b) risk

management. With respect to acceptance tests, a large part

of the problem, we feel, is the paper nature of the projects,

when the student, also playing the customer, is tempted to

just say “I accept it when it’s good”. We will address this

through clear examples of acceptance tests in the case

studies. With respect to teaching risk management, we are

developing a risk-management add-on to the LEGO
®
 game.

Student Reactions to Course Elements

The students interviewed uniformly liked the “Socratic

style” (as one student put it) of the inverted classroom. Of

the 8 students who provided SEI comments, results were

mixed, ranging from “The lecture videos online are a smart

use of time…” to “…it takes some getting used to being

responsible for lectures that don't occur in the classroom at

all” to “… difficult to watch over an hour of lecture videos

multiple times per week on top of all of the document

reading/writing required…” All students assessed the

workload of this class as higher than expected.

Interviewed students were asked how they studied from

the online lecture. Most gave an explanation and evaluation

similar to this: “Printed slides and took notes on the slides…

highlighted questions … Felt the organization was good and

didn’t cause extra work to integrate the material.”

All interviewed students commented positively on the

game. The students clearly had fun! One student wanted

“more difficult tasks”. The assessment identified the need

for having a co-located, collaborative customer as the

primary learning of the game.

The most-used ECO case study [16] was rated between

3 (neither effective nor ineffective) and 5 (highly effective)

in reinforcing concepts taught in the class. One of the

students commented that ECO’s one-developer nature

hindered ability to see how teams would work. However,

one of the points being made by ECO was that canonical

software processes break down in real-world application

precisely because of structures like in ECO! In other words,

the student missed a point of the lecture. This is an issue to

be remedied when we teach SE again.

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-5

The Microsoft lecture had a range of ratings from 3 to

5. The other guest lecture was given a high rating of 5.

The project is arguably the weakest element of the

course in terms of student acceptance. Most students were

resigned to it. A few students liked it, but a small, highly

vocal set of students consistently equated it with “busy

work”. From the instructors’ perspective though, the project

has been invaluable in evaluating student understanding.

Also, students in the CAP course often use the project

workbook in SE as a template.

Instructor Acceptance

These were assessed by one-on-one interviews of two

the three instructors who taught the course apart from the

course developer – and all first-time instructors of the

course. One instructor rated the inverted classroom method

as requiring more work, partially because the instructor

himself felt the need to internalize the broad range of

concepts. However, both rated the (inverted classroom)

method as effective (4/5) and improved their ability to teach

because they could work much more directly with the

students, and had more opportunities to bring in their own

experiences
3
. The game was rated as highly effective (5/5).

Instructors felt that additional incentives and penalties

to increase student participation towards the dog days of the

quarter should be considered. However, this was not rated as

a serious issue, but rather just a side comment.

An unexpected outcome reported by the instructors was

that having the course developer’s voice on the lectures

initially diminished their authority. However, this authority

was soon re-established, and even provided an avenue to the

instructor to provide counterpoint views where appropriate.

In general, instructors felt that their experience was

good and would be even better the second time around.

6. RELATED RESEARCH

In this section we describe key related work and

position our work against what has been done before. To

begin with, [17] characterizes the existing state of SE

education, and separates programs into “SE-Heavy” courses

that might fit in a specialized software engineering program

and “SE-lite” courses that might fit into a broad computer

science program. Taken by itself, the SE course is SE-Lite,

however, the SE curriculum taken as a whole is certainly

SE-Heavy.

Several papers focused on the gaps in software

engineering education. Good examples are [17] and [18]

that make two points relevant to this paper – (a) the need for

focusing education appropriately, and (b) the need for

communicating industrial reality more effectively.

Recent models of SE education have looked at learner-

centered pedagogy, problem-based learning, active learning,

and taking a constructivist approach to learning [19]-[21]

and [15] are experience reports on the inverted classroom.

3 We were very pleased with this observation, because that was precisely
what we hoped would happen!

References [23]-[25] discuss the case-study approach in its

various forms. Our own work [16] describes how a case

study may be efficiently developed. Reference [26]

describes the need for teaching “contextualized” approaches

– such as teaching students of the need for customization of

software engineering processes. A similar point is made in

[22].
Related to our use of games as simulation exercises,

[27] presents a simulation-type game in which players can

simulate and see the effects of various software processes. A

useful paper that describes how to improve the

communicability of (i.e. increase the learning from)

simulation-type games is [28].

Finally, [29] supports our conclusion of the need for an

ecosystem (like our IUCRC) for faculty and curriculum

development.

7. LESSONS LEARNED AND FUTURE WORK

Our most significant lesson learned is that effectively

teaching a broad, but interlinked, set of SE concepts within

the constraints of a typical CS program is indeed feasible.

Students are mostly accepting of the course, and adequately

demonstrating recall and application. The inverted class

approach is promising; however, care must be taken in its

planning and delivery so that lectures are sequenced

properly. Most importantly, the lectures and study material

must be stripped to their essentials and designed extremely

well so that students are not doing an amount of work

significantly in excess of the credit hours granted.

There are also certain key elements for replication of

such a model at locations outside of CSE at OSU (one of

our highly desired goals). The first is that faculty who teach

SE must have a strong industry background and significant

breadth of enterprise-scale software engineering experience.

Any CS department that seeks to use this course as a model

needs to have access to such faculty. The second necessary

element for replication (and, specifically, the ongoing

renewal of this course) is the ability of course-developers to

participate in real enterprise-scale projects from which they

can develop case studies. We are fortunate that the existence

of our NSF-IUCRC facilitates our engagement in these

kinds of projects with local industry.

Positive student attitudes are key for any course

innovations to succeed. The more we can incorporate active

learning that is not seen as “artificial” the better students are

engaged.

Future Work

The move to a semester system will add 4 weeks, which

will help slow down the pace of the course, as well as allow

us to add testing and quality assurance, and refine

framework-based design and IT service management. More

games are also being designed.

We hope to begin longitudinal assessments as well, at

least via the Capstones. Also, students in SE are all in their

senior year, and hence enter the workforce a short time after

taking SE. Thus, there is the opportunity to assess the

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-6

impact of SE at least in the early part of the students’

profession. To this end, we are building a tracking database.

Finally, we are working with 3 partner universities on

dissemination efforts, and an NSF TUES expansion grant.

We welcome additional collaborators.

ACKNOWLEDGMENT

This material is based upon work supported by the

National Science Foundation under NSF CCLI Grant No.

0837555 and the CERCS IUCRC Center for Enterprise

Transformation and Innovation (CETI), supported by the

NSF-IUCRC Program, Grant No. 0630188.

We also acknowledge CETI industry partners, notably,

Nationwide Insurance, the City of Columbus, the OSU

Office of the CIO, Mylee Inc., Ohio Department of Job and

Family Services, and TechColumbus. We thank

ThoughtWorks, Inc. for the use of their LEGO
®
 game.

REFERENCES

[1] Sommerville, I., Software Engineering (9th Edition), Addison

Wesley, 2010.

[2] Pressman, R., “Software Engineering: A Practitioner's Approach”,

McGraw-Hill Publishers, 2009.

[3] Hawthorne, M., Perry, D., E., “Software Engineering Education in the
Era of Outsourcing, Distributed Development, and Open Source

Software: Challenges and Opportunities”, Proceedings ICSE'05,

May15-21, 2005, St. Louis, Missouri, USA, 2005.

[4] Werth, L., “Software Engineering Education: A Survey of Current

Courses”, ACM SIGSOFT SOFTWARE ENGINEERING NOTES

vol 12 no 4, Oct 1987.

[5] Ghezzi, C., Mandrioli, D., “The Challenges of Software Engineering

Education”, ICSE 05, May 15–21, 2005, St. Louis, Missouri, USA.

[6] van Vliet, H., “Reflections on Software Engineering Education”,
IEEE SOFTWARE, May/June 2006.

[7] Ramnath, R., “Global Software Development for the Enterprise”,

Proceedings of the COMPSAC 2006 Workshop on Global Software
Development, Chicago, USA, 2005.

[8] Porter, M., “Competitive Strategy: Techniques for Analyzing

Industries and Competitors”, Free Press; 1998.

[9] Kaplan, R., Norton, D., “The Balanced Scorecard, Measures that

Drive Performance”, Harvard Business Review, 1992.

[10] IBM, “Developing Object-Oriented Software: An Experience-Based
Approach”, Prentice Hall; 1st edition, December 1996.

[11] Boehm, B., Turner, R., “Balancing Agility and Discipline: A Guide

for the Perplexed”, Addison-Wesley Professional, 2003.

[12] DeMarco, T., Lister, T., “Waltzing With Bears: Managing Risk on

Software Projects”, Dorset House, 2003.

[13] Bass, L., Clements, P., Kazman, R., “Software Architecture in

Practice”, Addison-Wesley Professional; 1st edition (December 30,

1997.

[14] Wirfs-Brock, R., Wilkerson, B., “Object-Oriented Design: A

Responsibility-Driven Approach”, pp.71 –75, Proceedings of

OOPSLA, 1989.

[15] Manning, K. S., “Work in Progress - Outsourcing the Lecturing in an

Engineering Physics Class”, 40th ASEE/IEEE Frontiers in Education

Conference, Washington, D.C. 2010.

[16] Bolinger, J., Yackovich, K., Ramnath, R., Ramanathan, J.,

Soundarajan, N., “From Student to Teacher: Transforming Industry
Sponsored Student Projects into Relevant, Engaging, and Practical

Curricular Materials”, Proceedings of the Transforming Engineering

Education: Creating Interdisciplinary Skills for Complex Global
Environments, Dublin, Ireland, April, 2010.

[17] Mitchell, W., “Is Software Engineering for Everyone?”, Proceedings

of the Mid-South College Computing Conference, 2004.

[18] Lethbridge, T., LeBlanc Jr., R., Sobel, A. E. K, Hilburn, T., D az-

Herrera, J.L., “SE2004: Recommendations for Undergraduate

Software Engineering Curricula”, IEEE SOFTWARE,
November/December 2006.

[19] Ludi, S., Natarajan, S., Reichlmayr, T., “An introductory software

engineering course that facilitates active learning”, Proceedings of the
36th SIGCSE technical symposium on Computer science education,

February 2005.

[20] Hadjerrouit, S., “Constructivism as Guiding Philosophy for Software
Engineering Education”, SIGCSE Bulletin, December 2005.

[21] Quade, A., “Developing a Hybrid Software Engineering Course that

Promotes Project-Based Active Learning”, TiCSE’06, June 26–28,
Bologna, Italy, 2006.

[22] Barei a, E., Kar iauskas, E., Ma ik nas, E., Motiej nas, K.,

“Research and Development of Teaching Software Engineering
Processes”, International Conference on Computer Systems and

Technologies, CompSysTech, 2007.

[23] Burge, J., Troy, D., “Rising to the Challenge: Using Business-
Oriented Case Studies in Software Engineering Education”,

Proceedings of the 19th Conference on Software Engineering
Education & Training (CSEET’06), 2006.

[24] Varma, V., Garg, K., “Case Studies: The Potential Teaching

Instruments for Software Engineering Education”, Proceedings of the
Fifth International Conference on Quality Software (QSIC’05), 2005.

[25] Hilburn, T., Towhidnejad, M., Nangia, S., Shen, Li. “A Case Study

Project for Software Engineering Education”, 36th ASEE/IEEE
Frontiers in Education Conference, 2006.

[26] Fendler, J., Winschiers-Theophilus, H. “Towards contextualised

software engineering education: an African perspective”, Proceedings
of the 32nd ACM/IEEE International Conference on Software

Engineering, ICSE, 2010.

[27] Navarro, E., van der Hoek, A., “Design and Evaluation of an
Educational Software Process Simulation Environment and

Associated Model”, Proceedings of the Eighteenth Conference on

Software Engineering Education and Training, April, 2005.

[28] Peixoto, D., Prates, R., Resende, R., “Semiotic Inspection Method in

the Context of Educational Simulation Games”, Symposium for

Applied Computing, SAC, 2010.

[29] Nikolov, R., Ilieva, S., “Building a Research University Ecosystem:

the Case of Software Engineering Education at Sofia University”,

ESEC/FSE, 2007.

AUTHOR INFORMATION

Michael Herold, Ph.D. Student, Department of Computer

Science and Engineering, The Ohio State University,

herold@cse.ohio-state.edu.

Joe Bolinger, Ph.D. Candidate, Department of Computer

Science and Engineering, The Ohio State University,

bolinger@cse.ohio-state.edu.

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 T1A-7

Rajiv Ramnath, Director, C.E.T.I, Associate Professor of

Practice, Department of Computer Science and Engineering,

The Ohio State University, ramnath@cse.ohio-state.edu.

Thomas Bihari, Senior Lecturer, Department of Computer

Science and Engineering, The Ohio State University, Senior

Consultant, Nationwide Insurance, bihari@cse.ohio-

state.edu.

Jayashree Ramanathan, Director, C.E.T.I, Associate

Research Professor, Department of Computer Science and

Engineering, The Ohio State University, jayram@cse.ohio-

state.edu.

