
Cooperative Task-Processing Networks: Parallel

Computation of Non-trivial Volunteering Equilibria∗

OSU CSE Tech. Report OSU-CISRC-3/11-TR05

Theodore P. Pavlic†

Computer Science & Engineering
The Ohio State University
Columbus, OH 43210 USA

pavlic.3@osu.edu

Kevin M. Passino
Electrical & Computer Engineering

The Ohio State University
Columbus, OH 43210 USA

passino@ece.ohio-state.edu

March 9, 2011

Abstract

This work gives the complete details of a novel framework for the analysis and design of distributed

agents that must complete externally generated tasks but also can volunteer to process tasks encountered

by other agents. A distributed asynchronous volunteering policy is presented that dynamically adjusts

task flow around the network of agents. It is shown that even though agents independently adjust their

tendency to volunteer to process tasks from other agents, the set of all volunteering tendencies converges

to the unique Nash equilibrium of a cooperation game. An artificial cooperation trading economy en-

sures that at the equilibrium, non-zero cooperation tendencies are possible and vary across agents. In

particular, an agent with relatively high task-encounter rate not only provides more incentive for con-

nected neighbors to cooperate with it but also has less incentive to volunteer to cooperate with other

agents. The framework is shown via simulation to be applicable to autonomous air vehicles, and the

mathematical results of the paper are also shown to be consistent with classic studies of cooperation

from science.

Keywords: distributed multi-agent control, game theory, cooperation, Nash equilibria, mobile agents,

parallel asynchronous computation

∗This work was partially supported by the National Science Foundation under Grant No. EECS-0931669.
†Corresponding author.

mailto:pavlic.3@osu.edu
mailto:passino@ece.ohio-state.edu

CONTENTS

Contents

Abstract i

Contents ii

1 Introduction 1

1.1 Cooperative agent design . 1
1.2 Connections to classical cooperation work . 2

2 Task-processing networks 3

3 Cooperation game among selfish agents 4

4 Distributed computation of the Nash equilibrium 6

4.1 Stabilizing payment functions . 8
4.2 Topological constraints . 9
4.3 Convergence result . 9
4.4 Finding necessary conditions on network topology for stabilization 13

5 Example: Simulation of cooperative AAV scenario 14

6 Conclusion 15

A Mathematical symbols and notation 16

B Proofs of central results 17

B.1 Properties of stabilizing payment functions . 17
B.2 Nash convergence in the cooperation game . 17

C Combinatorics applied to volunteering 24

C.1 Definitions: SOBP and SOMS . 24
C.2 Coordinate transformation . 25
C.3 Translating SOBP to SOMS . 29
C.4 Bounding SOMS . 31

D Parallel and distributed computation 34

D.1 Vector spaces . 34
D.2 Functional analysis . 34
D.3 Theory of contractions . 37

D.3.1 Simple linear mapping . 38
D.4 Constrained optimization . 39

D.4.1 Orthogonal projections . 39
D.5 Variational inequalities and parallel implementation 40

D.5.1 Motivation from game theory . 41
D.5.2 Projection algorithm . 42

D.6 Totally asynchronous iterative distributed algorithms 42

References 46

ii

1 INTRODUCTION

1 Introduction

In this work, we consider a network of autonomous agents for which some agents are responsible
for processing tasks from one or more external sources. When a task arrives at one of these agents,
the agent may advertise the task to other agents connected to it. If none of the connected agents
volunteer to process the task, it must be processed by the advertising agent; otherwise, the task
is processed by one of the volunteering agents. Agents that volunteer for tasks may also be
connected to incoming task flows for which they can advertise task encounters. In general, an
agent in the network may advertise task encounters to others, volunteer to process advertised
tasks from others, or do both. Our challenge is to define a distributed asynchronous algorithm for
automatically tuning how often each agent volunteers to process advertised tasks so that the set
of volunteering tendencies across the network converges to a Nash equilibrium with cooperative
features. Later in this section, the motivations for such a task-processing network of selfish
cooperative agents are discussed. In particular, Section 1.1 describes existing results in the
design of cooperative agents and highlights the contribution made by this work, and Section 1.2
provides background for understanding how this work relates to classic studies of the emergence
of cooperation in natural systems.

The rest of this document is organized as follows. In Section 2, the task-processing network
framework is defined and example task-processing networks are described. The optimization game
is presented in Section 3, and an asynchronous distributed computation method that ensures
convergence to the game’s Nash equilibrium is given in Section 4. In Section 5, results from
a simulated task-processing network of autonomous air vehicles are presented, and conclusions
and areas of future research are discussed in Section 6. Mathematical conventions are listed in
Appendix A, and technical details omitted from the main document are included in the other
appendices.

1.1 Cooperative agent design

Grid computing [11] is an existing approach for achieving cooperative task processing across a
group of networked agents. System designers work under the assumption of heterogeneous agents
with conflicting priorities. They borrow from the economic theories of mechanism design [36,
Ch. 23] and implementation theory [43, Ch. 10] to design mechanisms (e.g., brokering agents) and
protocols that either encourage resource sharing [3, 4, 9, 12, 13, 23, 30, 46, 48, 50] or discourage
exploitation [42, 45] among groups of agents. The common element of these different methods of
distributed algorithmic mechanism design (DAMD) [18] is that the designer has no direct control
over individual agents; instead, they control the structure of the interactions between agents on
a given network. Hence, DAMD is not appropriate for the design of the task-processing networks
themselves.

Methods exist for the design of networks of interconnected task-processing agents that have
desirable task flow characteristics. For example, a flexible manufacturing system (FMS) includes
several machines that switch their current processing to one of several input task flows and then
produce output task flows for other machines in the system. Perkins and Kumar [44] show that
distributed scheduling policies exist that guarantee such systems will have finite upper bounds
on all buffers of tasks. Similarly, Cruz [15] shows how special network elements can be combined
to form queueing systems with output traffic flows that are guaranteed to have finite burstiness
constraints so long as the input flows also satisfy similar constraints. These methods are not
intended to describe how agents can dynamically adjust task flow to exploit unused processing
ability on idle connected agents.

Because an optimal task flow configuration may be unknown, inaccessible, or changing over
time, task-processing agents may need to use feedback to acquire and stabilize the optimal task-

1

1 INTRODUCTION

handling behavior. For example, a set of autonomous air vehicles (AAV) deployed for distributed
search, surveillance, or task processing can coordinate their actions in order to converge on a
holistically optimal behavior [19, 20, 22]. However, the coordination required between agents can
be prohibitive. Additionally, the single optimality criteria being maximized ignores fatigue on
individual agents. For example, in a smart power grid [26], it may be desirable for distributed
power stations to share load; however, a single overloaded station should not result in a cascade
of self-sacrificing failures. Here, non-cooperative game theory is used to develop totally asyn-
chronous and distributed algorithms for task-processing agents that both respect local processing
priorities while also sharing the processing burden of highly loaded neighbors.

Non-cooperative game theory has been traditionally used to design optimal control strate-
gies [7, 34]; however, it can also be used to design simple selfish strategies that nonetheless assist
neighbors. Several such techniques already exist for designing policies on nodes in ad hoc multi-
hop communication networks [1, 2, 10]. In these cases, nodes can forward packets from other
nodes in order to reduce network congestion or improve communication diversity, but nodes resist
using all local resources for assisting other nodes. A salient feature of these forwarding networks
is that packets can be duplicated or dropped at any time. Hence, these networks are ill-equipped
to model task-processing scenarios where tasks that enter the network must be assigned and
processed by exactly one agent. Instead, our approach passes volunteering requests around a
network and uses an economics-inspired task-processing network game to determine how best to
respond to these requests. The resulting volunteering policy is sensitive to both local processing
requests and the presence of other agents on the network that can volunteer as well.

1.2 Connections to classical cooperation work

Within a biological organism, specialized organs cooperate with each other because they are
mutually dependent. Each organ performs certain vital functions for the others because they
perform vital functions for it. Likewise, related individuals in a family perform costly acts for
each other in order to ensure the longevity of the family. However, cooperation among distantly
related individuals may not be likely, and cooperation among unrelated individuals is apparently
irrational. As shown by Hamilton [25], a cooperative act between two related individuals should
be taken if the cost-to-benefit ratio of the act is less than their relatedness. However, this simple
rule does not explain altruistic acts between two unrelated individuals.

Trivers [49] suggests that benefits via reciprocity can be a surrogate for benefits via related-
ness. Hence, cooperation among unrelated individuals who are certain to interact in the future
(e.g., altruism between two friends) may be explained by a pattern of reciprocity; selfless acts in
the past may actually be an investment in reciprocal acts in the future. Motivated by this idea,
Axelrod [5] develops precise behavioral protocols and shows in computer simulation that stable
patterns of cooperative reciprocity are possible. Additionally, several studies [e.g., 14, 16, 17, 37]
have documented the existence of these reciprocity protocols in nature. Modern theoretical work
studies how unrelated individuals can be similarly coupled if they are forced to interact along
vertices of a graph [33, 40, 41]. Nowak [39] summarizes these results and shows that sufficient
conditions for cooperation in every case are described by a generalization of Hamilton’s rule. In
particular, an altruistic act is favorable when the cost-to-benefit ratio of the act is less than a
measure of the likelihood that the two individuals will interact again. In this work, it is shown
that this general rule extends to engineering examples as well and can be used in the design of
distributed task-processing agents.

2

2 TASK-PROCESSING NETWORKS

Input streams (k ∈ Yj ⊆ {1, 2, 3}):

Conveyors (j ∈ V = {1, 2}): V3 = {1} 1 V4 = {1, 2} 2 V5 = {2}

Cooperators (i ∈ C = {3, 4, 5}): 3 C1 = {3, 4} 4 C2 = {4, 5} 5

Y1 = {1, 2} Y2 = {1, 2, 3}
1 2 1 2 3

π1
1

π2
1

π1
2

π2
2

π3
2γ3 γ4 γ5

Rate λk
j λ1

1 λ2
1 λ1

2 λ2
2 λ3

2

Send request @ πk
j

Accept request @ γi

Task
arrivals

Nodes and
processing
requests

Fig. 2.1: Simple flexible manufacturing system example.

2 Task-processing networks

A task-processing network (TPN) models how connected agents can share the burden of process-
ing tasks. Tasks arrive at individual agents that can process them at some cost to themselves
(e.g., due to limited resources or material fatigue). In order to reduce the local task-processing
cost, an agent can send requests to other nearby agents to process each task. At each request,
those nearby agents can choose ignore the request or volunteer to process the corresponding
task. Definition 2.1 below describes a generic TPN precisely, and two example TPNs follow it.
In Section 3, the optimal ignore–accept mixed equilibrium is characterized, and in Section 4, a
distributed and totally asynchronous algorithm is provided that is guaranteed to converge to this
equilibrium.

Definition 2.1. (Task-processing network) Take a finite set A ⊂ N of task-processing agents
and a set P ⊆ {(i, j) ∈ A2 : i 6= j} of directed arcs connecting distinct agents. For each agent
i ∈ A,

Vi , {j ∈ A : (j, i) ∈ P} and Ci , {j ∈ A : (i, j) ∈ P}

are respectively the sets of conveyors and cooperators connected to agent i. Hence, V , {j ∈ A :
Cj 6= ∅} =

⋃

i∈A Vi and C , {i ∈ A : Vi 6= ∅} =
⋃

j∈A Cj are respectively the sets of all conveyors
and cooperators in the network. Assume that:

(i) For all i ∈ A, there exists a finite and possibly empty set Yi ⊂ N of task types such that
for all k ∈ Yi, tasks of type k arrive at agent i from an external source at average rate
λk
i ∈ R>0. Each external source of tasks is assumed to be independent of all other sources.

(ii) If j ∈ V, then there exist k ∈ Yj with πk
j 6= 0 where πk

j ∈ [0, 1] represents the probability
that conveyor j advertises an incoming k-type task to its connected cooperators Cj . If j ∈ V
does not advertise a task to its connected cooperators, the task will be processed by agent
j.

(iii) If i ∈ C, then there is some γi ∈ [0, 1] that represents the probability that agent i will
volunteer for an advertised task from one of its connected conveyors Vi. Any task arriving
at conveyor j ∈ V that is advertised to cooperators Cj will be processed with uniform
probability by exactly one of the cooperators that volunteer for it; if no cooperators volunteer
for the task, then it is processed by conveyor j.

The graph G , (A,P), rates, and probabilities defined above characterize a task-processing
network.

The simple TPN shown in Fig. 2.1 represents a flexible manufacturing system (FMS) similar
to the systems described by Perkins and Kumar [44]. Tasks of types 1, 2, and 3 arrive according
to independent Poisson processes. Type-1 and type-2 tasks arrive at agent 1, and all three types
of tasks arrive at agent 2. For tasks of type k ∈ Y1 = {1, 2}, agent 1 advertises task arrivals

3

3 COOPERATION GAME AMONG SELFISH AGENTS

b

b

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

λ1

1

λ2

2
λ3

3

1

2 3

(a) AAV-patrolled territories.

b

b

1

2 3

πj

j

γi

C = V = {1, 2, 3}

Ci = Vi = {1, 2, 3} \ {i}

Yj = {j}

1

2 3

λ1

1

λ2

2
λ3

3

(b) AAV task-processing network.

Fig. 2.2: A task-processing network formed by three autonomous air vehicles (AAV).

to agents 3 and 4 with probability πk
1 . Likewise, agent 2 advertises arrivals of tasks of type

k ∈ Y2 = {1, 2, 3} to agents 4 and 5 with probability πk
2 . The system designer can choose

different probabilities for each task type based on the specialized abilities of each agent. Each
agent i ∈ {3, 4, 5} volunteers for an advertised task with probability γi independent of task type.
Hence, in this TPN, agents 1 and 2 are conveyors and agents 3, 4, and 5 are cooperators.

In the FMS example, the set of conveyors and the set of cooperators are disjoint. In a general
TPN, an agent can be both a cooperator and a conveyor. For example, the fully-connected
TPN shown in Fig. 2.2(b) models an autonomous air vehicle (AAV) patrol scenario shown in
Fig. 2.2(a) that is similar to others in resource allocation literature [e.g., 19, 20, 22]. Each AAV
i ∈ {1, 2, 3} continuously searches its territory for tasks (e.g., targets) to process, and these tasks
are generated (i.e., found) at rate λi > 0. When a task is found, the AAV advertises the task to
both of its neighbors. If neither neighbor volunteers for processing, the AAV processes the task
itself. In this fully-connected topology, all agents are both cooperators and conveyors. Although
this network has several cycles, tasks do not move around the network — if a volunteering
cooperator is given a task for processing, it cannot generate a new task-processing request for
that task; it must process it itself.

Task-processing networks describe a broad range of applications. The AAV example above
can also serve as a model of a mobile software agent [31, 32, 35, 46, 51] that patrols for tasks
to process or any general group of networked processors [e.g., 21]. Additionally, by converting
encounter rates to energetic rates (i.e., power demand), TPNs can model the behavior of smart
power grids [26] made up of stations that request assistance from neighbors. That is, cooperator
stations adjust additional supply provided in response to demand requests from remote conveyor
stations.

3 Cooperation game among selfish agents

In a task-processing network, the probability (i.e., cooperation propensity) γi ∈ [0, 1] that cooper-
ator i ∈ C will volunteer for an advertised task from its connected conveyors must be chosen. It is
assumed that this choice must be done in a distributed fashion and it is impractical for agents to
coordinate in order to maximize some global utility. So each agent independently chooses a co-
operation policy that maximizes its individual utility (i.e., agents are selfish). Hence, optimality
is given in terms of the Nash equilibrium from Definition D.16 in Appendix D.

To inform each cooperator how to choose this policy, the network’s designer assigns cost and

4

3 COOPERATION GAME AMONG SELFISH AGENTS

rewards to agent operations in a common currency (e.g., proportional to dollars of net profit)
that is called points here. In particular,

• Agent i ∈ A receives (bki − cki) net points for processing a locally generated task of type
k ∈ Yi.

• Conveyor i ∈ V receives rki when a task of type k ∈ Yi from i is processed by a Ci cooperator.

• If cooperator j ∈ Ci volunteers and is selected to process a task of type k ∈ Yi from conveyor
i ∈ V, then cooperator j pays cost ckij to process that task.

However, these costs and benefits alone do not provide cooperators with any incentive to volunteer
to process conveyor tasks, and so an adaptive payment mechanism is required. Consider conveyor
j ∈ V and task type k ∈ Yj . If one or more cooperators in Cj volunteer frequently to process
requests from agent j, the other cooperators in the set should conserve resources by volunteering
infrequently. To ensure this qualitative behavior, each cooperator i ∈ Cj receives volunteering
payment qkijp

k
j (Qj) from conveyor j ∈ Vi where:

• Qj ,
∑

k∈Cj
γk is the total quantity of cooperation propensity available to conveyor j.

• pkj (Qj) is a decreasing payment function that represents the price that conveyor j pays to
its connected cooperators each time they volunteer for a task of type k ∈ Yj .

• qkij ∈ R>0 is a value factor that scales payment pkj (Qj) from conveyor j into the currency of

cooperator i ∈ Cj (i.e., i perceives qkijp
k
j (Qj) value from the contribution pkj (Qj) from j).

So if any cooperator i ∈ Cj increases its cooperation propensity γi, it increases how often it
receives payment pkj (Qj) while also decreasing the payment itself. For each cooperator i ∈ Cj ,
these two pressures encourage cooperation propensity (i.e., γi > 0) and resource conservation
(i.e., γi < 1).

To maximize net points earned over a long run time, each agent chooses a policy that max-
imizes its own expected rate of point accumulation. So for a given vector γ = [γc1 , γc2 , . . . ,

γc|C|
]⊤ ∈ [0, 1]|C| of cooperation policies (where unique ck ∈ C for all k ∈ {1, 2, . . . , |C|}), the

utility (i.e., long-term rate of point gain) returned to cooperator i ∈ C is

Ui(γ) , bi +

Pr(Volunteer from Ci|Advertisement from i)
︷ ︸︸ ︷
(

1−
∏

j∈Ci

(1− γj)

)

ri −Qipi(Qi)

︸ ︷︷ ︸

Conveyor part — constant with respect to γi

+ γi
∑

j∈Vi

(
pij(Qj)−

Pr(i awarded task from j|i volunteers)
︷ ︸︸ ︷

SOBP1(Cj \ {i})cij
)

︸ ︷︷ ︸

Cooperator part — γi and Qj vary with γi

(3.1)

where

bi ,
∑

k∈Yi

λk
i

(
bki − cki

)
,

ri ,
∑

k∈Yi

λk
i π

k
i

(
rki −

(
bki − cki

))
,

pi(Qi) ,
∑

k∈Yi

λk
i π

k
i p

k
i (Qi),

︸ ︷︷ ︸

Costs and benefits of local processing on i ∈ V

and

cij ,
∑

k∈Yj

λk
jπ

k
j c

k
ij ,

pij(Qj) ,
∑

k∈Yj

λk
jπ

k
j q

k
ijp

k
j (Qj).

︸ ︷︷ ︸

Costs and benefits to i ∈ C
for volunteering for tasks from j ∈ Vi

(3.2)

The SOBP (i.e., the sum of binomial products) in Eq. (3.1) is defined in Eq. (C.3) from
Appendix C. In particular, SOBP1(Cj \ {i}) is the probability that cooperator i will be chosen
to process an advertised task from conveyor j given that it volunteers for it. Hence, for j ∈ Vi,
the impact of cost rate cij decreases as other cooperators from Cj increase their own cooperation

5

4 DISTRIBUTED COMPUTATION OF THE NASH EQUILIBRIUM

propensity because the probability that agent i will be selected decreases. So for a conveyor
j ∈ V, its connected cooperators Cj form a Cournot oligopoly [38] (i.e., a set of independent
agents that provide a service for a demand-driven price) with a positive externality [6] (i.e., the
cost of processing decreases as more cooperators enter the market). The underbraced cooperator
part of the utility function shows that cooperator i must set its cooperation propensity γi (i.e.,
its quantity of supplied cooperation) based on the summed returns from several such markets.

4 Distributed computation of the Nash equilibrium

Let n , |C|. Because there is no coordination between players, the n-dimensional play space
is the Cartesian product

∏

i∈C [0, 1] = [0, 1]n, and the collection of cooperation policies across

all cooperators is the vector γ , [γc1 , γc2 , . . . , γcn]
⊤ ∈ [0, 1]n (where unique ck ∈ C for all

k ∈ {1, 2, . . . , n}). For each i ∈ C, it is assumed that the utility function Ui : [0, 1]
n 7→ R is twice-

continuously differentiable, and so, by Weirstrass’ theorem, Ui is bounded above and below and
achieves its extrema. Following Propositions D.9 and D.10 in Appendix D, the Nash equilibria of
the cooperation game can be found by solving n separate one-dimensional variational inequality
problems. In particular, γ∗ ∈ [0, 1]n is a Nash equilibria of the cooperation game if and only if,
for all i ∈ C,

(γi − γ∗
i)∇iUi(γ

∗) ≤ 0 for all γi ∈ [0, 1] (4.1)

where

∇iUi(γ) ,
∂Ui(γ)

∂γi
=
∑

j∈Vi

(

∂
∂γi

(γipij(Qj))

︷ ︸︸ ︷

pij(Qj) + γip
′
ij(Qj)− SOBP1(Cj \ {i})cij

)

is the block gradient from Definition D.7. So in a local neighborhood of the Nash equilibrium
γ∗ ∈ [0, 1]n, any unilateral perturbation of a coordinate of γ∗ will result in equal or reduced
utility.

A closed-form solution to the constrained variational inequality problem in Eq. (4.1) is
difficult to find in general. In particular, because the play space is a Cartesian product of 1-
dimensional [0, 1] factor spaces, Eq. (4.1) is equivalent to the condition that for all i ∈ C,

Marginal benefit of cooperation
︷ ︸︸ ︷

Marginal cost of cooperation
︷ ︸︸ ︷

Nash cooperation level
︷ ︸︸ ︷

∑

j∈Vi

pij(Q
∗
j) ≤

∑

j∈Vi

SOBP∗
1(Cj \ {i})cij if γ∗

i = 0,

∑

j∈Vi

(
pij(Q

∗
j) + γ∗

i p
′
ij(Q

∗
j)
)
=
∑

j∈Vi

SOBP∗
1(Cj \ {i})cij if γ∗

i ∈ (0, 1),

∑

j∈Vi

(
pij(Q

∗
j) + p′ij(Q

∗
j)
)
≥
∑

j∈Vi

SOBP∗
1(Cj \ {i})cij if γ∗

i = 1

︸ ︷︷ ︸

∂
∂γi

(∑

j∈Vi

γipij(Qj)
)
∣
∣
∣
∣
γ=γ∗

︸ ︷︷ ︸

Pr(i receives j’s task|i volunteers)|γ=γ∗

(4.2)

where, for all j ∈ V, Q∗
j and SOBP∗ are respectively equivalent to Qj and SOBP when γ =

γ∗. The existence alone of a solution to the n simultaneous nonlinear equations of the form
of Eq. (4.2) is not guaranteed in general. However, as discussed in Appendix D, variational

6

4 DISTRIBUTED COMPUTATION OF THE NASH EQUILIBRIUM

inequalities over product spaces are well suited for parallel and asynchronous computation. Under
special conditions on each utility function, a unique Nash equilibrium is guaranteed to exist, and
each of its coordinates in Eq. (4.1) can be computed independently in the distributed and
asynchronous fashion described by Assumption 4.1.

Assumption 4.1. (Totally asynchronous distributed iteration) Take (c1, c2, . . . , cn) , C to
represent the n distinct cooperators of C. Let T , W to be the indices of a sequence of physical
times, and let {γ(t)}t∈T , {(γc1(t), γc2(t), . . . , γcn(t))} be a sequence of iterated calculations in

the [0, 1]n play space. For each i ∈ C, subset T i ⊆ T corresponds to the times when coordinate
γi(t) is computed. Additionally, for each i, j ∈ C and each t ∈ T , there is an index τ ij(t) ∈ T
of the least-outdated version of coordinate γj available for the computation of coordinate γi with
transition mapping Ti : [0, 1]

n 7→ [0, 1] at time t such that 0 ≤ τ ij(t) ≤ t. That is, an outdated
state estimate

γi(t) , (γi
c1(t), γ

i
c2(t), . . . , γ

i
cn(t)) , (γc1(τ

i
c1(t)), γc2(τ

i
c2(t)), . . . , γcn(τ

i
cn(t)))

is available for the computation γi(t+1) = Ti(γ
i(t)) for each t ∈ T and i ∈ C. It is assumed that

(i) Set T i is countably infinite (i.e., |T i| = |T | = |N|) for all i ∈ C.

(ii) If subsequence {tk} of T i is such that limk→∞ tk = ∞, then limk→∞ τ ij(k) = ∞ for all

i, j ∈ {1, 2, . . . , n}. That is, lim inft→∞ τ ij(t) = ∞ for all i, j ∈ {1, 2, . . . ,m}.

For all t ∈ T , sequence {γ(t)} is generated by the totally asynchronous distributed iteration
(TADI)

γi(t+ 1) ,

{

Ti(γ
i(t)) if t ∈ T i,

γi(t) if t /∈ T i
(4.3)

where γ(t) , (γc1(t), γc2(t), . . . , γcn(t)).

For each i ∈ C, the transition mapping Ti : [0, 1]
n 7→ [0, 1] in Eq. (4.3) is defined by

Ti(γ) , min{1,max{0, γi + σi∇iUi(γ)}}

for all γ ∈ [0, 1]n where σi ∈ R>0 is a step size that scales movement along the utility gradient
∇iUi. The corresponding TADI-generated {γ(t)} sequence represents the collective motion of n
self-interested agents that each climb their respective gradient in order to maximize their expected
rate of point return. That is, Eq. (4.3) may be viewed as a dynamical system model of coupled
agents that each take independent actions. For example, in the synchronous case,

γi(t+ 1) = min{1,max{0, γi(t)− σi

∑

j∈Vi

SOBP1(Cj \ {i})cij + σi

∑

j∈Vi

(

uij(γ),
∂

∂γi
γipij(Qj)

︷ ︸︸ ︷

pij(Qj) + γi(t)p
′
ij(Qj)

)

︸ ︷︷ ︸

,ui(γ)=
∑

j∈Vi
uij(γ)

}}

for all i ∈ C. Here, the underbraced payment expression ui(γ) may be viewed as a feedback
control on the behavior of cooperator agent i. By Proposition C.6, there exists a constant
SOBP > 0 such that SOBP1(Γ) ≥ SOBP for all Γ ⊆ C. So, assuming that cij > 0 for all
i, j ∈ A, the undriven response of the system (i.e., the response when ui ≡ 0 for all i ∈ C) reaches
γ(T) = 0 in some finite time T ∈ W. That is, the intrinsic agent behavior is not to cooperate.
For each i ∈ C, it is desirable to find a control law ui : [0, 1]n 7→ [0, 1] that feeds forward the
payment

∑

j∈Vi
pij(Qj(γ)) to destabilize the no-cooperation equilibrium and provides feedback

γi
∑

j∈Vi
p′ij(Qj(γ)) to stabilize the Nash equilibrium. Hence, payment is a control mechanism

that both establishes and stabilizes cooperation.

7

4 DISTRIBUTED COMPUTATION OF THE NASH EQUILIBRIUM

4.1 Stabilizing payment functions

Under the control interpretation where, for all i ∈ C, ui ,
∑

j∈Vi
pij(Qj) + γi

∑

j∈Vi
p′ij(Qj) is

the sum of a feed-forward and a feedback control law, intuition suggests that a nontrivial Nash
equilibrium can be stabilized by the control if, for each j ∈ Vi, the nonlinear feedback gain p′ij(Qj)
is strictly negative everywhere with greater action at low cooperation levels. These conditions
are made more precise by Definition 4.1 of a stabilizing payment function pij with j ∈ Vi.

Definition 4.1. (Stabilizing payment function) For k ∈ N, a stabilizing payment function (SPF)
p : [0, k] 7→ R is a twice-continuously-differentiable function such that:

(i) It is strictly decreasing. In particular, p′(Q) , dp(Q)/dQ < 0 for all Q ∈ [0, k].

(ii) It is convex. In particular, p′′(Q) , d2p(Q)/d2Q ≥ 0 for all Q ∈ [0, k].

(iii) Its convexity is eventually dominated by its slope. In particular,

γp′′(Q) ≤ −p′(Q) for all Q ∈ [γ, k − (1− γ)] with γ ∈ [0, 1]. (4.4)

Consider cooperator i ∈ C and a connected conveyor j ∈ Vi. Under the control law interpre-
tation, condition (i) guarantees that the nonlinear feedback gain p′ij(Qj) is always negative. As
shown in the proof of Proposition 4.1, the SPF conditions guarantee that the payment slope is
bounded away from zero, which is equivalent to requiring that the negative feedback control law
never vanishes. Likewise, condition (ii) of Definition 4.1 states that the feedback gain should relax
as the total quantity Qj ,

∑

k∈Cj
γk of cooperation increases, and condition (iii) ensures that the

relaxation of the feedback p′ij is sufficiently moderate. That is, condition (iii) of Definition 4.1
states that

d

dγi
(

Stabilizing feedback
︷ ︸︸ ︷

γip
′
ij(γi + (Qj − γi)

︸ ︷︷ ︸

,κ

)) ≤ 0 for all γi ∈ [0, 1] and κ ∈ [0, |Cj |
︸︷︷︸

,k

− 1].

Because pij is convex, the function f1(κ) , γp′ij(γ + κ) is increasing for any γ > 0. However,

for any κ ∈ [0, k − 1], the continuous function f2(γ) , γp′(γ + κ) is initially decreasing because
f2(0) = 0 and f2(γ) < 0 for all γ ∈ (0, 1]. The requirement in item (iii) is that f2 be decreasing
for all γ ∈ [0, 1] and all κ ∈ [0, k − 1]. That is, the magnitude of the feedback control action
should decelerate, but it should not decrease.

Proposition 4.1. (Non-vanishing negative feedback) For k ∈ N and any stabilizing payment
function p : [0, k] 7→ R, p(0) > p(Q) > p(k) and p′(0) ≤ p′(Q) ≤ p′(k) < 0 for all Q ∈ (0, k).

Proof of Proposition 4.1 given in Appendix B.

As shown in Proposition B.1, the set of SPFs is closed under conical combinations (i.e., it is
a filled cone). So for i ∈ C, if pij is an SPF for all j ∈ Vi, then the sum

∑

j∈Vi
pij(Qj) is itself

an SPF. Additionally, by the definition of pij(Qj) in Eq. (3.2), if pkj (Qj) is an SPF for all j ∈ V
and k ∈ Yj , then pij(Qj) will also be an SPF for all i ∈ C.

Four example SPFs are shown in Fig. 4.1. Each payment function meets the simpler condition
in Proposition 4.2; however, using the weaker condition (iii) of Definition 4.1, it is only necessary
for ε ≥ κ in (d). Additionally, the polynomial function in (c) is an extension of the linear function
in (a).

Proposition 4.2. (Sufficient conditions for payment stabilization) Take k ∈ N and function
p : [0, k] 7→ R. If 0 ≤ p′′(Q) < −p′(Q) for all Q ∈ [0, k], then p is a stabilizing payment function.

Proof of Proposition 4.2 given in Appendix B.

8

4 DISTRIBUTED COMPUTATION OF THE NASH EQUILIBRIUM

Q

pℓ(Q)

m > 0

b

b

0

b

0 1 2 k

−m

(a) b−mQ

Q

pe(Q)

τ > 1

b

b

0

A

0 1 2 k

−A
τ

(b) A exp(−Q/τ)

Q

pp(Q)

p > 1

q0 > k + p− 1

b

b

0

A

0 1 2 k

−Ap
q0

(c) A(1−Q/q0)p

Q

ph(Q)

κ > 0
ε > κ+ 1

b

b

0

A

0 1 2 k

−Aκ
εκ

(d) Aεκ/(ε+Q)κ

Fig. 4.1: Sample stabilizing payment (i.e., inverse-demand) functions.

4.2 Topological constraints

Ensuring that pij is an SPF for all j ∈ Vi does not guarantee that the n independent agents will
achieve of a stable Nash equilibrium. As shown in Eq. (4.2), if the marginal cost of cooperation
(MCC) varies greatly along TADI trajectories, then convergence to a unique Nash equilibrium
may be impossible. However, if the Hessian of each agent’s utility function meets certain diagonal
dominance conditions, then the agent’s progress in moving toward the Nash equilibrium will be
dominated by its own actions, and the agent will consistently move in a productive direction.

The MCC associated with a given cooperator i ∈ C depends primarily upon the number of
other cooperators connected to each conveyor j ∈ Vi. If the topology of the task-processing
network meets special conditions involving the set of cooperators connected to each conveyor,
then there exists a tractable bound on the variation in the MCC. These conditions will be precisely
specified in Theorem 4.1 using Definition 4.2.

Definition 4.2. (k-conveyor) Conveyor i ∈ V is a k-conveyor if it has exactly k ∈ N outgoing
connections to cooperators (i.e., if k = |Ci|).

4.3 Convergence result

Theorem 4.1 gives sufficient conditions for convergence to the Nash equilibrium.

Theorem 4.1. (Convergence to the Nash equilibrium of the cooperation game) Assume that

(i) For all i ∈ C and j ∈ Vi, pij is a stabilizing payment function.

(ii) For all j ∈ V, |Cj | ≤ 3 (i.e., no conveyor can have more than 3 outgoing links to cooperators).

(iii) For i ∈ C and j ∈ Vi, if j is a 3-conveyor, then there must be some k ∈ Vi that is a
2-conveyor.

Define T : [0, 1]n 7→ [0, 1]n by T (γ) , (T1(γ), T2(γ), . . . , Tn(γ)) where, for each i ∈ C,

Ti(γ) , min{1,max{0, γi + σi∇iUi(γ)}} where
1

σi
≥ 2|Vi|max

k∈Vi

|p′ik(0)| (4.5)

for all γ ∈ [0, 1]n. If

min
j∈Vi

|p′ij (|Cj |) | >

(

|Vi| −
1

2

)

max
j∈Vi

|cij | for all i ∈ C, (4.6)

then the TADI sequence {γ(t)} generated with mapping T and the outdated estimate sequence

{γi(t)} for all i ∈ C each converge to the unique Nash equilibrium of the cooperation game.

Proof of Theorem 4.1 given in Appendix B.

9

4 DISTRIBUTED COMPUTATION OF THE NASH EQUILIBRIUM

The restriction in Eq. (4.6) is similar to the network generalization of Hamilton’s rule [25]
(i.e., benefit/cost > 1/relatedness where relatedness = 1/(average number of connections)) dis-
cussed by Ohtsuki et al. [41] and Nowak [39]. In particular, as the number of connected conveyors
increases, a cooperator’s relatedness to each of them decreases, and stable cooperation may re-
quire increased benefits (i.e., steeper payment slopes to dominate uncertain costs). Additionally,
if σi is picked to satisfy Eq. (4.5) for each i ∈ C, then Proposition B.2 gives a sufficient condition
that simplifies Eq. (4.6). The complete proof of Theorem 4.1 is given in Appendix B. Most
of the proof is a specialized combination of Propositions D.3 and D.4 that have proofs given by
Bertsekas and Tsitsiklis [8]. However, the novel result is the relationship between the assump-
tions of Theorem 4.1 and the assumptions on which Propositions D.3 and D.4 are predicated,
and so that relationship is discussed in detail here.

By assumption (i) (i.e., all payment functions are stabilizing), for any γ ∈ [0, 1]n and i ∈ C,

∇2
iiUi(γ) ,

∂2Ui(γ)

∂γi
2 =

∑

j∈Vi

(
2p′ij(Qj)+γip

′′
ij(Qj)

)
=
∑

j∈Vi

<0
︷ ︸︸ ︷

p′ij(Qj)+
∑

j∈Vi

(

≤0
︷ ︸︸ ︷

p′ij(Qj) + γip
′′
ij(Qj)

)
< 0,

and

∇2
iiUi(γ) =

∑

j∈Vi

(
2p′ij(Qj) +

≥0
︷ ︸︸ ︷

γip
′′
ij(Qj)

)
≥
∑

j∈Vi

2p′ij(Qj) = −2
∑

j∈Vi

|p′ij(Qj)|

≥ −2
∑

j∈Vi

max
k∈Vi

|p′ik(0)| = −2|Vi|max
k∈Vi

|p′ik(0)| ≥ −2|Vi|max
k∈Vi

|p′ik(0)|. (4.7)

So, by the assumed limits on step size σi given in Eq. (4.5),

0 > ∇2
iiUi(γ) ≥ −

1

σi
or, equivalently, 0 < |∇2

iiUi(γ)| ≤ 2|Vi|max
k∈Vi

|p′ik(0)| ≤
1

σi

for all i ∈ C. So the TADI step size and each agent’s utility function’s concavity are inversely
related. For example, if a cooperator services a large number of incoming conveyors or if a coop-
erator is connected to a conveyor with a very steep payment function, then small perturbations
in its level of cooperation will bring large changes in the amount of payment received. In this
case, the cooperator must sample its utility gradient very finely by making only small changes in
its cooperation level at each TADI step. The “2” is present in the bound in Eq. (4.7) because
each payment function controls the utility gradient through sum of both feed-forward pik and
feedback γip

′
ik payment, and hence the curvature is twice affected by the payment slope.

As discussed, to ensure a kind of diagonal dominance of each agent’s utility Hessian (i.e., the
Jacobian of each utility gradient), the topology of the task-processing network must be limited.
So take γ ∈ [0, 1]n and cooperator i ∈ C. For another cooperator ℓ ∈ C \{i}, if ℓ /∈ Cj (i.e., ℓ is not

an outgoing cooperator for j), then ∂Qj/∂γℓ = 0 and ∂ SOBP1(Cj − {i})/∂γℓ = 0 where Qj ,
∑

k∈Cj
γk and SOBP is from Definition C.1. So by introducing SOMS from Proposition C.11,

0 ≤
∑

ℓ∈C
ℓ 6=i

|∇2
iℓUi(γ)| ,

∑

ℓ∈C
ℓ 6=i

∣
∣
∣
∣
∣

∂2Ui(γ)

∂γi∂γℓ

∣
∣
∣
∣
∣

=
∑

ℓ∈C
ℓ 6=i

∣
∣
∣
∣
∣
∣
∣

∑

j∈Vi

[ℓ ∈ Cj]

p′ij(Qj) + γip

′′
ij(Qj) +

∂/∂γℓ SOBP1(Cj−{i})
︷ ︸︸ ︷

SOMS2(Cj \ {i, ℓ})cij

∣
∣
∣
∣
∣
∣
∣

10

4 DISTRIBUTED COMPUTATION OF THE NASH EQUILIBRIUM

where [·] is the Iverson bracket [27]. That is, for a propositional statement S, [S] = 1 if S is true,
and [S] = 0 otherwise. As described by Knuth [29], introducing the Iverson bracket here will
allow the restriction on index set to be manipulated algebraically. Hence,

∑

ℓ∈C
ℓ 6=i

|∇2
iℓUi(γ)| ≤

∑

ℓ∈C
ℓ 6=i

∑

j∈Vi

[ℓ ∈ Cj]

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

︸ ︷︷ ︸

≤0

∣
∣+ |SOMS2(Cj \ {i, ℓ})| |cij |

)

.

By Propositions C.14 and C.15, 0 < SOMS2(Γ) ≤ 1/2 for all Γ ⊆ C, and so

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

ℓ∈C
ℓ 6=i

∑

j∈Vi

[ℓ ∈ Cj]

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

.

Furthermore, because these two finite sums can be transposed,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)
∑

ℓ∈C
ℓ 6=i

[ℓ ∈ Cj].

Hence, the second sum is a count of all elements in (C \ {i}) ∩ Cj . That is,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

|{ℓ ∈ C : ℓ ∈ Cj \ {i}}|
︸ ︷︷ ︸

Number of non-i cooperators

connected to j

=
∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

|Cj \ {i}| ,

and, because j ∈ Vi if and only if i ∈ Cj ,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

(|Cj | − 1) .

However, by assumption (ii), each conveyor j ∈ V has no more than three outgoing connections
to cooperators (i.e., |Cj | ≤ 3). Additionally, by assumption (iii), if j ∈ Vi is a 3-conveyor (i.e., it
has 3 outgoing cooperator connections), then there must be some other conveyor m ∈ Vi \ {j}
that is a 2-conveyor. So letting m ∈ Vi be the 2-conveyor that is guaranteed to exist,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

Doubled contribution to sum from
other cooperators connected to

assumed 3-conveyors in Vi \ {m}
︷ ︸︸ ︷

2
∑

j∈Vi\{m}

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

︸ ︷︷ ︸

≤0

∣
∣+

1

2
|cij |

)

+

Contribution to sum from
other cooperator of 2-conveyor m ∈ Vi
︷ ︸︸ ︷
∣
∣p′im(Qm) + γip

′′
im(Qm)

︸ ︷︷ ︸

≤0

∣
∣+

1

2
|cim|.

11

4 DISTRIBUTED COMPUTATION OF THE NASH EQUILIBRIUM

Because of item (iii) in Definition 4.1 of an SPF,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

j∈Vi\{m}

(

−
(
2p′ij(Qj) + 2γip

′′
ij(Qj)

)
+ |cij |

)

− (p′im(Qm) + γip
′′
im(Qm)) +

1

2
|cim|

=
∑

j∈Vi\{m}

(

−
(
2p′ij(Qj) + γip

′′
ij(Qj)

)
+ |cij |

)

−

≥0
︷ ︸︸ ︷
∑

j∈Vi\{m}

γip
′′
ij(Qj)

− (p′im(Qm) + γip
′′
im(Qm)) +

|cim|

2
,

and so, due to the convexity of stabilizing payment functions,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∑

j∈Vi\{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
− (p′im(Qm) + γip

′′
im(Qm)) +

∑

j∈Vi\{m}

|cij |+
|cim|

2
.

Because A is finite, Vi ⊆ A is finite, and so

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∑

j∈Vi\{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
− (p′im(Qm) + γip

′′
im(Qm))

+

(

|

m∈Vi
︷ ︸︸ ︷

Vi \ {m}|+
1

2

)

max
j∈Vi

|cij |

= −
∑

j∈Vi\{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
− (p′im(Qm) + γip

′′
im(Qm)) +

(

|Vi| −
1

2

)

max
j∈Vi

|cij |,

and

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∑

j∈Vi\{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
− (p′im(Qm) + γip

′′
im(Qm)) +

(

|Vi| −
1

2

)

max
j∈Vi

|cij |.

By expanding the summation’s index set to include m ∈ Vi and subtracting the new contribution,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∑

j∈Vi

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
+ (2p′im(Qm) + γip

′′
im(Qm))

− (p′im(Qm) + γip
′′
im(Qm)) +

(

|Vi| −
1

2

)

max
j∈Vi

|cij |,

and by canceling some of the resulting terms,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∇2

iiUi(γ)
︷ ︸︸ ︷
∑

j∈Vi

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
+

<0
︷ ︸︸ ︷

p′im(Qm) +

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

12

4 DISTRIBUTED COMPUTATION OF THE NASH EQUILIBRIUM

where the Hessian diagonal term ∇2
iiUi(γ) is evident. So

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −∇2

iiUi(γ)− |p′im(Qm)|+

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

≤ −∇2
iiUi(γ)− min

j∈Vi

|p′ij(Qj)|+

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

= −∇2
iiUi(γ)−

(

min
j∈Vi

|p′ij(Qj)| −

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

)

︸ ︷︷ ︸

> 0 by Eq. (4.6)

,

and, by the assumption in Eq. (4.6), the underbraced expression is strictly positive. Hence,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ < −∇2

iiUi(γ). (4.8)

Because ∇2
iiUi(γ) < 0, Eq. (4.8) states that |∇2

iiUi(γ)| >
∑

ℓ∈C,ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣. So assump-

tions (ii) and (iii) and Eq. (4.6) ensure strict diagonal dominance in the ith row of each utility
Hessian. For each agent, its corresponding utility function is not only concave along its play
dimension, but its concavity dominates the curvature along any other direction.

The strict diagonal dominance of the ith row of the utility Hessian also implies properties of
the TADI dynamical system. Precisely, the Jacobian of vector-valued function [∇c1Uc1 ,∇c2Uc2 ,
. . . ,∇cnUcn]

⊤ (where unique ck ∈ C for all k ∈ {1, 2, . . . , n}) is strictly row diagonally dominant.
Moreover, local stability of the synchronous approximation of the TADI follows from the stability
of this Jacobian linearization. Using the payment-as-control interpretation, these conditions
ensure controllability. In particular, Eq. (4.6) is equivalent to

Maximum variation
of payment control

due to self movement
︷ ︸︸ ︷

min
j∈Vi

2|p′ij (|Cj |) | >

Maximum variation of intrinsic cost
due to movement of others
︷ ︸︸ ︷
(

2|Vi| − 1
︸ ︷︷ ︸

Twice the number of 3-conveyors

plus a 2-conveyor

)

max
j∈Vi

|cij | for all i ∈ C. (4.9)

The “2” in the expression on the left-hand side of Eq. (4.9) reflects the dual payment action
from feed-forward and feedback controls, and the overbraced expression on the right-hand side
reflects the bound on the 3-conveyor-caused dual change and the 2-conveyor-caused single change
in SOBP that is guaranteed by assumptions (ii) and (iii). So the number of incoming conveyors
maxi∈C |Vi| or the magnitude of cooperation cost maxi∈C,j∈Vi

|cij | can only be increased if the
minimum payment slope minj∈Vi

|p′ij(Cj)| can also be increased. If sufficiently large feedback
gain (i.e.,

∑

j∈Ci
p′ij) is unavailable, the evolution of the TADI trajectory may be too sensitive to

cost variations (i.e., the payment signal may fail to dominate the intrinsic cost signal).

4.4 Finding necessary conditions on network topology for stabilization

As shown in the derivation of Eq. (4.9), every 3-conveyor contributes two payment slope p′ij
terms to ∇2

iℓUi that are cancelled by the two slope terms in ∇2
iiUi. Hence, when 3-conveyors are

connected to a cooperator, the cooperator loses control of its utility gradient along its cooperation
coordinate unless there exists a 2-conveyor that it can dominate. So 2-conveyors are themselves
stabilizers that allow a cooperator i ∈ C to focus its decision making on the conveyors in Vi for

13

5 EXAMPLE: SIMULATION OF COOPERATIVE AAV SCENARIO

5

6

4

7

3

0

8 9

2

10

1

11

4

7

2

10

5

6

1

11

3

8 9

λ4

4

λ7

7

λ2

2

λ10

10

λ5

5

λ6

6

λ1

1

λ11

11

λ3

3

λ8

8
λ9

9

Fig. 4.2: Many-agent task-processing network with stable topology.

which there is only one other cooperator competing for payment. For example, in the complex
TPN in Fig. 4.2, the 3-conveyors in the network (e.g., 2, 4, 7, and 10) could destabilize the
gradient ascent if the 2-conveyors (e.g., 1, 5, 6, 8, 9, and 11) were not also present. It may
be possible to weaken Theorem 4.1 to allow for conveyors with n > 3 outgoing connections to
cooperators so long as the slopes of the n-conveyor payment functions can be dominated by those
of other 1-conveyors.

5 Example: Simulation of cooperative AAV scenario

Consider an AAV scenario like the one shown in Fig. 2.2. Assume that πk
i = 1, cℓij = 0.1, and

qℓij = 1 for all i ∈ A, j ∈ A \ {i}, k ∈ Yi, and ℓ ∈ Yj . Also assume that λ1
1 = 0.6, λ3

3 = 1.7,

0 < λ2 ≤ 5, and the linear payment function pii(Qi) , 1−Qi/λ
i
i for all i ∈ A. Hence, the three

otherwise equivalent agents face different task encounter rates, and their payment functions have
slopes that are inversely proportional to each encounter rate. So agents associated with higher
encounter rates have a higher demand for cooperation and thus have inelastic payment functions
(i.e., cooperation retains its high value even when a high quantity is available).

A conservative choice of step size σℓ , 1/(4maxi∈A,j∈Vi
p′ij([0, 0, 0]

⊤) for all ℓ ∈ A yields a
convergent TADI for this scenario. Matlab simulation results summarized in Fig. 5.1 show
how the resulting Nash equilibrium γ∗ depends upon the AAV encounter rates. In particular,
the Nash equilibrium has the desirable feature that λi > λj implies that γ∗

i < γ∗
j for all i, j ∈ A.

So agents that are locally busy are less willing to cooperate, and agents that are relatively idle
are more willing to cooperate. In Fig. 5.1, as λ2 increases, payment function p2 to agents 1
and 3 becomes shallower and causes the optimal γ∗

1 and γ∗
3 to increase. However, as γ∗

1 (or γ∗
3)

increases, payment p3(Q3) (or p1(Q1)) to agent 2 is depressed and γ∗
2 decreases. Moreover, at

point b when the ascent of γ∗
1 truncates, the rate that γ∗

2 decreases shallows. At point c when
γ∗
3 also truncates, the γ∗

2 graph flattens entirely. Hence, to reduce the load on the saturated
cooperators, agent 2 reciprocates for their cooperation by not reducing its own cooperation level
to zero. So even though each agent’s own encounter rate has no direct relationship to its TADI-
directed movement, a desirable coupling between encounter rates and optimal cooperation levels
emerges.

14

6 CONCLUSION

λ2 (encounters per second)

O
p
ti
m
al

co
op

er
at
io
n
w
il
li
n
gn

es
s

γ
∗ i
fo
r
i
∈
{1
,2
,3
}

A B C

0

1

0 1 2 3 4

λ1 = 0.6

λ1

λ3 = 1.7

λ3

ba

b

b
b
c

γ
∗
1

γ
∗
3

γ ∗
2

A

λ2 < λ1 < λ3

γ∗
2 > γ∗

1 > γ∗
3

B

λ1 < λ2 < λ3

γ∗
1 > γ∗

2 > γ∗
3

C

λ1 < λ3 < λ2

γ∗
1 > γ∗

3 > γ∗
2

Fig. 5.1: AAV optimal cooperation propensity as encounter rates vary.

6 Conclusion

A framework for cooperative task processing on a network has been presented. Using this frame-
work, a particular totally asynchronous cooperative control policy was shown to stabilize the
Nash equilibrium of a cooperation game. By introducing a cooperation-trading economy into
the formulation, the agents individually climb their own local utility functions yet still achieve
an equilibrium where task processing is shared among different agents. The present work ad-
justs each agent’s overall cooperation propensity in order to maximize economic returns over a
lifetime of task encounters and processing requests. Future work should address the case where
each agent associates a different cooperation propensity with each of its connected conveyors.
Likewise, forwarding probabilities could be considered to be decision variables that should be
adjusted across each agent’s connected cooperators. The present work associates only one deci-
sion variable with each distributed agent, and so it makes the simplifying assumption that those
variables come from a Cartesian product space. However, if future frameworks place multiple
decision variables on a single distributed agent, that assumption may be relaxed.

A weakness of the present work is that it implicitly assumes that agents either have infinite
processing capacity or that all tasks have negligible processing time. Processing and switching
durations are central motivations for the work of Perkins and Kumar [44] just as finite capacity
motivates the work of Cruz [15]. These effects can incorporated by explicitly modeling the
average processing time of each task. In particular, the present work optimizes the long-term
rate of gain of each agent based on rewards issued at the instant each task arrives, and this rate
will be depressed by the processing time of each task. Moreover, the time spent processing a task
represents a opportunity cost due to the lost time available for encountering other tasks that
return higher profit. Because each arrival is independent, the average reward results of Johns
and Miller [28] for Markov renewal–reward processes can be used to model the long-term rate
of gain in this case. Hence, the utility functions discussed in this work can be easily modified
to include these effects. If analytically tractable, optimal results can be found that account for
appreciable processing times.

15

A MATHEMATICAL SYMBOLS AND NOTATION

A Mathematical symbols and notation

≡ identically equal

≈ approximately equal

, defined as

⊂ (⊃) strict (i.e., not equal) subset (superset) of

⊆ (⊇) subset (superset) of

{. . . : P} a subset of set {. . .} where predicate P holds for every element of the set

∅ empty set (i.e., the null set {})

X (X) set X (set of sets X)

℘(X) power set of X (i.e., {Y : Y ⊆ X})

X \ Y set difference (i.e., all elements of Y removed from X)

|X | cardinality (i.e., generalization of size) of set X

[S] Iverson bracket [27, 29] for statement S (i.e., [S] = 1 or 0 if S is true or false)

inf (sup) infimum (supremum) — least upper (greatest lower) bound

lim supX superior/outer limit of set X (e.g., infn→∞ supm≥n Sm for sequence (Sm))

lim inf X inferior/inner limit of set X (e.g., supn→∞ infm≥n Sm for sequence (Sm))

limX limit of set X (i.e., value upon which lim inf X and lim supX agree)

X closure of set X (i.e., limit points of the set)

N natural numbers (i.e., {1, 2, . . . })

W whole numbers (i.e., {0, 1, 2, . . . })

Z integers (i.e., {. . . ,−2,−1, 0, 1, 2, . . . })

Q rational numbers (i.e., {p/q : p ∈ Z, q ∈ N})

R real numbers (i.e., Q)

R≤0 (R≥0) non-positive (non-negative) real numbers

R<0 (R>0) strictly negative (positive) real numbers

R extended real numbers (i.e., compactification R ∪ {−∞,∞})

→ tends to (i.e., denotes a limit)

x⊤ (A⊤) transpose of vector x (matrix A)

‖x‖p (‖A‖p) (induced) p-norm of vector x (matrix A)

Bε(x
∗) in normed vector space X , open ball {x ∈ X : ‖x− x∗‖ < ε}

Bp
ε(x

∗) p-ball (i.e., open ball Bε(x
∗) under p-norm ‖·‖p)

B∞
ε (x∗) ∞-ball (i.e., open ball Bε(x

∗) under maximum norm ‖·‖∞)

f : X 7→ Y function from X into Y

f ′ (f ′(x0)) first derivative df/dx (at point x0 ∈ X) of function f : X 7→ Y where X ,Y ⊆ R

f ′′ (f ′′(x0)) second derivative d2f/dx2 (at point x0 ∈ X) of function f : X 7→ Y where
X ,Y ⊆ R

∇f gradient (transposed Jacobian) of scalar-valued (vector-valued) function f

∇2f Hessian of scalar-valued function f (i.e., ∇∇f)

∇if For X1 × · · · × Xn, i
th block gradient of scalar-valued function f

∇2
ijf ∇i∇jf (when Xi ⊆ R for all i, ∇2

ijf is ith row and jth column of Hessian ∇2f)

16

B PROOFS OF CENTRAL RESULTS

B Proofs of central results

B.1 Properties of stabilizing payment functions

Proof of Proposition 4.1. Stabilizing payment function p is differentiable, defined over a compact
set, and strictly decreasing, and so the bounds on p are clear by Weierstrass’ theorem. Payment
slope p′ is differentiable, defined over a compact set, and nondecreasing, and so p′ is bounded by
p′(0) and p′(k). However, because p is strictly decreasing, p′(k) < 0.

Proof of Proposition 4.2. Function p is strictly decreasing and convex. Additionally, because
γ ∈ [0, 1], then γp′′(Q) ≤ p′(Q) for all Q ∈ [0, k]. So all conditions of Definition 4.1 are met.

Proposition B.1. (Conical combinations of stabilizing payment functions) Take k ∈ N and a
set of stabilizing payment functions {p1, p2, . . . , pm} where pj : [0, k] 7→ R for all j ∈ {1, 2, . . . ,m}.
Assume that there are constants {α1, α2, . . . , αm} where

(i) αi ∈ R≥0 for all i ∈ {1, 2, . . . ,m}.

(ii) There is some j ∈ {1, 2, . . . ,m} such that αj > 0.

Then the nontrivial conical combination p : [0, k] 7→ R defined by

p(Q) , α1p1(Q) + α2p2(Q) + · · ·+ αmpm(Q)

for all Q ∈ [0, k] is also a stabilizing payment function.

Proof of Proposition B.1. The function p is clearly twice-continuously differentiable as it is a
linear combination of twice-continuously-differentiable functions. To be a stabilizing payment
function, p must satisfy requirements (i), (ii), and (iii) of Definition 4.1.

(i) Assume that i ∈ {1, 2, . . . ,m} is such that αi > 0. Then, for each Q ∈ [0, k],

p′(Q) = α1p
′
1(Q) + α2p

′
2(Q) + · · ·+ αip

′
i(Q) + · · ·+ αnp

′
n(Q) ≤ αip

′
i(Q) < 0,

and so p is strictly decreasing.

(ii) For each Q ∈ [0, k],

p′′(Q) = α1p
′′
1(Q) + α2p

′′
2(Q) + · · ·+ αnp

′′
n(Q) ≥ 0,

and so p is a convex function.

(iii) For each γ ∈ [0, 1] and each Q ∈ [γ, k − (1− γ)],

p′(Q) + γp′′(Q) = α1p
′
1(Q) + · · ·+ αnp

′
n(Q) + γ (α1p

′′
1(Q) + · · ·+ αnp

′′
n(Q))

= α1 (p
′
1(Q) + γp′′1(Q)) + · · ·+ αn (p

′
n(Q) + γp′′n(Q)) ≤ 0,

and so γp′′(Q) ≤ −p′(Q).

B.2 Nash convergence in the cooperation game

What follows is a complete proof of Theorem 4.1, which is the principal result of this work.
As discussed in Section 4, the proof uses numerical constraints on the distributed algorithm
and topological constraints on the task-processing network to restrict aspects of the curvature
of each agent’s utility function. Those bounds can be combined with results from Bertsekas
and Tsitsiklis [8] to show asymptotic convergence to the Nash equilibrium of the cooperation
game. In particular, provided that the utility function is so constrained, the desired result
follows almost entirely from Propositions D.3 and D.4 that are included in Appendix D along
with other supporting material from Bertsekas and Tsitsiklis [8]. To aid in the interpretation of
the predicated constraints, specialized versions of those proofs are applied in line with this proof.

17

B PROOFS OF CENTRAL RESULTS

Proof of Theorem 4.1. Define a mapping R : [0, 1]n 7→ Rn by R(γ) , (R1(γ), R2(γ), . . . , Rn(γ))
where, for each i ∈ {1, 2, . . . , n},

Ri(γ) , γi + σi∇iUi(γ)

for each γ ∈ [0, 1]n. By Propositions D.7 and D.8, the mapping T is the orthogonal projection of
R onto the Cartesian product space [0, 1]n of real intervals. In particular, T (γ) = [R(γ)]+ and
Ti(γ) = [Ri(γ)]

+ for each i ∈ {1, 2, . . . , n}.
Let x, y ∈ [0, 1]n. By the projection theorem in Proposition D.6, the orthogonal projection

[·]+ is non-expansive with respect to the ℓ2-norm. Hence,

‖T (x)− T (y)‖∞ = max
i∈C

|Ti(x)− Ti(y)| = max
i∈C

‖Ti(x)− Ti(y)‖2

≤ max
i∈C

‖Ri(x)−Ri(y)‖2 = max
i∈C

|Ri(x)−Ri(y)|

= ‖R(x)−R(y)‖∞. (B.1)

Because [0, 1]n is a convex set, tx + (1 − t)y ∈ [0, 1]n for all t ∈ [0, 1]. So, for each i ∈ C, define
function gi : [0, 1] 7→ R by the convex combination

gi(t) , tRi(x) + (1− t)Ri(

∈[0,1]n

︷ ︸︸ ︷

tx+ (1− t)y) = txi + (1− t)yi + σi∇iUi(tx+ (1− t)y),

which shares being continuously differentiable with ∇iUi. Then, for each i ∈ C, Ri(x) = gi(1)
and Ri(y) = gi(0). Furthermore, by the fundamental theorem of calculus,

‖T (x)− T (y)‖∞ ≤ ‖R(x)−R(y)‖∞ = max
i∈C

|Ri(x)−Ri(y)|

= max
i∈C

|gi(1)− gi(0)| = max
i∈C

∣
∣
∣
∣

∫ 1

0

g′i(t) dt

∣
∣
∣
∣

≤ max
i∈C

∫ 1

0

|g′i(t)| dt ≤ max
i∈C

max
t∈[0,1]

|g′i(t)|

∫ 1

0

dt = max
i∈C

max
t∈[0,1]

|g′i(t)|.

Then, by applying the chain rule to g′i for each i ∈ C,

‖R(x)−R(y)‖∞ ≤ max
i∈C

max
t∈[0,1]

|xi − yi + σi(∇∇iUi(tx+ (1− t)y
︸ ︷︷ ︸

∈[0,1]n

))⊤(x− y)|,

but tx+ (1− t)y ∈ [0, 1]n for all t ∈ [0, 1]; so

‖R(x)−R(y)‖∞ ≤ max
i∈C

max
z∈[0,1]n

|xi − yi + σi(∇∇iUi(z))
⊤(x− y)|.

By Eq. (D.2) that follows from Definition D.7 of the block gradient in a product space, row
vector ∇∇iU

⊤
i =

[
∇2

i1Ui ∇2
i2Ui · · · ∇2

inUn

]
. So, by expanding the dot product,

‖R(x)−R(y)‖∞ ≤ max
i∈C

max
z∈[0,1]n

∣
∣
∣
∣

(
1 + σi∇

2
iiUi(z)

)
(xi − yi) +

∑

ℓ∈C
ℓ 6=i

σi∇
2
iℓUi(z)(xℓ − yℓ)

∣
∣
∣
∣

≤ max
i∈C

max
z∈[0,1]n

(
∣
∣1 + σi∇

2
iiUi(z)

∣
∣ |xi − yi|+

∑

ℓ∈C
ℓ 6=i

σi|∇
2
iℓUi(z)||xℓ − yℓ|

)

≤ max
i∈C

max
z∈[0,1]n

(
∣
∣1 + σi∇

2
iiUi(z)

∣
∣+
∑

j∈C
j 6=i

σi|∇
2
iℓUi(z)|

)

‖x− y‖∞. (B.2)

18

B PROOFS OF CENTRAL RESULTS

However, by assumption (i), for any γ ∈ [0, 1]n and i ∈ C,

∇2
iiUi(γ) ,

∂2Ui(γ)

∂γi
2 =

∑

j∈Vi

(
2p′ij(Qj)+γip

′′
ij(Qj)

)
=
∑

j∈Vi

<0
︷ ︸︸ ︷

p′ij(Qj)+
∑

j∈Vi

(

≤0
︷ ︸︸ ︷

p′ij(Qj) + γip
′′
ij(Qj)

)
< 0,

(B.3)
and

∇2
iiUi(γ) =

∑

j∈Vi

(
2p′ij(Qj) +

≥0
︷ ︸︸ ︷

γip
′′
ij(Qj)

)
≥
∑

j∈Vi

2p′ij(Qj) = −2
∑

j∈Vi

|p′ij(Qj)|

≥ −2
∑

j∈Vi

max
k∈Vi

|p′ik(0)| = −2|Vi|max
k∈Vi

|p′ik(0)| ≥ −2|Vi|max
k∈Vi

|p′ik(0)|.

So, by the assumed limits on step size σi given in Eq. (4.5),

−
1

σi
≤ ∇2

iiUi(γ) < 0 (B.4)

for all i ∈ C. Hence, following Eq. (B.2),

‖T (x)− T (y)‖∞ ≤ max
i∈C

max
z∈[0,1]n

(
∣
∣1 +

≥−1
︷ ︸︸ ︷

σi∇
2
iiUi(z)

︸ ︷︷ ︸

≥0

∣
∣+
∑

ℓ∈C
ℓ 6=i

σi|∇
2
iℓUi(z)|

)

‖x− y‖∞

= max
i∈C

max
z∈[0,1]n

(

1 + σi∇
2
iiUi(z) +

∑

ℓ∈C
ℓ 6=i

σi|∇
2
iℓUi(z)|

)

‖x− y‖∞

= max
i∈C

max
z∈[0,1]n

(

1 + σi

(

∇2
iiUi(z) +

∑

ℓ∈C
ℓ 6=i

|∇2
iℓUi(z)|

))

‖x− y‖∞. (B.5)

So take γ ∈ [0, 1]n and i ∈ C. For another cooperator ℓ ∈ C \ {i}, if ℓ /∈ Cj (i.e., ℓ is not an
outgoing cooperator for j), then

∂Qj

∂γℓ
= 0 and

∂ SOBP1(Cj − {i})

∂γℓ
= 0,

where Qj ,
∑

k∈Cj
γk and SOBP is from Definition C.1. So, by introducing SOMS from Propo-

sition C.11,

0 ≤
∑

ℓ∈C
ℓ 6=i

|∇2
iℓUi(γ)| ,

∑

ℓ∈C
ℓ 6=i

∣
∣
∣
∣
∣

∂2Ui(γ)

∂γi∂γℓ

∣
∣
∣
∣
∣

=
∑

ℓ∈C
ℓ 6=i

∣
∣
∣
∣
∣
∣
∣

∑

j∈Vi

[ℓ ∈ Cj]

p′ij(Qj) + γip

′′
ij(Qj) +

∂/∂γℓ SOBP1(Cj−{i})
︷ ︸︸ ︷

SOMS2(Cj \ {i, ℓ})cij

∣
∣
∣
∣
∣
∣
∣

where [·] is the Iverson bracket [27, 29] (i.e., [S] = 1 when statement S is true and [S] = 0
otherwise). Hence, by the triangle inequality,

∑

ℓ∈C
ℓ 6=i

|∇2
iℓUi(γ)| ≤

∑

ℓ∈C
ℓ 6=i

∑

j∈Vi

[ℓ ∈ Cj]

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

︸ ︷︷ ︸

≤0

∣
∣+ |SOMS2(Cj \ {i, ℓ})| |cij |

)

.

19

B PROOFS OF CENTRAL RESULTS

By Propositions C.14 and C.15, 0 < SOMS2(Γ) ≤ 1/2 for all Γ ⊆ C, and so

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

ℓ∈C
ℓ 6=i

∑

j∈Vi

[ℓ ∈ Cj]

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

.

Furthermore, because these two finite sums can be transposed,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

j∈Vi

∑

ℓ∈C
ℓ 6=i

[ℓ ∈ Cj]

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

=
∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)
∑

ℓ∈C
ℓ 6=i

[ℓ ∈ Cj].

Hence, the second sum is a count of all elements in (C \ {i}) ∩ Cj . That is,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

|{ℓ ∈ C : ℓ ∈ Cj \ {i}}|
︸ ︷︷ ︸

Number of non-i cooperators

connected to j

=
∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

|Cj \ {i}| ,

and, because j ∈ Vi if and only if i ∈ Cj ,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

∑

j∈Vi

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

∣
∣+

1

2
|cij |

)

(|Cj | − 1) .

However, by assumption (ii), each conveyor j ∈ V has no more than three outgoing connections
to cooperators (i.e., |Cj | ≤ 3). Additionally, by assumption (iii), if j ∈ Vi is a 3-conveyor (i.e., it
has 3 outgoing cooperator connections), then there must be some other conveyor m ∈ Vi \ {j}
that is a 2-conveyor. So, letting m ∈ Vi be the 2-conveyor that is guaranteed to exist,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤

Doubled contribution to sum from
other cooperators connected to

assumed 3-conveyors in Vi \ {m}
︷ ︸︸ ︷

2
∑

j∈Vi\{m}

(
∣
∣p′ij(Qj) + γip

′′
ij(Qj)

︸ ︷︷ ︸

≤0

∣
∣+

1

2
|cij |

)

+

Contribution to sum from
other cooperator of 2-conveyor m ∈ Vi
︷ ︸︸ ︷
∣
∣p′im(Qm) + γip

′′
im(Qm)

︸ ︷︷ ︸

≤0

∣
∣+

1

2
|cim|

= 2
∑

j∈Vi\{m}

(

−
(
p′ij(Qj) + γip

′′
ij(Qj)

)

︸ ︷︷ ︸

≥0

+
1

2
|cij |

)

− (p′im(Qm) + γip
′′
im(Qm))

︸ ︷︷ ︸

≥0

+
1

2
|cim|

=
∑

j∈Vi\{m}

(

−
(
2p′ij(Qj) + 2γip

′′
ij(Qj)

)
+ |cij |

)

− (p′im(Qm) + γip
′′
im(Qm)) +

1

2
|cim|

=
∑

j∈Vi\{m}

(

−
(

2p′ij(Qj) + γip
′′
ij(Qj) + γip

′′
ij(Qj)

)

+ |cij |

)

− (p′im(Qm) + γip
′′
im(Qm)) +

|cim|

2

20

B PROOFS OF CENTRAL RESULTS

=
∑

j∈Vi\{m}

(

−
(
2p′ij(Qj) + γip

′′
ij(Qj)

)
+ |cij |

)

−

≥0
︷ ︸︸ ︷
∑

j∈Vi\{m}

γip
′′
ij(Qj)

− (p′im(Qm) + γip
′′
im(Qm)) +

|cim|

2
,

and so, due to the convexity of stabilizing payment functions,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∑

j∈Vi\{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
+

∑

j∈Vi\{m}

|cij | − (p′im(Qm) + γip
′′
im(Qm)) +

|cim|

2

= −
∑

j∈Vi\{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
− (p′im(Qm) + γip

′′
im(Qm)) +

∑

j∈Vi\{m}

|cij |+
|cim|

2
.

Because A is finite, Vi ⊆ A is finite, and so
∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∑

j∈Vi\{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
− (p′im(Qm) + γip

′′
im(Qm))

+

(

|

m∈Vi
︷ ︸︸ ︷

Vi \ {m}|+
1

2

)

max
j∈Vi

|cij |

= −
∑

j∈Vi\{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
− (p′im(Qm) + γip

′′
im(Qm)) +

(

|Vi| −
1

2

)

max
j∈Vi

|cij |,

and

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∑

j∈Vi\{m}

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
− (p′im(Qm) + γip

′′
im(Qm)) +

(

|Vi| −
1

2

)

max
j∈Vi

|cij |.

So, by expanding the index set of the summation to include m ∈ Vi and subtracting the new
term outside the summation,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ ≤ −

∑

j∈Vi

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
+ (2p′im(Qm) + γip

′′
im(Qm))

− (p′im(Qm) + γip
′′
im(Qm)) +

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

= −

∇2

iiUi(γ)
︷ ︸︸ ︷
∑

j∈Vi

(
2p′ij(Qj) + γip

′′
ij(Qj)

)
+

<0
︷ ︸︸ ︷

p′im(Qm) +

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

= −∇2
iiUi(γ)− |p′im(Qm)|+

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

≤ −∇2
iiUi(γ)− min

j∈Vi

|p′ij(Qj)|+

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

= −∇2
iiUi(γ)−

(

min
j∈Vi

|p′ij(Qj)| −

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

)

︸ ︷︷ ︸

> 0 by Eq. (4.6)

.

21

B PROOFS OF CENTRAL RESULTS

So, by the assumption in Eq. (4.6), the underbraced expression is strictly greater than zero.
Hence,

∑

ℓ∈C
ℓ 6=i

∣
∣∇2

iℓUi(γ)
∣
∣ < −∇2

iiUi(γ). (B.6)

Furthermore, by the bounds on ∇2
iiUi(γ) in Eq. (B.4),

−
1

σi
≤ ∇2

iiUi(γ) +
∣
∣∇2

iℓUi(γ)
∣
∣ < 0.

Hence, following Eq. (B.5),

‖T (x)− T (y)‖∞ ≤ max
i∈C

max
z∈[0,1]n

(

1 + σi

(

∈
[

−
1
σi

,0
)

︷ ︸︸ ︷

∇2
iiUi(z) +

∑

ℓ∈C
ℓ 6=i

|∇2
iℓUi(z)|

︸ ︷︷ ︸

∈[−1,0)

)

︸ ︷︷ ︸

∈[0,1)

)

︸ ︷︷ ︸

,α∈[0,1)

‖x− y‖∞,

So there is an α ∈ [0, 1) such that

‖T (x)− T (y)‖∞ ≤ α‖x− y‖∞.

Thus, the projection mapping T is a contraction mapping with modulus α. By Proposition D.2(a),
there exists a unique γ∗ ∈ [0, 1]n such that T (γ∗) = γ∗ (i.e., γ∗ is a fixed point of the contraction
T). Further, convergence of the sequence {γ(t)}t∈T generated by the TADI iteration mapping
T in Eq. (4.5) to γ∗ is guaranteed by Proposition D.14. In particular, the sequence of sets
{X (k)}k∈W defined, for all k ∈ W, by

X (k) ,
{
γ ∈ [0, 1]n : ‖γ − γ∗‖∞ ≤ αk‖γ(0)− γ∗‖∞

}

=
{
(γc1 , γc2 , . . . , γcn) ∈ [0, 1]n : |γi − γ∗

i | ≤ αk max
j∈C

|γj(0)− γ∗
j | for all i ∈ C

}

=
∏

i∈C

{γi ∈ [0, 1] : |γi − γ∗
i | ≤ αk max

j∈C
|γj(0)− γ∗

j |}

︸ ︷︷ ︸

,Xi(k)

meets the general (i.e., asynchronous) convergence conditions given in Proposition D.12 that:

(i) For each i ∈ C and k ∈ W, · · · ⊂ Xi(k + 1) ⊂ Xi(k) ⊂ · · · ⊂ Xi(0) ⊆ [0, 1]. Additionally,
γ(0) ∈ X (0).

(ii) For all k ∈ W and all γ ∈ X (k), T (γ) ∈ X (k + 1). Additionally, if {yk} is a sequence such

that yk ∈ X (k) for every k ∈ W, then limk→∞ yk = γ∗, which is the fixed point of the TADI
mapping T .

Additionally, for any ε, there exists a k ∈ W such that X (k) ⊆ B∞
ε (γ∗) where open ball B∞

ε (γ∗) ,
{γ ∈ [0, 1]n : ‖γ − γ∗‖∞ < ε}. So, by Proposition D.13, the TADI-generated sequence {γ(t)}

and the outdated estimate sequences {γi(t)} for all i ∈ C each converge to fixed point γ∗. The
sets X (k) for all k ∈ W are analogous to level sets of a Lyapunov function; they guarantee the
continual reduction of the distance between the asynchronous algorithm’s trajectory and the
fixed point γ∗. By Proposition D.11, the fixed point γ∗ that {γ(t)} converges to is the unique
solution to the separable variational inequality problem in Eq. (4.1). By Proposition D.10, the
variational inequality solution γ∗ is the Nash equilibrium of the cooperation game.

22

B PROOFS OF CENTRAL RESULTS

Proposition B.2. (Sufficient condition for diagonal dominance) For all i ∈ C, if step size σi is
such that

From Eq. (4.5)
︷ ︸︸ ︷

1

σi
≥ 2|Vi|max

k∈Vi

|p′ik(0)| (B.7a)

and

2min
j∈Vi

|p′ij(|Cj |)| >

1

σi max
k∈Vi

|p′ik(0)|
− 1

max
j∈Vi

|cij |, (B.7b)

then

min
j∈Vi

|p′ij(|Cj |)| >

(

|Vi| −
1

2

)

max
j∈Vi

|cij |

︸ ︷︷ ︸

Eq. (4.6)

for all i ∈ C.

Proof of Proposition B.2. By Eq. (B.7a), for all i ∈ C,

1

σi max
k∈Vi

|p′ik(0)|
≥ 2|Vi|,

and so Eq. (B.7b) implies

2 min
j∈Vi

|p′ij(|Cj |)| > (2|Vi| − 1)max
j∈Vi

|cij | for all i ∈ C.

Hence,

min
j∈Vi

|p′ij(|Cj |)| >

(

|Vi| −
1

2

)

max
j∈Vi

|cij |for all i ∈ C.

23

C COMBINATORICS APPLIED TO VOLUNTEERING

C Combinatorics applied to volunteering

The principal results used in this work are Propositions C.11, C.14, and C.15, which follow
primarily from Theorems C.1, C.2, and C.3. These results serve to assist in the analysis of
volunteering problems like the one given in Example C.1.

Example C.1. (Volunteering) You are going to volunteer for a job. Two other individuals will
volunteer (independently) with probabilities γ1 and γ2, respectively. If n ∈ {1, 2, 3} individuals
volunteer, any one of them will be asked to complete the job with uniform probability 1/n. Given
that you volunteer, the probability that you will be asked to do the job is

(1− γ1) (1− γ2) +
1

2
γ1 (1− γ2) +

1

2
(1− γ1) γ2 +

1

3
γ1γ2. (C.1)

That is, given that you volunteer, there is a 1/(k + 1) probability that you will be asked to
complete the job when k ∈ {0, 1, 2} other individuals also volunteer.

The probability in Eq. (C.1) from Example C.1 matches the SOBP expression in Eq. (C.3) from
Definition C.1 below with g = 1, Ω = {γi}i∈{1,2}, and Γ = {1, 2}.

C.1 Definitions: SOBP and SOMS

In the following, let I ⊂ W be a finite index set, and let

Ω , {γi}i∈I (C.2)

be an indexed family with where γi ∈ X ⊆ R for each i ∈ I.

Definition C.1. (Sum of binomial products) For Γ ⊆ I, g ∈ N, and m , |Γ|, the sum of
binomial products

SOBPg(Γ) ,
1

g

∏

i∈Γ

(1− γi)

+
1

g + 1

∑

i∈Γ

γi
∏

j∈Γ\{i}

(1− γj)

+
1

g + 2

∑

{i,j}⊆Γ

γiγj
∏

k∈Γ\{i,j}

(1− γk)

+ · · ·

+
1

g + ℓ

∑

C⊆Γ
|C|=ℓ

(
∏

i∈C

γi

)

∏

k∈Γ\C

(1− γk)

+ · · ·

+
1

g +m

∏

i∈Γ

γi,

(C.3)

and g is called the seed.

24

C COMBINATORICS APPLIED TO VOLUNTEERING

Definition C.2. (Sum of monomial sums) For Γ ⊆ I, h ∈ N, and m , |Γ|, the sum of monomial
sums

SOMSh(Γ) ,
1

h
−

1

h+ 1

∑

i∈Γ

γi +
1

h+ 2

∑

{i,j}⊆Γ

γiγj

− . . . +− . . . + (−1)ℓ
1

h+ ℓ

∑

C⊆Γ
|C|=ℓ

(
∏

i∈C

γi

)

− . . . +− . . .

+ (−1)m
1

h+m

∏

i∈Γ

γi,

(C.4)

and h is called the seed.

The following sections provide the analytical tools to relate SOBP to SOMS. Hence, they
provide a framework in which to analyze volunteering problems like Example C.1.

C.2 Coordinate transformation

Proposition C.1. (Binomial theorem) For a, b ∈ R and n ∈ W,

(a+ b)n =

1
︷ ︸︸ ︷
(
n

0

)

an +

(
n

1

)

an−1b1 +

(
n

2

)

an−2b2 + · · ·+

(
n

k

)

an−kbk + · · ·+

1
︷ ︸︸ ︷
(
n

n

)

bn

=

n∑

k=0

(
n

k

)

an−kbk

(C.5)

where, for all r ∈ {0, 1, . . . , n},
(
n
r

)
, n!/(r!(n− r)!).

Proof of Proposition C.1 is given by Gustafson et al. [24].

Remark (Simple binomial theorem) Let x ∈ R and n ∈ W. Then, by Proposition C.1,

(1 + x)n =

(
n

0

)

+

(
n

1

)

x1 +

(
n

2

)

x2 + · · ·+

(
n

n− 1

)

xn−1 +

(
n

n

)

xn =

n∑

k=0

(
n

k

)

xk (C.6)

Proposition C.2. (Product of binomials) For a set Γ ⊆ I,

∏

i∈Γ

(1− γi) =
∑

C⊆Γ

(−1)|C|
∏

i∈C

γi

= 1−
∑

i∈Γ

γi +
∑

{i,j}⊆Γ

γiγj −
∑

{i,j,k}⊆Γ

γiγjγk + · · ·+ (−1)ℓ
∑

C⊆Γ
|C|=ℓ

∏

i∈C

γi + · · ·+ (−1)|Γ|
∏

i∈Γ

γi.

(C.7)

Proof of Proposition C.2. The claim in Eq. (C.7) is trivially true for Γ = ∅ (i.e., when |Γ| = 0
and |℘(Γ)| = |{∅}| = 1). For the purpose of induction, assume that the claim is true for Γ ⊆ I

25

C COMBINATORICS APPLIED TO VOLUNTEERING

with |Γ| = k ∈ {0, 1, . . . , n− 1} and maxΓ ≤ min(I \ Γ). Let j = min(I \ Γ). Then

∏

i∈Γ∪{j}

(1− γi) = (1− γj)
∏

i∈Γ

(1− γi)

= (1− γj)
∑

C⊆Γ

(−1)|C|
∏

i∈C

γi

=
∑

C⊆Γ

(−1)|C|
∏

i∈C

γi − γj
∑

C⊆Γ

(−1)|C|
∏

i∈C

γi

=
∑

C⊆Γ

(−1)|C|
∏

i∈C

γi

︸ ︷︷ ︸

Combinations of Γ

+
∑

C⊆Γ

(−1)|C|+1
∏

i∈C

γiγj

︸ ︷︷ ︸

Combinations of Γ also including j

=
∑

C⊆Γ

(−1)|C|
∏

i∈C

γi +
∑

C⊆Γ

(−1)|C|+1
∏

i∈C∪{j}

γi

=
∑

C⊆Γ

(−1)|C|
∏

i∈C

γi

︸ ︷︷ ︸

Combinations of
Γ ∪ {j} without j

+
∑

C0⊆Γ
C=C0∪{j}

(−1)|C|
∏

i∈C

γi

︸ ︷︷ ︸

Combinations of Γ ∪ {j} with j

=
∑

C⊆(Γ∪{j})

(−1)|C|
∏

i∈C

γi,

and so the claim is also true for the k + 1 case. Hence, because the claim is true for the k = 0
case, it is true for all k ∈ {0, 1, . . . , n} by induction.

Proposition C.3. (Sum of mixed product) Let Γ ⊆ I, m , |Γ|, and ℓ ∈ {0, 1, . . . ,m}. Then

∑

C⊆Γ
|C|=ℓ

(
∏

i∈C

γi

)

∏

k∈Γ\C

(1− γk)

=
∑

C⊆Γ
|C|≥ℓ

(

(−1)|C|−ℓ

(
|C|

ℓ

)
∏

i∈C

γi

)

=

(
ℓ

ℓ

)
∑

C⊆Γ
|C|=ℓ

∏

i∈C

γi +

(
ℓ+ 1

ℓ

)
∑

C⊆Γ
|C|=ℓ+1

∏

i∈C

γi + · · ·+

(
m− 1

ℓ

)
∑

C⊆Γ
|C|=m−1

∏

i∈C

γi +

(
m

ℓ

)
∏

i∈Γ

γi.

(C.8)

Proof of Proposition C.3. By Proposition C.2,

∑

C⊆Γ
|C|=ℓ

(
∏

i∈C

γi

)

∏

k∈Γ\C

(1− γk)

 =
∑

C⊆Γ
|C|=ℓ

(
∏

i∈C

γi

)

∑

D⊆(Γ\C)

(−1)|D|
∏

k∈D

γk

=
∑

C⊆Γ
|C|=ℓ

∑

D⊆(Γ\C)

(−1)|D|

(
∏

i∈C

γi

)
∏

k∈D

γk

26

C COMBINATORICS APPLIED TO VOLUNTEERING

=
∑

C⊆Γ
|C|=ℓ

∑

D⊆(Γ\C)

(−1)|D|
∏

i∈D∪C

γi

=
∑

C⊆Γ
|C|=ℓ

∑

E⊆Γ
C⊆E

(

(−1)|E|−ℓ
∏

i∈E

γi

)

︸ ︷︷ ︸

Each E ⊆ Γ repeats

for every C ⊆ E set

=
∑

E⊆Γ
|E|≥ℓ

(−1)|E|−ℓ

(
|E|

ℓ

)
∏

i∈E

γi

Theorem C.1. (Binomial–monomial relationship) Let Γ ⊆ I, m , |Γ|, and ak ∈ R for all
k ∈ {0, 1, . . . ,m}. The expression

a0
∏

i∈Γ

(1− γi)

+ a1
∑

i∈Γ

γi
∏

j∈Γ\{i}

(1− γj)

+ a2
∑

{i,j}⊆Γ

γiγj
∏

k∈Γ\{i,j}

(1− γk)

+ · · ·

+ aℓ
∑

C⊆Γ
|C|=ℓ

(
∏

i∈C

γi

)

∏

k∈Γ\C

(1− γk)

+ · · ·

+ am
∏

i∈Γ

γi,

(C.9a)

is equal to

b0
︷︸︸︷
a0 −

b1
︷ ︸︸ ︷

(a0 − a1)
∑

i∈Γ

γi +

b2
︷ ︸︸ ︷

2∑

k=0

(
2

k

)

(−1)kak
∑

{i,j}⊆Γ

γiγj

− . . . +− . . . + (−1)ℓ
ℓ∑

k=0

(
ℓ

k

)

(−1)kak

︸ ︷︷ ︸

bℓ

∑

C⊆Γ
|C|=ℓ

(
∏

i∈C

γi

)

− . . . +− . . . + (−1)m
m∑

k=0

(
m

k

)

(−1)kak

︸ ︷︷ ︸

bm

∏

i∈Γ

γi,

(C.9b)

where

bℓ ,
ℓ∑

k=0

(
ℓ

k

)

(−1)kak (C.9c)

27

C COMBINATORICS APPLIED TO VOLUNTEERING

is the coefficient that corresponds to the sum of monomials with ℓ ∈ {0, 1, . . . ,m} factors.

Proof of Theorem C.1. Applying Proposition C.3 to expand each row of Eq. (C.9a) yields

a0

(

1 −
∑

i∈Γ

γi +
∑

{i,j}∈Γ

γiγj −
∑

{i,j,k}∈Γ

γiγjγk + · · · −+ · · · + (−1)m
∏

i∈Γ

γi

)

+ a1

(
∑

i∈Γ

γi −

(
2

1

)
∑

{i,j}∈Γ

γiγj +

(
3

1

)
∑

{i,j,k}∈Γ

γiγjγk − · · · +− · · · − (−1)m
(
m

1

)
∏

i∈Γ

γi

)

+ a2

(

+

(
2

2

)
∑

{i,j}∈Γ

γiγj −

(
3

2

)
∑

{i,j,k}∈Γ

γiγjγk + · · · −+ · · · + (−1)m
(
m

2

)
∏

i∈Γ

γi

)

+ · · ·

+ am

((
m

m

)
∏

i∈Γ

γi

)

.

The expansion is a sum of monomial sums, each of which is a product of 0 to m elements of
Γ. The row that is multiplied by ak will contribute

(
ℓ
k

)
of each monomial with ℓ factors. For

example, the three-factor monomial γaγbγc (i.e., ℓ = 3) can be generated in the a2 row (i.e.,
k = 2) by

γaγb(1− γc) . . . , γaγc(1− γa) . . . , or γbγc(1− γa) . . . ,

and so the a2 row will contribute
(
3
2

)
= 3 of this monomial that each have a weight of −a2. The

expression in Eq. (C.9b) results from summing the elements of each column of the expansion
above.

Remark (Coordinate transformation) The relationship in Eq. (C.9c) is a coordinate transforma-
tion from (a1, a2, . . . , am) in SOBP space to (b1, b2, . . . , bm) in SOMS space.

Proposition C.4. (Lower bound) Let X ⊆ [0, 1] in Eq. (C.2). If ak ≥ 0 for all k ∈ {1, . . . , |Γ|},
then both Eqs (C.9a) and (C.9b) are greater than or equal to min{ak : k ∈ {0, 1, . . . , |Γ|}}.

Proof. Let a , min{ak : k ∈ {0, 1, . . . , |Γ|}}, S be the series in Eq. (C.9a) with ak as given, and
let Y be the series in Eq. (C.9a) with ak = a. Because γi ∈ [0, 1] for all i ∈ I, then Y ≤ S.
Moreover, by Theorem C.1, the bounding series Y can be written in the form of Eq. (C.9b) with

bℓ =

By Proposition C.1 (i.e., binomial theorem)
︷ ︸︸ ︷

a

ℓ∑

k=0

(
ℓ

k

)

(−1)k = a(1 + (−1))ℓ = a× 0ℓ =

{

a if ℓ = 0,

0 if ℓ > 0.

So Y = a and, by Theorem C.1, Eq. (C.9a) and the corresponding Eq. (C.9b) are both greater
than or equal to Y = a.

Proposition C.5. (Upper bound) Let X ⊆ [0, 1] in Eq. (C.2). If ak ≥ 0 for all k ∈ {1, . . . , |Γ|},
then both Eqs (C.9a) and (C.9b) are less than or equal to max{ak : k ∈ {0, 1, . . . , |Γ|}}.

Proof. Let a , max{ak : k ∈ {0, 1, . . . , |Γ|}}, S be the series in Eq. (C.9a) with ak as given, and
let Y be the series in Eq. (C.9a) with ak = a. Because γi ∈ [0, 1] for all i ∈ I, then Y ≥ S.
Moreover, by Theorem C.1, the bounding series Y can be written in the form of Eq. (C.9b) with

bℓ =

By binomial theorem
︷ ︸︸ ︷

a
ℓ∑

k=0

(
ℓ

k

)

(−1)k = a(1 + (−1))ℓ = a× 0ℓ =

{

a if ℓ = 0,

0 if ℓ > 0,

28

C COMBINATORICS APPLIED TO VOLUNTEERING

where the replacement is justified by Proposition C.1 (i.e., the binomial theorem). So Y = a
and, by Theorem C.1, Eq. (C.9a) and the corresponding Eq. (C.9b) are both less than or equal
to Y = a.

Proposition C.6. (SOBP lower bound) Let X ⊆ [0, 1] in Eq. (C.2). For Γ ⊆ I and g ∈ N,
SOBPg(Γ) ≥ 1/(g +m) where m , |Γ|.

Proof of Proposition C.6. Apply Proposition C.4 with ak , 1/(g + k) for all k ∈ {0, 1, . . . , |Γ|}.

Proposition C.7. (SOBP upper bound) Let X ⊆ [0, 1] in Eq. (C.2). For Γ ⊆ I and g ∈ N,
SOBPg(Γ) ≤ 1/g.

Proof of Proposition C.7. Apply Proposition C.5 with ak , 1/(g + k) for all k ∈ {0, 1, . . . , |Γ|}.

C.3 Translating SOBP to SOMS

Proposition C.8. (Regrouping by monomials) Let Γ ⊆ I, m , |Γ|, and g ∈ N. Then SOBPg(Γ)
is equal to

1

g
︸︷︷︸

b0

−
1∑

k=0

(−1)k

k + g
︸ ︷︷ ︸

b1

∑

i∈Γ

γi +

2∑

k=0

(−1)k

k + g

(
2

k

)

︸ ︷︷ ︸

b2

∑

{i,j}⊆Γ

γiγj − . . . +− . . . + (−1)m
m∑

k=0

(−1)k

k + g

(
m

k

)

︸ ︷︷ ︸

bm

∏

i∈Γ

γi

(C.10)
where

bℓ ,
ℓ∑

k=0

(−1)k

k + g

(
ℓ

k

)

(C.11)

is the underbraced coefficient corresponding to the sum of monomials with ℓ ∈ {0, 1, . . . ,m}
factors.

Proof of Proposition C.8. Apply Theorem C.1 with ak , 1/(k + g) for all k ∈ {0, 1, . . . ,m}.

Proposition C.9. (General SOBP weight expression) For ℓ ∈ W and g ∈ N,

ℓ∑

k=0

(−1)k

k + g

(
ℓ

k

)

=
ℓ!(g − 1)!

(g + ℓ)!
.

Proof of Proposition C.9.

ℓ∑

k=0

(−1)k

k + g

(
ℓ

k

)

=
ℓ∑

k=0

(−1)k

k + g

ℓ!

k!(ℓ− k)!
=

ℓ∑

k=0

ℓ!

(k + g)k!(ℓ− k)!
(−1)k

=

ℓ∑

k=0

ℓ!

(k + g)(k + g − 1)!(ℓ− k)!

(k + g − 1)!

k!
(−1)k

=
ℓ!

(ℓ+ g)!

ℓ∑

k=0

(ℓ+ g)!

(k + g)!(ℓ+ g − (k + g))!

(k + g − 1)!

k!
(−1)k

29

C COMBINATORICS APPLIED TO VOLUNTEERING

=
ℓ!

(ℓ+ g)!

ℓ∑

k=0

(
ℓ+ g

k + g

)
(k + g − 1)!

k!
(−1)k

=
ℓ!

(ℓ+ g)!

ℓ∑

k=0

(
ℓ+ g

k + g

)
(k + g − 1)!

k!
xk

∣
∣
∣
∣
∣
x=−1

=
ℓ!

(ℓ+ g)!

ℓ∑

k=0

(ℓ+ g)!

(k + g)!(ℓ+ g − (k + g))!

(k + g − 1)!

k!
xk

∣
∣
∣
∣
∣
x=−1

=
ℓ!

(ℓ+ g)!

ℓ+g−1
∑

k=g−1

(ℓ+ g)!

(k + 1)!(ℓ+ g − (k + 1))!

k!

(k − (g − 1))!
xk−(g−1)

∣
∣
∣
∣
∣
∣
x=−1

=
ℓ!

(ℓ+ g)!

ℓ+g−1
∑

k=g−1

(
ℓ+ g

k + 1

)
k!

(k − (g − 1))!
xk−(g−1)

∣
∣
∣
∣
∣
∣
x=−1

=
ℓ!

(ℓ+ g)!

dg−1

dxg−1

ℓ+g−1
∑

k=0

(
ℓ+ g

k + 1

)

xk

∣
∣
∣
∣
∣
x=−1

=
ℓ!

(ℓ+ g)!

dg−1

dxg−1

(
ℓ+g−1
∑

k=−1

(
ℓ+ g

k + 1

)

xk −

(
ℓ+ g

0

)
1

x

)∣
∣
∣
∣
∣
x=−1

=
ℓ!

(ℓ+ g)!

(

dg−1

dxg−1

1

x

ℓ+g
∑

k=0

(
ℓ+ g

k

)

xk −
dg−1

dxg−1

1

x

)∣
∣
∣
∣
∣
x=−1

=
ℓ!

(ℓ+ g)!

(
dg−1

dxg−1

(1 + x)ℓ+g

x
− (−1)g−1 (g − 1)!

xg

)∣
∣
∣
∣
x=−1

which is justified by Proposition C.1 (i.e., the binomial theorem). The right-hand side of this
equation is equal to

ℓ!(g − 1)!

(ℓ+ g)!
.

Theorem C.2. (Transformation of SOBP) Let Γ ⊆ I, m , |Γ|, and g ∈ N. Then SOBPg(Γ) is
equal to

1

g
︸︷︷︸

b0

−
1

(g + 1)g
︸ ︷︷ ︸

b1

∑

i∈Γ

γi+
2

(g + 2)(g + 1)g
︸ ︷︷ ︸

b2

∑

{i,j}∈Γ

γiγj − . . . +− . . . +(−1)m
m!(g − 1)!

(g +m)!
︸ ︷︷ ︸

bm

∏

i∈Γ

γi. (C.12)

Proof of Theorem C.2. Apply Proposition C.9 to Proposition C.8.

Proposition C.10. (Seed-1 case) Let Γ ⊆ I. Then

SOBP1(Γ) = SOMS1(Γ). (C.13)

Proof of Proposition C.10. By applying Theorem C.2 with g = 1,

SOBP1(Γ) = 1−
1

2

∑

i∈Γ

γi +
1

3

∑

{i,j}⊆Γ

γiγj − . . . +− . . . + (−1)m
1

m+ 1

∏

i∈Γ

γi = SOMS1(Γ).

30

C COMBINATORICS APPLIED TO VOLUNTEERING

Proposition C.11. (Seed-1 SOBP derivative) Let Γ ⊆ I and k ∈ Γ. Then

∂

∂γk
SOBP1(Γ) = − SOMS2(Γ \ {k}). (C.14)

Proof of Proposition C.11. Let m , |Γ|. By Proposition C.10,

∂

∂γk
SOBP1(Γ)

=
∂

∂γk

1−
1

2

∑

i∈Γ

γi +
1

3

∑

{i,j}⊆Γ

γiγj − . . . +− . . . + (−1)m
1

m+ 1

∏

i∈Γ

γi

= −

1

2

∑

i∈(Γ\{k})

γi −
1

3

∑

{i,j}⊆(Γ\{k})

γiγj + . . . −+ . . . − (−1)m−1 1

2 + (m− 1)

∏

i∈(Γ\{k})

γi

= − SOMS2(Γ− {k})

C.4 Bounding SOMS

Proposition C.12. (SOMS weight expression) For ℓ ∈ W and h ∈ N,

ℓ∑

k=0

(
ℓ

k

)

(−1)k
k!(h− 1)!

(k + h)!
=

1

ℓ+ h
. (C.15)

Proof of Proposition C.12.

ℓ∑

k=0

(
ℓ

k

)

(−1)k
k!(h− 1)!

(k + h)!
=

ℓ∑

k=0

ℓ!

k!(ℓ− k)!
(−1)k

k!(h− 1)!

(k + h)!

= ℓ!(h− 1)!

ℓ∑

k=0

(−1)k

(k + h)!(ℓ− k)!

= ℓ!
h!

h

(
1

h!

1

ℓ!
−

1

(h+ 1)h!

1

(ℓ− 1)!
+ . . . −+ . . . +

(−1)ℓ

(ℓ+ h)!

)

=

(
1

h
−

ℓ

(h+ 1)h
+

ℓ(ℓ− 1)

(h+ 2)(h+ 1)h
− . . . +− . . . +

(−1)ℓℓ!(h− 1)!

(ℓ+ h)!

)

=

(
1

h
−

ℓ

h

(
1

h+ 1
−

ℓ− 1

h+ 1

(
1

h+ 2
− · · ·

)))

= f0

where

fk ,
1

h+ k
−

ℓ− k

h+ k
fk+1. (C.16)

Clearly, fℓ = 1/(h+ ℓ). By Eq. (C.16), if fk = 1/(h+ ℓ) for some k ∈ {1, . . . , ℓ}, then

fk−1 =
1

h+ k − 1
−

ℓ− k + 1

h+ k − 1
fk =

1

h+ k − 1
−

ℓ− k + 1

h+ k − 1

1

h+ ℓ

=
(h+ ℓ)− (ℓ− k + 1)

(h+ k − 1)(h+ ℓ)
=

h+ k − 1

(h+ k − 1)(h+ ℓ)
=

1

h+ ℓ
.

By induction, Eq. (C.16) is true for all k ∈ {0, 1, . . . , ℓ}, and so f0 = 1/(ℓ+ h).

31

C COMBINATORICS APPLIED TO VOLUNTEERING

Theorem C.3. (Transformation of SOMS) Let Γ ⊆ I, m , |Γ|, and h ∈ N. Then SOMSh(Γ)
is equal to

1

h

∏

i∈Γ

(1− γi)

+
1

(h+ 1)h

∑

i∈Γ

γi
∏

j∈(Γ\{i})

(1− γj)

+
2

(h+ 2)(h+ 1)h

∑

{i,j}⊆Γ

γiγj
∏

k∈(Γ\{i,j})

(1− γk)

+ · · ·

+
m!(h− 1)!

(h+m)!

∏

i∈Γ

γi.

Proof of Theorem C.3. By definition,

SOMSh(Γ) ,
1

h
−

1

h+ 1

∑

i∈Γ

γi +
1

h+ 2

∑

{i,j}⊆Γ

γiγj

− . . . +− . . . + (−1)ℓ
1

h+ ℓ

∑

C⊆Γ
|C|=ℓ

(
∏

i∈C

γi

)

− . . . +− . . .

+ (−1)m
1

h+m

∏

i∈Γ

γi,

but, by Proposition C.12,

1

h+ ℓ
=

ℓ∑

k=0

(
ℓ

k

)

(−1)k
k!(h− 1)!

(k + h)!
,

and so Theorem C.1 applies with

bℓ =

ℓ∑

k=0

(
ℓ

k

)

(−1)k
k!(h− 1)!

(k + h)!
︸ ︷︷ ︸

ak

for each ℓ ∈ {0, 1, . . . ,m} and ak , k!(h− 1)!/(k + h)! for each k ∈ {0, 1, . . . ,m}.

Proposition C.13. (Coefficient montonocity) Take m ∈ W and h ∈ N. Let

ak ,
k!(h− 1)!

(h+ k)!
=

k!

(h+ k)(h+ k − 1) · · · (h+ 1)(h)
=

1

h

k∏

i=1

i

h+ i
.

Then a0 > a1 > a2 > · · · > am > 0.

Proof of Proposition C.13. Because h ≥ 1,

a1 =
1

h

1

h+ 1
<

1

h
= a0.

32

C COMBINATORICS APPLIED TO VOLUNTEERING

Assuming that ak < ak−1 for some k ∈ {1, 2, . . . ,m}, then

ak+1 = ak
1

h+ k
< ak

because h ≥ 1 and k ≥ 1. Hence, ak ≥ ak+1 for all k ∈ {0, 1, . . . ,m− 1} by induction. Further,
because am is a product of strictly positive factors, ak > 0 for all k ∈ {0, 1, . . . ,m}.

Proposition C.14. (SOMS lower bound) Let X ⊆ [0, 1] in Eq. (C.2). For Γ ⊆ I and h ∈ N,

SOMSh(Γ) ≥
m!(h− 1)!

(h+m)!
=

m!

(h+m)(h+m− 1) · · · (h+ 1)h
=

1

h

m∏

k=1

k

h+ k

where m , |Γ|.

Proof of Proposition C.14. Apply Theorem C.3 to SOMSh(Γ) and then, using the greatest lower
bound implied from Proposition C.13, apply Proposition C.4 with ak , k!(h − 1)!/(h + k)! for
all k ∈ {0, 1, . . . , |Γ|}.

Proposition C.15. (SOMS upper bound) Let X ⊆ [0, 1] in Eq. (C.2). For Γ ⊆ I and h ∈ N,
SOMSh(Γ) ≤ 1/h.

Proof of Proposition C.15. Apply Theorem C.3 to SOMSh(Γ) and then, using the upper bound
implied from Proposition C.13, apply Proposition C.5 with ak , k!(h − 1)!/(h + k)! for all
k ∈ {0, 1, . . . , |Γ|}.

33

D PARALLEL AND DISTRIBUTED COMPUTATION

D Parallel and distributed computation

Unless otherwise noted, the following results and definitions are either taken from, based upon,
or highly influenced by Bertsekas and Tsitsiklis [8].

D.1 Vector spaces

In a vector space V ⊆ Rn, a ∈ R is a scalar and v ∈ V is a vector with elements that might be
shown in coordinate notation as (v1, v2, . . . , vn) or in vector notation as [v1, v2, . . . , vn]

⊤ where
⊤ indicates an element-wise row–column transposition. In the case where vector space V is a
Cartesian product of other vector spaces, the elements (or coordinates) of vector v ∈ V may
themselves be vectors (e.g., v1 ∈ V1 where V = V1 × V2).

The topology of each vector space (i.e., the definition of its open sets) is induced from a metric
(i.e., a measure of distance between points) that is induced from a norm (i.e., a measure of the
length of a vector). The standard 1-norm, 2-norm, and maximum norms are used. Any other
norms will be defined as necessary.

Assumption D.1. (Cartesian product assumption) Without loss of generality, represent the
Euclidean space Rn as the Cartesian product Rn1 ×Rn2 ×· · ·×Rnm where n1+ · · ·+nm = n and
ni ≥ 1 for each i ∈ {1, 2, . . . ,m}. Hence, a vector x ∈ Rn will be represented as (x1, x2, . . . , xm)
where xi , (xi1, xi2, . . . , xini

) ∈ Rni for each i ∈ {1, . . . ,m}. Assume that set X ⊆ Rn is
the Cartesian product X1 × X2 × · · · × Xm, where Xi is a nonempty subset of Rni for each
i ∈ {1, . . . ,m}. Likewise, a vector x ∈ X will be represented as (x1, x2, . . . , xm) where xi ∈ Xi

for each i ∈ {1, . . . ,m}. Assume that subspace Rni is endowed with norm ‖·‖i for each i ∈
{1, 2, . . . ,m}.

Definition D.1. (Block-maximum norm) Take Assumption D.1 for granted (i.e., X ⊆ Rn is
a special Cartesian product of normed spaces). The block-maximum norm on Rn for a vector
x ∈ X is

‖x‖ , max{‖xi‖i : i ∈ {1, 2, . . . ,m}}.

Definition D.2. (Induced matrix norm for product spaces) Without loss of generality, represent
the Euclidean space Rn as the Cartesian product Rn1 ×Rn2 ×· · ·×Rnm where n1+ · · ·+nm = n.
Hence, a vector x ∈ Rn will be represented as (x1, x2, . . . , xm) where xi ∈ Rni for each i ∈
{1, . . . ,m}. Assume that subspace Rni is endowed with norm ‖·‖i for each i ∈ {1, 2, . . . ,m}. For
any matrix A of dimension ni × nj , the induced matrix norm

‖A‖ij , max

{
‖Ax‖i
‖x‖j

: x ∈ Rnj , x 6= 0

}

= max {‖Ax‖i : x ∈ Rnj , ‖x‖j = 1} .

This definition matches the general definition for induced matrix norms of arbitrary matrices.
However, the norm desired for each vector subspace block is made explicit in the notation. That
is, the two subscripts indicate the two different norms to be used.

D.2 Functional analysis

Here, definitions and useful results from basic functional analysis are given. Because results will
be used in the context of a subspace of the Euclidean Rn space that has several norms available
to it, the following definitions implicitly assume that a sufficient topology (i.e., defined open sets)
can be induced from a metric that is induced from a norm. Results and definitions are taken
from Rudin [47] and Bertsekas and Tsitsiklis [8].

34

D PARALLEL AND DISTRIBUTED COMPUTATION

Definition D.3. (Differentiable vector-valued functions) For X ⊆ Rn, if f : X 7→ Rm is a
vector-valued function where f , (f1, f2, . . . , fm), it is called differentiable if each component
fi : X 7→ R of f is differentiable. Similarly, a vector-valued function is continuously differentiable
if each of its components are continuously differentiable.

Definition D.4. (Gradient) For X ⊆ Rn, the gradient of scalar-valued continuously differen-
tiable function f : X 7→ R at a point x , (x1, x2, . . . , xn) ∈ X is the column vector

∇f(x) ,

∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂xn

.

Definition D.5. (Jacobian) For X ⊆ Rn, the Jacobian of vector-valued continuously differen-
tiable function f : X 7→ Rm defined with f , (f1, f2, . . . , fm) at a point x ∈ X is the transpose
of the matrix

∇f(x) ,
[
∇f1(x) ∇f2(x) · · · ∇fm(x)

]

which is a collection of gradients. Hence, because the Jacobian is (∇f(x))⊤, the entry in its ith

row and jth column is the partial derivative ∂fi/∂fj evaluated at the point x.

Definition D.6. (Hessian) Take X ⊆ Rn and scalar-valued continuously differentiable function
f : X 7→ R at point x ∈ X . If vector-valued gradient ∇f : Rn 7→ Rn is continuously differentiable
at x , (x1, x2, . . . , xn) ∈ X , then the Hessian of f at x is

∇2f(x) , ∇∇f(x) =

∂2f(x)
∂x1

2

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x1∂x2

∂2f(x)
∂x2

2 · · · ∂2f(x)
∂xn∂x2

...
...

. . .
...

∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂xn

· · · ∂2f(x)
∂xn

2

.

That is, the Hessian is the transpose of the Jacobian of the gradient.

Remark (Symmetric Hessian) The Hessian is defined for a scalar-valued continuously differen-
tiable function whose vector-valued gradient is also continuously differentiable; hence, by con-
tinuity of the partial derivatives in the Hessian, the Hessian matrix will be symmetric. So the
Hessian is the Jacobian of the gradient.

Definition D.7. (Block gradient in Cartesian product space) Take Assumption D.1 for granted
(i.e., X ⊆ Rn is a special Cartesian product of normed spaces), and take f : X 7→ Rn to be a con-
tinuously differentiable vector-valued function. For i ∈ {1, . . . ,m} with x = (x1, . . . , xi, . . . , xm) ∈
X1 × · · · × Xm and xi = (xi1, . . . , xini

), the block gradient matrix

∇if(x) ,

∂f1(x)
∂xi1

∂f2(x)
∂xi1

· · · ∂fn(x)
∂xi1

∂f1(x)
∂xi2

∂f2(x)
∂xi2

· · · ∂fn(x)
∂xi2

...
...

. . .
...

∂f1(x)
∂xini

∂f2(x)
∂xini

· · · ∂fn(x)
∂xini

is an ni × n matrix.

35

D PARALLEL AND DISTRIBUTED COMPUTATION

Remark (Relationship to Jacobian) Assume that f has m vector-valued block component func-
tions so that f , (f1, f2, . . . , fm). That is, fj : X 7→ Rni with fj , (fj1, fj2, . . . , fjnj

) for each
j ∈ {1, 2, . . . ,m}. For i, j ∈ {1, 2, . . . ,m} with x = (x1, x2, . . . , xi, . . . , xm) ∈ X1 × · · · × Xm and
xi = (xi1, xi2, . . . , xini

), the block gradient matrix

∇ifj(x) =

∂fj1(x)
∂xi1

∂fj2(x)
∂xi1

· · ·
∂fjni

(x)

∂xi1

∂fj1(x)
∂xi2

∂fj2(x)
∂xi2

· · ·
∂fjnj

(x)

∂xi2

...
...

. . .
...

∂fj1(x)
∂xini

∂fj2(x)
∂xini

· · ·
∂fjnj

(x)

∂xini

is an ni × nj matrix, and the block gradient matrix

∇if(x) =
[
∇if1(x) ∇if2(x) · · · ∇ifm(x)

]

is an ni × n matrix, and the gradient matrix

∇f(x) =

∇1f(x)
∇2f(x)

...
∇mf(x)

=
[
∇f1(x) ∇f2(x) · · · ∇fm(x)

]

=

∇1f1(x) ∇1f2(x) · · · ∇1fm(x)
∇2f1(x) ∇2f2(x) · · · ∇2fm(x)

...
... ∇ifj(x)

...
∇mf1(x) ∇mf2(x) · · · ∇mfm(x)

(D.1)

is the transpose of the n× n Jacobian of f . In the case of a continuously differentiable gradient,
the Hessian is symmetric, and so the Hessian will be equivalent to the Jacobian of the gradient.
In either case, the block gradient carves out blocks of the Jacobian of vector-valued functions
defined on Cartesian product spaces.

Remark (Relationship between Hessian and block gradients) Let g : X 7→ R be a scalar-valued
continuously differentiable function, and let f : X 7→ Rn be defined as its vector-valued continu-
ously differentiable gradient. That is, let f(x) , ∇g(x) for all x ∈ X . Then f = (f1, f2, . . . , fm)
where fi(x) = ∇ig(x) for all x ∈ X . Further, by Eq. (D.1), for x ∈ X , the Hessian

∇2g(x) = ∇∇g(x) =

∇1∇g(x)
∇2∇g(x)

...
∇m∇g(x)

=
[
∇∇1g(x) ∇∇2g(x) · · · ∇∇mg(x)

]

=

∇2
11g(x) ∇2

12g(x) · · · ∇2
1mg(x)

∇2
21g(x) ∇2

22g(x) · · · ∇2
2mg(x)

...
... ∇2

ijg(x)
...

∇2
m1g(x) ∇2

m2g(x) · · · ∇2
mmg(x)

(D.2)

where
∇2

ijg(x) , ∇i∇jg(x)

36

D PARALLEL AND DISTRIBUTED COMPUTATION

is the ni ×nj block of ∇2g(x) located at the ith row block the jth column block. For example, if
each block is a subset of R (i.e., m = n and ni = 1 for all i ∈ {1, 2, . . . ,m}), ∇2

ijg is the ith row

and the jth column of Hessian ∇2g.

D.3 Theory of contractions

Convergence analysis of iterative algorithms is simplified when the algorithms contract in some
way. Here, contraction mappings are defined and theoretical results are given.

Definition D.8. (Contraction mapping and its modulus) Suppose that X ,Y ⊆ Rn, T : X 7→ Y,
and

‖T (x)− T (y)‖ ≤ α‖x− y‖ for all x, y ∈ X

where ‖·‖ is a norm endowed to the corresponding subspace and α ∈ [0, 1). The mapping T is a
contraction mapping and α is the modulus of T .

Remark (Lipschitz continuity of contraction mappings) Any contraction mapping T is automat-
ically Lipschitz continuous.

Definition D.9. (Block contraction over Cartesian product sets) Take Assumption D.1 for
granted (i.e., X ⊆ Rn is a special Cartesian product of normed spaces), and assume that Rn

is endowed with the block-maximum norm ‖·‖. A contraction T : X 7→ X under this block-
maximum norm with modulus α is called a block contraction.

Definition D.10. (Block component of a block contraction) Take Assumption D.1 for granted
(i.e., X ⊆ Rn is a special Cartesian product of normed spaces), and assume that Rn is endowed
with the block-maximum norm ‖·‖. For a block contraction T : X 7→ X , a mapping Ti : X 7→ Xi

can be defined as the ith block component of T . That is, for x ∈ X ,

T (x) , (T1(x), T2(x), . . . Tm(x)).

Proposition D.1. (Block component is a contraction) Take Assumption D.1 for granted (i.e.,
X ⊆ Rn is a special Cartesian product of normed spaces), and assume that Rn is endowed with the
block-maximum norm ‖·‖. Mapping T : X 7→ X is a contraction with modulus α if and only if the
block component Ti : X 7→ Xi is itself a contraction with modulus α for every i ∈ {1, 2, . . . ,m}.

Proof of Proposition D.1 is omitted for brevity.

Definition D.11. (Contracting iterations) Suppose that X ⊆ Rn, T : X 7→ X is a contraction
mapping, and the sequence {x(t)} is such that

x(t+ 1) = T (x(t)) where t ∈ W. (D.3)

The iteration in Eq. (D.3) is a contracting iteration.

Definition D.12. (Fixed point) Suppose that X ⊆ Rn, and let there be a mapping T : X 7→ X .
Any vector x∗ ∈ X satisfying x∗ = T (x∗) is a fixed point of T .

Remark (Algorithm to find fixed points of contractions) The contracting iteration corresponding
to contraction T may be viewed as an algorithm for finding the fixed point of T .

Proposition D.2. (Convergence of contracting iterations) If X ⊆ Rn is closed and convex and
T : X 7→ X is a contraction with modulus α ∈ [0, 1), then

(a) (Existence and uniqueness of fixed points) The mapping T has a unique fixed point x∗ ∈ X .

37

D PARALLEL AND DISTRIBUTED COMPUTATION

(b) (Geometric convergence) For every initial vector x(0) ∈ X , the sequence {x(t)} generated
by the contracting iteration x(t+1) = T (x(t)) converges to x∗ geometrically with rate α. In
particular,

‖x(t)− x∗‖ ≤ αt‖x(0)− x∗‖ for all t ∈ W.

Proof of Proposition D.2 is given by Bertsekas and Tsitsiklis [8].

D.3.1 Simple linear mapping

The following theorems each take Assumption D.1 for granted (i.e., X ⊆ Rn is a special Cartesian
product of normed spaces) and provide contracting conditions for the mapping T : X 7→ Rn

where, for each i ∈ {1, 2, . . . ,m}, ith block-component Ti : X 7→ Rni is of the form

Ti(x) , xi − σG−1
i fi(x) for all x ∈ X (D.4)

where fi : X 7→ Rni is a function, Gi is a symmetric positive definite matrix, and σ > 0 is a
scalar. Mappings of this form are used in Section D.5.2.

Proposition D.3. (Block-maximum contraction on convex sets) Take Assumption D.1 for
granted (i.e., X ⊆ Rn is a special Cartesian product of normed spaces), and assume that Rn is
endowed with the block-maximum norm ‖·‖. For each i ∈ {1, 2, . . . ,m}, let Gi be an invertible
symmetric matrix of dimensions ni × ni. Also let f : Rn 7→ Rn be a continuously differentiable
function defined by f , (f1, f2, . . . , fm) where fi : Rn 7→ Rni is a continuously differentiable
function for each i ∈ {1, 2, . . . ,m}. Take I to be the identity matrix and σ ∈ R to be some scalar.
Assume that X is convex and that there exists a scalar α ∈ [0, 1) such that

∥
∥I − σG−1

i (∇ifi(x))
⊤
∥
∥
ii
+
∑

j∈{1,2,...,n}
j 6=i

∥
∥σG−1

i (∇jfi(x))
⊤
∥
∥
ij
≤ α (D.5)

for all x ∈ X and i ∈ {1, 2, . . . , n} where ‖·‖ij is the induced matrix norm from Definition D.2

acting on matrices of dimension ni×nj; that is, ‖A‖ij , max{‖Ax‖i : x ∈ Rnj , ‖x‖j = 1}. Then
the mapping T : X 7→ Rn defined by block component

Ti(x) , xi − σG−1
i fi(x) for all i ∈ {1, 2, . . . ,m} (D.6)

is a contraction under the block-maximum norm ‖·‖ with modulus α.

Proof of Proposition D.3 is given by Bertsekas and Tsitsiklis [8].

Proposition D.4. (Block-maximum contraction for scalar blocks of convex sets) Take Assump-
tion D.1 for granted (i.e., X ⊆ Rn is a special Cartesian product of normed spaces), and assume
that Rn is endowed with the block-maximum norm ‖·‖. Also assume that:

(i) ni = 1 for all i ∈ {1, 2, . . . ,m} (i.e., assume m = n). That is, assume each Cartesian block
factor is one dimensional.

(ii) The set X is convex and f : X 7→ Rn is continuously differentiable.

(iii) There exists positive constant K > 0 such that

∇ifi(x) ≤ K for all x ∈ X and i ∈ {1, 2, . . . , n}.

(iv) There exists some β > 0 such that
∑

j∈{1,2,...,n}
j 6=i

|∇jfi(x)| ≤ ∇ifi(x)− β for all x ∈ X and i ∈ {1, 2, . . . , n}.

38

D PARALLEL AND DISTRIBUTED COMPUTATION

Then the mapping T : X 7→ Rn defined by T (x) , x− σf(x) with 0 < σ < 1/K is a contraction
with respect to the maximum norm.

Proof of Proposition D.4 is given by Bertsekas and Tsitsiklis [8].

Remark (Impact of step size on convergence) As shown in the proof of Proposition D.4, a large
step size σ will reduce the contraction modulus and lead to faster convergence. The size of σ
is limited by the reciprocal of the constant K which is an upper bound for each block gradient.
Hence, the steeper the gradients, the faster convergence is possible.

The following theorems handle the simple linear mapping in Eq. (D.4) when matrix Gi is the
identity matrix I and each Cartesian factor block is endowed with the quadratic (i.e., ℓ2) norm.

D.4 Constrained optimization

The following theory is motivated by the problem of minimizing a cost function F : X 7→ R

where X ⊆ Rn is non-empty, closed, and convex. In most cases, X ⊂ Rn, and so F is being
minimized subject to constraints that are characterized by subset X . Hence, X will be called
the constraint set. The orthogonal projection methods discussed in Section D.4.1 allow for the
design of iterative algorithms that must work within convex constraint sets.

Proposition D.5. (Optimality conditions)

(a) If a vector x ∈ X minimizes F over X , then (y − x)⊤∇F (x) ≥ 0 for every y ∈ X .

(b) If F is also convex on the set X , then condition (a) is also sufficient for x to minimize F
over X .

Proof of Proposition D.5 is given by Bertsekas and Tsitsiklis [8].

Remark (Geometric interpretation) Condition (a) in Proposition D.5 states that at the minimum
of F on X , displacement and gradient vectors are always pointing in roughly the same direction.
It is necessary to climb the gradient in order to move away from the minimum.

D.4.1 Orthogonal projections

To deal with constraints, methods for iterating within the constrained convex set need to be
introduced.

Proposition D.6. (Projection theorem)

(a) For every x ∈ Rn, there exists a unique [x]+ ∈ X that minimizes ‖z − x‖2.

(b) Given some x ∈ Rn, a vector z ∈ X is equal to [x]+ if and only if (y − z)⊤(x − z) ≤ 0 for
all y ∈ X .

(c) The mapping f : Rn 7→ X defined by f(x) , [x]+ is continuous and non-expansive with
respect to the ℓ2-norm. That is, ‖[x]+ − [y]+‖2 ≤ ‖x− y‖2 for all x, y ∈ R2.

Proof of Proposition D.6 is given by Bertsekas and Tsitsiklis [8].

Definition D.13. (Orthogonal projection) For a vector x ∈ Rn, the orthogonal projection of x
onto convex set X is

[x]+ , arg min
z∈X

‖z − x‖2.

39

D PARALLEL AND DISTRIBUTED COMPUTATION

Remark (Orthogonal projection is well defined) By Proposition D.6, the orthogonal projection
is well defined.

Remark (Interpretation) Given a convex set C ⊆ X , a point x ∈ X , and the orthogonal projection
[x]+ of x onto C,

• [x]+ is colinear with a line that is orthogonal to a hypersurface that is tangent to C at the
point [x]+ ∈ C.

• [x]+ minimizes the 2-norm (i.e., “squared”) distance between C and x.

Definition D.14. (Interval) An interval I ⊆ R has the property that if x ∈ I, y ∈ I, and there
exists some z ∈ R such that x ≤ z ≤ y then z ∈ I.

Proposition D.7. (Projection onto closed interval) For x ∈ R, the closed interval I, and the
orthogonal projection [x]+ onto I,

(a) If x ∈ I, then [x]+ = x.

(b) If inf I = a and x < a, then [x]+ = a.

(c) If sup I = b and x > b, then [x]+ = b.

Proof of Proposition D.7 is omitted for brevity.

Remark (Closed-form projection onto closed interval) By Proposition D.7, for x ∈ R and closed
interval I , [a, b],

[x]+ = max{a,min{b, x}}.

Proposition D.8. (Projection onto product space) Take Assumption D.1 for granted (i.e.,
constraint set X ⊆ Rn is a special Cartesian product), and assume that nonempty subspace
Xi ⊆ Rni is closed and convex for each i ∈ {1, . . . ,m}. The orthogonal projection [x]+ of x ∈ Rn

onto X is such that
[x]+ = ([x1]

+
1 , [x2]

+
2 , . . . , [xm]+m), (D.7a)

where
[xi]

+
i , arg min

zi∈Xi

‖zi − xi‖2 (D.7b)

is the orthogonal projection of xi ∈ Rni onto Xi for each i ∈ {1, 2, . . . ,m}.

Proof of Proposition D.8 is omitted for brevity.

Remark (Projection onto product of closed intervals) By Proposition D.8, when X is the Carte-
sian product of closed intervals I1 × I2 × · · · × In, the projection of x ∈ Rn onto X is obtained
by using the simple result of Proposition D.7 to project xi onto Ii for each i ∈ {1, 2, . . . , n}.

Remark (Parallelization of product projection) Because projection onto a Cartesian product
of n intervals can be completed with n simple, separate, and independent scalar projections,
computation of [x]+ can be done in parallel on n independent agents.

D.5 Variational inequalities and parallel implementation

Constrained and unconstrained optimization, like the motivating problem for the theory in Sec-
tion D.4, can be formulated as a variational inequality problem, and these problems can be
easily parallelized under special conditions on the constraint set X , which will be assumed to be
nonempty, closed, and convex.

40

D PARALLEL AND DISTRIBUTED COMPUTATION

Definition D.15. (Variational inequality) Given a set X and a function f : X 7→ Rn, the
variational inequality problem VI(X , f) finds a vector x∗ ∈ X such that

(x− x∗)⊤f(x∗) ≥ 0 for all x ∈ X . (D.8)

It will be assumed that set X is nonempty, closed, and convex.

Proposition D.9. (Decomposition lemma) Take Assumption D.1 for granted (i.e., constraint
set X ⊆ Rn is a special Cartesian product), and assume that nonempty subspace Xi ⊆ Rni is
closed and convex for each i ∈ {1, . . . ,m}. Also let f : X 7→ Rn be expressed so that f(x) ,

(f1(x), f2(x), . . . , fm(x)) where component fi : X 7→ Rni for each i ∈ {1, 2, . . . ,m}. A vector
x∗ ∈ X solves the variational inequality VI(X , f) if and only if

(xi − x∗
i)

⊤fi(x
∗) ≥ 0 for all xi ∈ Xi (D.9)

for all i ∈ {1, 2, . . . ,m}.

Proof of Proposition D.9 is given by Bertsekas and Tsitsiklis [8].

D.5.1 Motivation from game theory

Definition D.16. (Nash game) Take Assumption D.1 for granted (i.e., constraint set X ⊆ Rn

is a special Cartesian product), and assume that nonempty subspace Xi ⊆ Rni is closed and
convex for each i ∈ {1, . . . ,m}. Consider m players in a game. Each player i ∈ {1, 2, . . . ,m}
chooses a strategy xi ∈ Xi that either is penalized by an amount equal to Fi(x) (or, equivalently,
is rewarded by an amount equal to −Fi(x)) where Fi : X 7→ R is a continuously differentiable
function. A Nash equilibrium x∗ = (x∗

1, x
∗
2, . . . , x

∗
m) ∈ X is such that

Fi(x
∗
1, . . . , x

∗
i−1, x

∗
i , x

∗
i+1, . . . , x

∗
m) ≤ Fi(x

∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
m) for all xi ∈ Xi (D.10)

for all i ∈ {1, 2, . . . ,m}. In other words, when the m players are in Nash equilibrium, no single
player can improve their utility (i.e., reduce their penalty or increase their reward) by unilaterally
deviating from the equilibrium.

Remark (Comparing Nash equilibria to optimization) A Nash equilibrium represents a balance
among the conflicting interests of all players. In principle, each player may be able to achieve
better than the utility at a Nash equilibrium, but that increase is not possible without another
player choosing to make a play that returns less utility. A Nash equilibrium represents the out-
come of independent players choosing to do as well as possible without any explicit coordination
with other players.

Remark (Significance of Cartesian product requirement) A Nash game requires each player to be
able to make independent actions, and so the game space is a Cartesian product. If players are
able to communicate and move in tandem, the game cannot be described using Nash equilibria
unless groups of tandem players are disjoint; in that case, each group must be considered to be
a larger player with a higher dimensional play space.

Proposition D.10. (Nash game as variational inequality) Take Assumption D.1 for granted
(i.e., constraint set X ⊆ Rn is a special Cartesian product), and assume that nonempty subspace
Xi ⊆ Rni is closed and convex for each i ∈ {1, . . . ,m}. The corresponding m-player Nash game
is a variational inequality VI(X , f) with

f(x) , (f1(x), f2(x), . . . , fm(x))

where
fi(x) , ∇iFi(x)

for each x ∈ X and each i ∈ {1, 2, . . . ,m}.

41

D PARALLEL AND DISTRIBUTED COMPUTATION

Proof of Proposition D.10. By the optimality conditions from Proposition D.5, for player i ∈
{1, 2, . . . ,m} whose play is independent of other play j with j 6= i, play x∗

i ∈ Xi is optimal over
convex set Xi if and only if

(xi − x∗
i)

⊤∇iFi(x
∗) for all xi ∈ Xi

where ∇iFi(x) is the block gradient from Definition D.7. This form matches Eq. (D.9) from
Proposition D.9 (i.e., the decomposition lemma).

D.5.2 Projection algorithm

Because of the non-expansive and continuous properties of the orthogonal projection discussed
in Proposition D.6(c), the projection algorithm is a special case of the simple linear mapping
discussed in Section D.3.1.

Definition D.17. (Projection iteration) The projection iteration, defined by

x(t+ 1) = Tp(x(t)) , [Rp(x(t))]
+ , [x(t)− σf(x(t))]+ for all t ∈ W (D.11)

where [·]+ is the orthogonal projection onto set X and step size scalar σ > 0, will be used to
computationally find solutions to the variational inequality problem VI(X , f).

Proposition D.11. (Fixed point characterization of solutions) Suppose scalar σ > 0. A vector
x∗ ∈ X is a solution of VI(X , f) if and only if Tp(x

∗) = x∗ where Tp is the mapping defined in
Eq. (D.11).

Proof of Proposition D.11 is given by Bertsekas and Tsitsiklis [8].

D.6 Totally asynchronous iterative distributed algorithms

Here, sufficient conditions for the convergence of a totally asynchronous iterative algorithm are
given.

Assumption D.2. (Distributed block topology) Let X be the Cartesian product of the m ∈ N

given nonempty sets X1, X2, . . . , Xm. That is,

X , X1 ×X2 × · · · × Xm

so that for each x ∈ X ,
x , (x1, x2, . . . , xm)

where xi ∈ Xi for each i ∈ {1, 2, . . . ,m}. Assume that X has an appropriate notion of convergence
defined (e.g., it is a Hausdorff topological space).

Definition D.18. (Totally asynchronous distributed iterations) Take Assumption D.2 for granted.
Let f : X 7→ X be a function with ith block component fi : X 7→ Xi so that

f(x) , (f1(x), f2(x), . . . , fm(x))

for all x ∈ X . Assume that there is an element x∗ ∈ X that is a fixed point of f . That is,

x∗ = f(x∗) and x∗
i = fi(x

∗) for all i ∈ {1, 2, . . . ,m}.

Let T , W be the indices of a sequence of physical times. The system state trajectory x(t) ,
(x1(t), x2(t), . . . , xn(t)) is defined for all t ∈ T . For each i ∈ {1, 2, . . . ,m}, there is a subset

42

D PARALLEL AND DISTRIBUTED COMPUTATION

T i ⊆ T representing indices of physical times corresponding to when block i computes its next
iteration. Additionally, for each i, j ∈ {1, 2, . . . ,m} and t ∈ T , there is an index

τ ij(t) ∈ T such that 0 ≤ τ ij(t) ≤ t (D.12a)

of the least-outdated version of system state block xj(t) available to block i at time t. Hence,
each block i ∈ {1, 2, . . . ,m} has access to an outdated state estimate

xi(t) ,
(
xi
1(t), x

i
2(t), . . . , x

i
m(t)

)
,
(
x1(τ

i
1(t)), x2(τ

i
2(t)), . . . , xm(τ im(t))

)
(D.12b)

for each t ∈ T . So, for all t ∈ T , the system state trajectory sequence {x(t)} is generated by the
totally asynchronous distributed iteration (TADI)

xi(t+ 1) =

{

fi(x
i(t))) if t ∈ T i,

xi(t) if t /∈ T i
(D.12c)

where x(t) = (x1(t), x2(t), . . . , xn(t)).

Assumption D.3. (Total asynchronism) Take Assumption D.2 for granted. For each i ∈
{1, 2, . . . ,m},

(i) The set T i used in Eq. (D.12c) is infinite (i.e., |T i| = |T | = |N|).

(ii) If the sequence {tk} generated by taking tk ∈ T i is such that limk→∞ tk = ∞, then
limk→∞ τ ij(tk) = ∞ for all j ∈ {1, 2, . . . ,m}.

Remark (Inferior limit of update times is infinite) Under Assumption D.3, for all i, j ∈ {1, 2, . . . ,m},

lim inf
t→∞

τ ij(t) = ∞,

and thus
lim sup
t→∞

τ ij(t) = lim inf
t→∞

τ ij(t) = lim
t→∞

τ ij(t) = ∞.

Proposition D.12. (TADI limits are fixed points) Take Assumptions D.2 and D.3 for granted
and let function f : X 7→ X be as in Definition D.18. Assume that:

(i) For each i ∈ {1, 2, . . . ,m}, there is a sequence of nonempty sets {Xi(k)}k∈W where

· · · ⊂ Xi(k + 1) ⊂ Xi(k) ⊂ · · · ⊂ Xi(0) ⊆ Xi. (D.13)

Hence, for all k ∈ W, there exists nonempty product set

X (k) , X1(k)×X2(k)× · · · × Xm(k), (D.14)

and
· · · ⊂ X (k + 1) ⊂ X (k) ⊂ · · · ⊂ X (0) ⊆ X .

(ii) For all k ∈ W,
f(x) ∈ X (k + 1) for all x ∈ X (k). (D.15)

Additionally, if {yk} is a sequence such that yk ∈ X (k) for every k ∈ W, then every limit

point of {yk} is a fixed point of f .

If the initial x(0) ∈ X (0), then:

(a) For all k ∈ W, there exists a t′k ∈ W such that x(t) ∈ X (k) for all t ≥ t′k.

43

D PARALLEL AND DISTRIBUTED COMPUTATION

(b) For all k ∈ W, there exists a t∗k ∈ W such that t∗k ≥ t′k and, for all i ∈ {1, 2, . . . ,m},
xi(t) ∈ X (k) for all t ≥ t∗k.

(c) Every limit point of the sequence {x(t)} generated by the totally asynchronous distributed
iteration in Eq. (D.12) is a fixed point of f .

Proof of Proposition D.12 motivated by Bertsekas and Tsitsiklis [8]. By the assumption that x(0)
∈ X (0), then for each i ∈ {1, 2, . . . ,m},

xi(0) = (x1(τ
i
1(0)), x2(τ

i
2(0)), . . . , xm(τ im(0))) = (x1(0), x2(0), . . . , xm(0)) = x(0) ∈ X (0).

(D.16)
Let t0 ∈ T , and assume that both x(t) ∈ X (0) and xi(t) ∈ X (0) for all t ≤ t0 and all i ∈
{1, 2, . . . ,m}. Then, by Eqs (D.14) and (D.15),

x(t0 + 1) = (f1(

∈X (0)
︷ ︸︸ ︷

x1(t0))
︸ ︷︷ ︸

∈X1(1)
⊂X1(0)

, f2(

∈X (0)
︷ ︸︸ ︷

x2(t0))
︸ ︷︷ ︸

∈X2(1)
⊂X2(0)

, . . . , fm(

∈X (0)
︷ ︸︸ ︷

xm(t0))
︸ ︷︷ ︸

∈Xm(1)
⊂Xm(0)

) ∈ X (1) ⊂ X (0).

Additionally, for all i ∈ {1, 2, . . . ,m},

xi(t0 + 1) = (x1(

∈{0,...,t0+1}
︷ ︸︸ ︷

τ i1(t0 + 1))
︸ ︷︷ ︸

∈X1(0)

, x2(

∈{0,...,t0+1}
︷ ︸︸ ︷

τ i2(t0 + 1))
︸ ︷︷ ︸

∈X2(0)

, . . . , xm(

∈{0,...,t0+1}
︷ ︸︸ ︷

τ im(t0 + 1))
︸ ︷︷ ︸

∈Xm(0)

) ∈ X (0)

by Eqs (D.14), (D.15), and the assumption about t0. As shown in Eq. (D.16), the assumption is
certainly true for t0 = 0. So, by induction, x(t) ∈ X (0) and xi(t) ∈ X (0) for all i ∈ {1, 2, . . . ,m}
and all t ∈ T .

For some k ∈ W, assume that there is a time tk ∈ W such that for all t ∈ T with t ≥ tk,

(i) x(t) ∈ X (k).

(ii) xi(t) ∈ X (k) for all i ∈ {1, 2, . . . ,m}.

Take i ∈ {1, 2, . . . ,m}. Let ti , min{t ∈ T i : t ≥ tk}. That is, ti is the first element of T i

such that ti ≥ tk. Because of Assumption D.3 (i.e., T i is an infinite subset of T , W), ti is well
defined. Then, by Eq. (D.15),

xi(t
i + 1) = fi(x

i(t)
︸︷︷︸

∈X (k)

) ∈ Xi(k + 1).

However, if there exists some t ∈ T such that xi(t+ 1) ∈ Xi(k + 1), then

xi(t+ 2) =

fi(x
i(t+ 1)
︸ ︷︷ ︸

∈X (k+1)

) ∈ Xi(k + 2) ⊂ Xi(k + 1) if t+ 1 ∈ T i,

xi(t+ 1) ∈ X (k + 1) if t+ 1 /∈ T i

∈ X (k + 1).

Hence, because xi(t
i + 1) ∈ Xi(k + 1), then xi(t) ∈ Xi(k + 1) for all t ∈ T with t ≥ ti + 1.

Let t′k , max{ti + 1 : i ∈ {1, 2, . . . ,m}}. Then, for all t ≥ t′k, xj(t) ∈ Xj(k + 1) for each
j ∈ {1, 2, . . . ,m}. Further, by Eq. (D.14),

x(t) = (x1(t)
︸ ︷︷ ︸

∈X1(k+1)

, x2(t)
︸ ︷︷ ︸

∈X2(k+1)

, . . . , xm(t)
︸ ︷︷ ︸

∈Xm(k+1)

) ∈ X (k + 1) for all t ≥ t′k.

44

D PARALLEL AND DISTRIBUTED COMPUTATION

Additionally, by Assumption D.3 (i.e., lim inft→∞ τ ij(t) = ∞), there is a sufficiently large t∗k ≥ t′k
such that τ ij(t) ≥ t′k for all i, j ∈ {1, 2, . . . ,m} and all t ∈ T with t ≥ t∗k. So, for all i ∈
{1, 2, . . . ,m},

xi(t) = (x1(

≥t′k
︷︸︸︷

τ i1(t))
︸ ︷︷ ︸

∈X1(k+1)

, x2(

≥t′k
︷︸︸︷

τ i2(t))
︸ ︷︷ ︸

∈X2(k+1)

, . . . , xm(

≥t′k
︷ ︸︸ ︷

τ im(t))
︸ ︷︷ ︸

∈Xm(k+1)

) ∈ X (k + 1) for all t ≥ t∗k ≥ t′k.

Hence, by induction, because x(t) ∈ X (0) (i.e., with k = 0) and, for all t ∈ T with t ≥ 0 and all
i ∈ {1, 2, . . . ,m}, xi(t) ∈ X (0), then the assumption is true for all k ≥ 0. Hence, conditions (a)
and (b) are true under these assumptions.

Assume that x(0) ∈ X (0) and x∗ is a limit point of the sequence {x(t)}. For each k ∈ W,
let tk ∈ T be the time in which x(t) ∈ Xk for all t ≥ tk. Because {x(t)} is convergent, the
subsequence {x(tk)} is also convergent. However, {x(tk)} is a sequence such that x(tk) ∈ X (k)
for all k ∈ W. Hence, the limit point x∗ is a fixed point of f by the second half of condition (ii).
Hence, condition (c) is true under these assumptions.

Remark (Interpretation of Proposition D.12) By conditions (a) and (b), if {X(k)}k∈W is sequence
that converges to x∗ ∈ X , then {x(t)}t∈T and {xi(t)}t∈T for all i ∈ {1, 2, . . . ,m} are also se-
quences that converge to x∗. By condition (c), if x∗ ∈ X is a point on which sequence {X(k)}k∈W

converges, then x∗ is a fixed point of f (i.e., x∗ = f(x∗)).

Proposition D.13. (Existence of TADI limit point) Take the assumptions of Proposition D.12
for granted. Additionally, take x∗ ∈ X . Assume that for any set N ⊆ X such that x∗ ∈ O ⊆ N
where O is an open set, there exists a k ∈ W such that X (k) ⊆ N . Then, as t → ∞, x(t) → x∗

and, for all i ∈ {1, 2, . . . ,m}, xi(t) → x∗. Additionally, the limit point x∗ is a fixed point of f
(i.e., x∗ = f(x∗)).

Proof of Proposition D.13. Take open set O such that x∗ ∈ O. The assumption states that there
exists a k ∈ W such that X (k) ⊆ O. However, by Proposition D.12(a), there exists a t∗k ∈ N such
that, for all t ≥ t∗k, x(t) ∈ X (k) ⊆ O and xi(t) ∈ X (k) ⊆ O for all i ∈ {1, 2, . . . ,m}. Hence, as
t → ∞, x(t) → x∗ and xi → x∗ for all i ∈ {1, 2, . . . ,m}. Additionally, by Proposition D.12(c),
the limit point x∗ is a fixed point of f (i.e., x∗ = f(x∗)).

Proposition D.14. (Maximum norm contraction mappings) Take Assumption D.1 for granted
(i.e., X ⊆ Rn is a special Cartesian product of normed spaces), and assume that Rn is endowed
with the block-maximum norm ‖·‖. Suppose that f : X 7→ Rn is a contraction mapping with
respect to the block-maximum norm. Convergence of f to its unique fixed point x∗ ∈ X is
guaranteed by Propositions D.12 and D.13.

Proof of Proposition D.14 motivated by Bertsekas and Tsitsiklis [8]. By Proposition D.2(a), there
exists a unique fixed point x∗ ∈ X of contraction f (i.e., x∗ = f(x∗)). For each k ∈ W, define
the set

X (k) , {x ∈ X : ‖x− x∗‖ ≤ αk‖x(0)− x∗‖}

= {(x1, x2, . . . , xm) ∈
m∏

i=1

Xi : ‖xi − x∗
i ‖i ≤ αk‖x(0)− x∗‖ for all i ∈ {1, 2, . . . ,m}}

=

m∏

i=1

{xi ∈ Xi : ‖xi − x∗
i ‖i ≤ αk‖x(0)− x∗‖}

︸ ︷︷ ︸

,Xi(k)

45

REFERENCES

where α ∈ [0, 1) is the contraction modulus of f and x(0) is the initial TADI system state.
Because α ∈ [0, 1), Xi(k + 1) ⊂ Xi(k) for all i ∈ {1, 2, . . . ,m} and all k ∈ W, and so Eq. (D.14)
holds. By Proposition D.2(b), if x ∈ X (k) then f(x) ∈ X (k+1) for all k ∈ W, and so Eq. (D.15)
holds. Additionally, x∗ ∈ X (k) for all k ∈ W. Hence, the collection of sets {X (k) : k ∈ W} meets
the requirements of Proposition D.12. Further, for any open ball Bε(x

∗) , {x ∈ X : ‖x−x∗‖ < ε}
around x∗, there exists a k ∈ W such that X (k) ⊆ Bε(x

∗). So, by Proposition D.13, convergence
of f to fixed point x∗ is guaranteed.

References

[1] Altman, E., Kherani, A.A., Michiardi, P., Molva, R.: Non-cooperative forwarding in ad-hoc
networks. In: Proceedings of Networking. Lecture Notes in Computer Science, vol. 3462,
pp. 486–498 (2005)

[2] Altman, E., Kumar, A., Kumar, D., Venkatesh, R.: Cooperative and non-cooperative control
in IEEE 802.11 WLANs. In: Proceedings of the 19th International Teletraffic Congress.
Beijing (August 29 – September 2, 2005)

[3] Amir, Y., Awerbuch, B., Barak, A., Borgstrom, R.S., Keren, A.: An opportunity cost
approach for job assignment in a scalable computing cluster. IEEE Transactions on Parallel
and Distributed Systems 11(7), 760–768 (July 2000)

[4] Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: Proceedings of
the 42nd IEEE Symposium on Foundations of Computer Science. pp. 482–491 (October 8–
11, 2001)

[5] Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)

[6] Bacharach, M.: Economics and the Theory of Games. Macmillan, London (1976)

[7] Başar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. No. 23 in Classics in
Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA,
second edn. (1999)

[8] Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods.
Athena Scientific, Belmont, Massachusetts (1997)

[9] Bredin, J., Maheswaran, R.T., Imer, Ç., Başar, T., Kotz, D., Rus, D.: A game-theoretic
formulation of multi-agent resource allocation. In: Proceedings of the Fourth International
Conference on Autonomous Agents. Barcelona, Spain (June 3–7, 2000)

[10] Buttyán, L., Hubaux, J.P.: Stimulating cooperation in self-organizing mobile ad hoc net-
works. Mobile Networks and Applications 8, 579–592 (2003)

[11] Buyya, R.: Economic-based Distributed Resource Management and Scheduling for Grid
Computing. Ph.D. thesis, Monash University, Melbourne, Australia (April 2002)

[12] Buyya, R., Abramson, D., Giddy, J.: An economy driven resource management architecture
for global computational power grids. In: Arabnia, H.R. (ed.) Proceedings of the Inter-
national Conference on Parallel and Distributed Processing Techniques and Applications.
CSREA Press, Las Vegas, NV (June 24–29, 2000)

46

REFERENCES

[13] Buyya, R., Abramson, D., Giddy, J.: A case for economy grid architecture for service
oriented grid computing. In: Proceedings of the 15th International Parallel and Distributed
Processing Symposium. pp. 776–790 (April 23–27, 2001)

[14] Croft, D.P., James, R., Thomas, P.O.R., Hathaway, C., Mawdsley, D., Laland, K.N., Krause,
J.: Social structure and co-operative interactions in a wild population of gupplies (Poecilia
reticulata). Behavioral Ecology and Sociobiology 59(5), 644–650 (March 2006)

[15] Cruz, R.L.: A calculus for network delay, part II: network analysis. IEEE Transactions on
Information Theory 37(1), 132–141 (January 1991)

[16] Dugatkin, L.A.: Do guppies play TIT FOR TAT during predator inspection visits? Behav-
ioral Ecology and Sociobiology 23(6), 395–399 (December 1988)

[17] Dugatkin, L.A. (ed.): Cooperation Among Animals: An Evolutionary Perspective. Oxford
Series in Ecology and Evolution, Oxford University Press, Oxford (1997)

[18] Feigenbaum, J., Shenker, S.: Distributed algorithmic mechanism design: recent results and
future directions. In: Proceedings of the 6th International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communication. pp. 1–13. Atlanta, Georgia, USA
(September 28, 2002)

[19] Finke, J., Passino, K.M.: Stable cooperative vehicle distributions for surveillance. Journal
of Dynamic Systems, Measurement, and Control 129(5), 597–608 (2007)

[20] Finke, J., Passino, K.M., Sparks, A.G.: Stable task load balancing for cooperative control
of networked autonomous air vehicles. IEEE Transactions on Control Systems Technology
14(5), 789–803 (September 2006)

[21] Gil, A.E., Passino, K.M.: Stability analysis of network-based cooperative resource allocation
strategies. Automatica 42(2), 245–250 (2005)

[22] Gil, A.E., Passino, K.M., Ganapathy, S., Sparks, A.: Cooperative task scheduling for net-
worked uninhabited air vehicles. IEEE Transactions on Aerospace and Electronic Systems
44(2), 561–581 (April 2008)

[23] Grosu, D., Chronopoulos, A.T.: Algorithmic mechanism design for load balancing in dis-
tributed systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cyber-
netics 34(1), 77–84 (February 2004)

[24] Gustafson, R.D., Frisk, P.D., Hughes, J.: College Algebra. Brooks/Cole Publishing, Bel-
mont, CA, tenth edn. (December 2, 2008)

[25] Hamilton, W.D.: The genetical evolution of social behavior. I. Journal of Theoretical Biology
7(1), 1–16 (1964)

[26] Ipakchi, A., Albuyeh, F.: Grid of the future. IEEE Power and Energy Magazine 7(2), 52–62
(March/April 2009)

[27] Iverson, K.E.: A Programming Language. Wiley, New York (1962)

[28] Johns, M.V., Miller, Jr., R.G.: Average renewal loss rates. Annals of Mathematical Statistics
34(2), 396–401 (June 1963)

[29] Knuth, D.E.: Two notes on notation. American Mathematical Monthly 99(5), 403–422 (May
1992)

47

REFERENCES

[30] Lalis, S., Karipidis, A.: JaWS: an open market-based framework for distributed computing
over the internet. In: Buyya, R., Baker, M. (eds.) Grid Computing – GRID 2000: 1st
IEEE/ACM International Workshop on Grid Computing, Bangalore India, December 17,
2000, Proceedings. Lecture Notes in Computer Science, vol. 1971. Springer, Berlin (Decem-
ber 17–20, 2000)

[31] Lange, D.B.: Mobile objects and mobile agents: the future of distributed computing? In:
Jul, E. (ed.) ECOOP’98 – Object-Oriented Programming: 12th European Conference, Brus-
sels, Belgium, July 20–24, 1998, Proceedings. Lecture Notes in Computer Science, vol. 1445,
pp. 1–12. Springer, Berlin (July 20–24, 1998)

[32] Lange, D.B., Oshima, M.: Seven good reasons for mobile agents. Communications of the
ACM 42(3), 88–89 (March 1999)

[33] Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature
433(7023), 312–316 (January 20, 2005)

[34] Lygeros, J., Godbole, D.N., Sastry, S.: Multiagent hybrid system design using game theory
and optimal control. In: Proceedings of the 35th IEEE Conference on Decision and Control.
vol. 2, pp. 1190–1195 (December 1996)

[35] Maheswaran, R.T., Imer, O.Ç., Başar, T.: Agent mobility under price incentives. In: Pro-
ceedings of the 38th IEEE Conference on Decision and Control. vol. 4, pp. 4020–4025.
Phoenix, Arizona, USA (December 7–10, 1999)

[36] Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University
Press, New York (1995)

[37] Milinski, M.: TIT FOR TAT in sticklebacks and the evolution of cooperation. Nature
325(6103), 433–435 (January 29, 1987)

[38] Nicholson, W.: Microeconomic Theory: Basic Principles and Extensions. Dryden Press,
Fort Worth, TX, fifth edn. (1992)

[39] Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560–1563
(December 8, 2006)

[40] Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359(6398), 826–829
(October 29, 1992)

[41] Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.A.: A simple rule for the evolution of
cooperation on graphs. Nature 441(7092), 502–505 (2006)

[42] Oram, A. (ed.): Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly &
Associates, Sebastopol, CA (2001)

[43] Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge, MA
(1994)

[44] Perkins, J.R., Kumar, P.R.: Stable, distributed, real-time scheduling of flexible manufactur-
ing/assembly/disassembly systems. IEEE Transactions on Automatic Control 34(2), 139–148
(February 1989)

48

REFERENCES

[45] Qiu, D., Srikant, R.: Modeling and performance analysis of BitTorrent-like peer-to-peer
networks. In: Yavatkar, R., Zegura, E.W., Rexford, J. (eds.) Proceedings of the ACM
SIGCOMM 2004 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication. pp. 367–378. Portland, Oregon, USA (August 30 – September 3,
2004)

[46] Reed, D., Pratt, I., Menage, P., Early, S., Stratford, N.: Xenoservers: accountable execution
of untrusted programs. In: Proceedings of the Seventh Workshop on Hot Topics in Operating
Systems. pp. 136–141. Rio Rico, Arizona, USA (March 28–30, 1999)

[47] Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York, NY, third edn.
(1976)

[48] Smith, R.G.: The contract net protocol: high-level communication and control in a dis-
tributed problem solver. IEEE Transactions on Computers 29(12), 1104–1113 (December
1980)

[49] Trivers, R.L.: The evolution of reciprocal altruism. Quarterly Review of Biology 46(1),
35–57 (March 1971)

[50] Waldspurger, C.A., Hogg, T., Huberman, B.A., Kephart, J.O., Stornetta, W.S.: Spawn:
a distributed computational economy. IEEE Transactions on Software Engineering 18(2),
103–117 (February 1992)

[51] White, J.E.: Telescript technology: mobile agents. In: Milojičić, D., Douglis, F., Wheeler,
R. (eds.) Mobility: Processes, Computers, and Agents, pp. 460–493. ACM Press, New York
(1999)

49

	Cooperative Task-Processing Networks: Parallel Computation of Non-trivial Volunteering Equilibria
	Abstract
	Contents
	1 Introduction
	1.1 Cooperative agent design
	1.2 Connections to classical cooperation work

	2 Task-processing networks
	3 Cooperation game among selfish agents
	4 Distributed computation of the Nash equilibrium
	4.1 Stabilizing payment functions
	4.2 Topological constraints
	4.3 Convergence result
	4.4 Finding necessary conditions on network topology for stabilization

	5 Example: Simulation of cooperative AAV scenario
	6 Conclusion
	A Mathematical symbols and notation
	B Proofs of central results
	B.1 Properties of stabilizing payment functions
	B.2 Nash convergence in the cooperation game

	C Combinatorics applied to volunteering
	C.1 Definitions: SOBP and SOMS
	C.2 Coordinate transformation
	C.3 Translating SOBP to SOMS
	C.4 Bounding SOMS

	D Parallel and distributed computation
	D.1 Vector spaces
	D.2 Functional analysis
	D.3 Theory of contractions
	D.3.1 Simple linear mapping

	D.4 Constrained optimization
	D.4.1 Orthogonal projections

	D.5 Variational inequalities and parallel implementation
	D.5.1 Motivation from game theory
	D.5.2 Projection algorithm

	D.6 Totally asynchronous iterative distributed algorithms

	References

