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ABSTRACT
The applications hosted in a datacenter share more than just
servers; they also share electrical circuits. Datacenter man-
agers provision the power capacity of these circuits to hosted
applications, often based on their peak power needs. In this
work, we studied the actual and peak power needs of 3 real
datacenters, using data from 1) hardware manufacturers and 2)
actual, observed power needs to estimate peak needs. We found
that actual power needs were nonmonotonic relative to peak
needs. That is, some applications with low actual power needs
had large peak needs—stemming from the diverse power uti-
lization of datacenter applications. Such diversity caused sur-
prising order inversions where applications with smaller peak
power had larger actual needs. Based on these results, we
propose a power provisioning approach that considers power-
utilization diversity. Our approach provides 1) predictable mono-
tonic results as power capacity increases and 2) performs bet-
ter than approaches commonly used in practice.

1. INTRODUCTION
Datacenters (sometimes written data centers) host a wide

range of networked applications from e-commerce and enter-
prise services to scientific computing [3, 23]. Viewed as very
big computers, datacenters comprise more than just networked
servers, they also include hardware for power delivery. This
hardware supplies electric circuits for all hosted applications,
supporting power workloads from many applications and het-
erogeneous hardware [20]. These circuits “break” when their
supported power workload exceeds preset limits, leading to
performance capping [4,6,10,25], costly electrical upgrades [7],
or brownouts [10, 29]. Power provisioning in a datacenter tries
to map applications to circuits without exceeding capacity lim-
its.

At first glance, the power-provisioning problem fits the fol-
lowing integer programming model: measure each application’s
power needs, use circuit capacity limits as a constraint, then
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find a mapping that uses power capacity well. However, in
practice, an application’s power needs can increase over time.
An application-to-circuit assignment based on a snapshot where
actual needs underestimate future needs risks circuit breaks.
To reduce these risks, datacenter managers normally provision
based on the estimated peak power—not the application’s ac-
tual needs at a particular moment. Nameplate ratings provided
by hardware manufacturers are widely used to estimate peak
power [9]. They are often discounted (by up to 60% [9, 10]) to
reflect peaks that can be reached with real-world workloads.
Recently, researchers have proposed that the measured peak
power should be used instead [2, 10, 13]. Compared to name-
plate ratings, the measured peak power requires that application
power needs can be measured but provides tighter workload-
aware estimates.

We studied the actual, measured peak, and nameplate power
of 3 real datacenters and used the results to design a new power
provisioning approach. In the context of our study, an appli-
cation reflected the combined software workload running on
a cluster of servers. Application boundaries were defined by
power distribution units. Beyond the study, our methods and
results allow for application boundaries to be defined by other
factors, e.g., the customer name or server ID. The datacenters
that we worked with are described below:

Codename OSU contains 1300 servers with 400kW max-
imum power capacity for computing. This datacenter is
open to the public, allowing customers to supply their own
hardware on leased space or to supply virtual machine im-
ages. There are 300 PDU that connect to datacenter cir-
cuits. Hosted applications range from data mining and re-
search (e.g., bio-medical) to enterprise services (e.g., Peo-
pleSoft) to virtual learning (e.g., Blackboard).

Codename CSE: contains 165 servers with 40kW maxi-
mum power capacity for computing. This datacenter hosts
the research workload for our computer science depart-
ment. Faculty members purchase their own hardware. There
are 35 PDU.

Codename PROD: contains 200 servers with 80kW max-
imum power capacity, hosting production enterprise and
academic services and storing sensitive student files for the
School of Engineering. There are 62 PDU.

Even though the managers of these datacenters supported our
research, they could not grant carte blanche access to the dat-
acenter floor. Instead, we were given read-only access—we
could not unplug or move any hardware being used in produc-
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Figure 1: Nonmonotonic nameplate ratings in OSU. The
x-axis shows 4 PDU sorted by nameplate rating. ρ shows
the power utilization of each (i.e., power needs divided by
estimated peak power).

tion. We also could not change the software systems of hosted
applications. To comply with these constraints, we collected
only data that was visible during a walk through on the datacen-
ter floor. Fortunately, this data provided valuable information
on most power workloads supported across the whole datacen-
ter.

Our study exposed a key aspect of power workloads in the
datacenter: Actual power needs were nonmonotonic relative
to peak needs. For example, Figure 1 shows an application
that had low actual power needs even though it ran on large-
nameplate hardware. Such nonmonotonicity produces order
inversions, i.e., situations where peak needs order applications
differently than actual needs. When two applications are in-
verted, the application with larger peak power needs will re-
quire more provisioned capacity even though it uses less actual
power. We found that up to 38% and 28% of PDU pairs in
our studied datacenters were inverted based on nameplate rat-
ings and measured peak power respectively. The application
with larger peak power required up to 125% more capacity. In-
versions reflect diverse power utilization, also shown in Fig-
ure 1. We found that the power-utilization distributions across
a whole datacenter likely reflect the mixture of many types of
hosted workloads.

Nonmonotonic peak power makes it hard to predict the ac-
tual power draw of applications assigned to a circuit. Assign-
ments with relatively large peak needs can fall well below the
median in terms of their actual power needs. The integer pro-
gramming approach described earlier often finds assignments
that fall victim to such inversion. We studied provisioning ap-
proaches that lessen the impact of inversions while still using
peak power as a proxy for actual power needs. A simple ap-
proach, smallest peak power first (SPPF), totally avoids in-
versions, producing assignments that increase the actual power
draw as circuit capacity increases. However, SPPF assignments
can have relatively low actual power needs when applications
with large peak power also have large power utilization. We
propose a diversity-aware provisioning approach that chooses
between the assignments from SPPF and integer programming
based on peak power needs and the impact of inversions. We
used real data from our studied datacenters to compare these
approaches. Our approach performed as well or better than in-

teger programming and SPPF in 89% and 98% of our tests. Fur-
ther, we observed that our approach behaved like SPPF, finding
assignments that performed better (i.e., greater actual power
draw) as circuit capacity increased.

Our contributions are:

1. We describe methods to study datacenters under strict but
widely enforced access policies.

2. We present empirical data showing that actual power needs
can be nonmonotonic relative to peak needs for both name-
plate ratings and measured peak power.

3. We propose a new provisioning approach that considers
diverse power workloads in the datacenter.

The remainder of this paper is as follows. Section 2 describes
the access policies enforced in real datacenters and data collec-
tion methods used for our study. Section 3 presents our study of
actual, measured peak, and nameplate power across whole dat-
acenters. Section 4 makes the case for diversity-aware power
provisioning. Section 5 covers related work. Section 6 con-
cludes.

2. DATA COLLECTION
The datacenter’s floor is its achilles heel; If accessed by the

wrong people, a wide range of problems can occur from un-
plugged cords to hijacked USB ports. Datacenter managers
must restrict access to the datacenter floor, even among staff
and amicable researchers. These policies make it difficult to
measure power workloads. Here, we present techniques to cap-
ture PDU-level power needs and namplate ratings without com-
promising such access policies.

The statement on auditing standards (SAS 70) outlines the
following policies as a starting point for protecting the data-
center floor:
Data Center Security Staff: These individuals should perform a host
of duties on a daily basis, such as monitor intrusion security alarm
systems;... monitoring to prevent unauthorized access, such as tailgat-
ing; assist all individuals who have authorized access; controlling ac-
cess to the data center by confirming identity; issue and retrieve access
badges;.... Enforcement of no unauthorized photography. [24].

Almost all production datacenters enforce similar policies at a
bare minimum. However, datacenters that host many applica-
tions (esp., from untrusted customers) are often more cautious.
In the following anonymized email excerpt, a datacenter man-
ager granted our research team access to the datacenter floor
only if we agreed to abide by stricter rules:
We have asked them to arrange a time to escort you all through the dat-
acenter floor. You can record the Amp[sic] readings and server models.
We have asked them not to provide any information about the server
names or functions. We have also instructed them that if your group
does record server names and locations then you will be asked to leave.

At first, we thought that strict access policies would severely
limit the data that we could collect on power workloads, thwart-
ing our research agenda. But after escorted visits to real data-
centers, we realized that labels and LCD displays on the data-
center floor expose a lot of power workload data. For example,
most modern PDU display their actual power usage every few
seconds. Such data is easily visible to humans, so we spent
3 months at OSU and 3 months at PROD and CSE manually
harvesting such data.



0 500 1000 1500 2000 2500

0

0.25

0.5

0.75

1

Night
Morning

Power (W)

C
D

F

Figure 2: Snapshots of whole-datacenter power needs in PROD.
CDF stands for cummulative distribution function. Power needs
are taken from the LCD display of each PDU (taken during the
morning and night, respectively). Power needs at night were lower
than power needs during the day (the CDF rises to 100% more
quickly at night than during the day).
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Figure 3: Snapshots of whole-datacenter power needs in CSE.

2.1 Actual Power Needs
Modern PDU not only distribute power, they also report the

power usage of their constituent devices. Today, over 60% of
the PDU in the TrippLite product line include an LCD display
of power usage [17]. Among our studied datacenters, PDU with
built-in display were even more popular, accounting for 81%
(OSU), 92% (CSE), and 94% (PROD) of the PDU deployed in
the last 5 years. We exploited these displays by literally walk-
ing around the datacenter floor and writing down their readings.

Figure 2 shows 2 readings of PDU displays across the entire
PROD datacenter. One reading was taken in the morning (be-
fore 11am) and the other at night (after 6pm). The power needs
differed between these times of the day. The median PDU at
nighttime used only 60% of the power used by the median
morning PDU. We observed several PDU that exhibited diurnal
patterns in their power needs, hitting their measured peak in the
afternoon and their low in the evening. Such diurnal workloads
have been observed many time in prior work [5, 19, 26, 27].
They are often related to social patterns like work schedules.
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Figure 4: Variance of possible nameplate ratings for HP, Dell and
IBM server models. The y-axis shows the ratio of the largest to
smallest possible nameplate ratings under the listed constraints.

Figure 3 shows that CSE lacked such diurnal cycles; power
needs were stable throughout the day. This was expected since
the research workload is less affected by social patterns.

2.2 Nameplate Ratings
The nameplate rating of a single device is sum of the max-

imum power draw from its components. For a server, this re-
flects a workload that fully uses disks, memory, and cores at the
same time. For this work, we define a PDU’s nameplate rating
as the sum of the ratings of its constituent devices plus its own
rating. Nameplate ratings are normally easy to get since most
hardware companies publish them on public websites [14, 16].
However, published ratings vary depending on the number of
cores and disks used by a server and such detailed informa-
tion is off limits in public datacenters. We recorded easily vis-
ible data on the makes, models, sizes, and PDU connections
of servers as we walked around the datacenter floor. We found
that this data was enough to help us infer nameplate ratings.
Specifically, we relied on 2 key observations:

1. In the datacenter, space is a commodity. Large servers
(e.g., 4U) occupy more units than the smaller sized servers
(e.g., 1U) because they are expected to do more work.
Configurations that could be applied to 1U servers are
rarely actually applied to 4U servers, even if hardware
manufacturers allow for such large wimpy nodes.

2. Circuit breaks are undesirable. Servers connected to fully
occupied PDU normally use less than their share of the
circuit breaker’s limit. For example, consider 20 systems
in a 15A circuit. Most systems will not use more than
.75A because managers are cautious.

Figure 4 shows our results for narrowing down nameplate
ratings. We started with only make and model information
shown on the x-axis. The difference between the largest and
smallest possible nameplates for the server model are shown in
the all models bar. The effect of using size and PDU ports to
narrow down the rating are also shown. We selected 3 server
models from HP, Dell, and IBM to illustrate our approach, fo-
cusing on the HP and Dell cases below.

• One datacenter hosted an HP Integrity. This server model
comes in 4U to 17U sizes and allows for a wide range
of processor configurations. Across all model sizes, we
found nameplate ratings that varied from 1kW to 4kW.
When we narrowed down to servers in the 4U category
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Figure 5: Nonmonotonic peak power and order inversions. In this figure, peak power is a PDU’s nameplate rating. Each
point reflects one pair of PDU. All possible pairs are shown. The X axis shows the difference in actual power needs between
two PDU in a pair, (i.e., Pa(i)−Pa(k)). The Y axis shows the difference in nameplate ratings (Pnp(i)−Pnp(k)). Stars(points
below the 0 on the y-axis) represent PDU pairs that are inverted.

fewer configurations were available, ranging from 1 Single-
Core Intel Itanium 2 Processor to 4 Dual-Core Intel Ita-
nium 2. The largest possible 4U rating was only 1.36kW.
Finally, we observed that the particular integrity in ques-
tion was hosted on a 15A PDU with 12 servers, making
it likely that the server in question reflected the minimum
4U configuration [14].

• Another datacenter hosted a Dell PowerEdge server. This
server model has 1U to 2U sizes and also allows for
various range of processor configurations. Across all
model sizes, we found nameplate ratings that varied from
0.75kW to 1.34kW. When we narrowed down to servers
in the 1U category, fewer configurations were available,
ranging from 2 Quad-Core Intel Xeon 5300 to 1 Dual-
Core Intel Low Volt Xeon 5148. The largest possible 1U
rating was 0.75kW. Finally, we observed that the partic-
ular PowerEdge in question was hosted on a 12A PDU
with 8 servers, making it likely that the server in ques-
tion reflected the minimum 1U configuration [8].

As these examples illustrate above, these observations help
us narrow down the nameplate rating range from the informa-
tion that are given by the manufacturers.

3. NONMONOTONIC PEAK POWER
Two applications i and k are order inverted if:

Pa(i) < Pa(k) and Pnr(i) > Pnr(k) (1)
or Pa(i) < Pa(k) and Pmp(i) > Pmp(k) (2)

The P function captures an application’s power workload. Pa-
rameters a, nr, and mp stand for actual needs, nameplate rating,
and measured peak respectively. When a datacenter has many
inverted applications, we say that peak power is nonmonotonic
relative to actual power.

Figure 5 plots PDU pairs across our 3 studied datacenters,
marking the inverted pairs. In this figure, we used nameplate
rating (Pnr) to describe an application’s peak power. These rat-
ings were compared with a snapshot of power usage taken after
walking the datacenter floor in the morning (between 7–11am).

We found that 27%, 38%, and 23% of PDU pairs were inverted
for OSU, CSE, and PROD respectively. Recall, provisioned
capacity is often based on peak power. The difference between
the peak needs of inverted PDU reflects lost circuit capacity
when the PDU with larger peak needs is assigned in place of
the PDU with larger actual needs. This is shown on the Y axis.
In the average inverted PDU pair, the PDU with larger peak
needs would have over provisioned 125%, 80%, and 47% more
capacity than the PDU with larger actual needs in OSU, CSE,
and PROD respectively.

Impact of the Time of the Day: Section 2 showed that in
some datacenters the actual power workload depends on the
time of day (diurnal cycles). First, we studied the frequency
of order inversions across diurnal periods. We took snapshots
of each datacenter in the morning, afternoon, and evening and
on the weekends. Each snapshot provided actual power needs
for counting the number of inverted PDU pairs at that time of
day. To measure stability, we computed the coefficient of vari-
ation ( σ

µ
), a widely used normalized measure of dispersion.

A common rule of thumb is a coefficient of variation below
100% indicates stable, low-variance distributions [1]. We ob-
served coefficient of variation for OSU, CSE, and PROD at
only 10%, 0.2%, and 1.6%. PDU pairs were almost equally
inverted at all times of the day for the studied datacenters. We
also noted that OSU and PROD, datacenters that host enterprise
and web workloads affected by social patterns, had greater vari-
ation than CSE.

We also studied turnover among inverted PDU pairs, asking
“are the inverted PDU pairs in the morning the same as the in-
verted pairs at night?” We created a unique ID for each PDU
pair in our study. We performed set logic on the IDs of the
inverted pairs from the morning, afternoon, evening, and week-
end data. We say that an inverted pair persisted if it was in the
intersection of inverted pairs for all times of day. 70%, 97%,
and 78% of inverted pairs persisted in OSU, CSE, and PROD
respectively. If we excluded weekends (i.e., inverted pairs that
persisted throughout work days), the numbers rise across all
studied datacenters to 80%, 100%, and 96%. Weekends af-



fected OSU and PROD the most because of their supported
workloads.

Impact of Measured Peak Power: Measured peak power
tailors the estimated peak power to an application’s workload,
providing an upper bound that is often closer to actual needs
than nameplate ratings [9, 10]. It is quickly becoming the pre-
ferred approach to estimate peak power needs [13,21]. We took
over 100 samples of the LCD display of each PDU in our study.
The largest sample was our measured peak power. We then
compared the measured peak to actual morning needs, as in
Figure 5. We found that measured peak power significantly re-
duced the number of inverted PDU pairs for OSU and CSE.
Table 1 shows the observed reduction in inverted PDU pair.
When we looked into these results, we saw that many PDU in
PROD had measured peaks that were much larger than actual
needs (like nameplate ratings), explaining the increased num-
ber of inverted pairs. Table 1 also shows that measured peak
power reduced the potential for inverted PDU to waste circuit
capacity across all studied datacenters.

OSU CSE PROD
% Fewer inversions 67% 84% -19%

Average reduction in impact 52% 38% 24%

Table 1: As a peak power estimator, measured peak nor-
mally reduces inversions and their impact compared to
nameplate ratings

Even though measured peak reduced the number of inverted
pairs, it did not solve the problem. OSU, CSE, and PROD were
still afflicted with inverted PDU in 8%, 6%, and 28% of their
possible pairs. The average inverted pair still led to wasted
capacity of 59%, 49%, and 35% respectively. Our conclusions
from these results were that 1) measured peak power should be
used in place of nameplate power because it normally reduces
inversions and lessens their impact, and 2) additional measures
are needed to deal with inversions.

Other Peak Power Estimators: Nameplate ratings are an
upper bound on an actual power needs. A bound that can be
reached by only the workloads that stress all server hardware at
the same time. On the other hand, measured peak power pro-
vides a tighter and porous bound since data observed in the past
may be eclipsed by future peaks. Real peak power falls some-
where between these two estimators. Figure 6 shows 3 inverted
PDU pairs in our studied datacenters where the highest mea-
sured peak is greater than the lowest nameplate rating. These
PDU pairs suggest that some PDU pairs would be inverted for
any peak power estimator that is bound by the measured peak
and nameplate rating. In other words, the ranking of the peak
power estimates of these inverted pairs can not be reversed by
using a different peak power estimator. For OSU and PROD,
we note that even discounting the measured peak by 5% (95%
of original) did not prevent the inversion.

Power Workload Diversity: Nonmonotonic peak power is
caused by the diverse range power workloads supported in the
studied datacenters. Power utilization, defined below, provides
a normalized metric to understand an application’s power work-
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Figure 6: Unavoidable order inversions for any peak power
estimator bound by the nameplate rating and measured
peak. The actual power needs (not shown) of PDU 2 are
greater than PDU 1. A peak power estimator that uses the
measured peak of PDU 1 and the namplate rating for PDU
2 would still invert the PDU.

load.

ρ =
Pa(i)
Pnr(i)

(3)

or ρ =
Pa(i)

Pmp(i)
(4)

Figure 7 shows the diverse power utilization (ρ) supported across
OSU. This is the source of inverted PDU pairs. When name-
plate rating is the denominator, the median and 95th percentile
power utilization differ by more than 68%. Using the measured
peak power, the median and 95th percentile differ by 50%.

Figure 7 highlights two important differences between name-
plate ratings and measured peak power. First, utilizations with
nameplate ratings are generally low with a few outliers (75th

percentile is only 25% utilization). Comparatively, measured
peak produces large utilization. This is why many researchers
have recommended that datacenter managers move to measured
peak power as the base estimator for provisioning decisions.
Second, we observe that both distributions contain reverse knee
points, indicating an opportunity to cluster applications accord-
ing to their power utilization. Power utilization is related to de-
vice (e.g., CPU) utilization which is well known to be biased
under interactive and throughput-oriented datacenter workloads [10,
19,28]. Figure 8 reports similar results but under a broader def-
inition of application—i.e., the combined software workload of
a customer. For each customer, the power utilization is the sum
of the actual power needed by its servers divided by the sum of
each server’s peak power. At this granularity, the median and
95th percentile differ by 24% under nameplate power and by
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37% under the measured peak power. This result suggests that
the nonmonotonic relationship between actual and peak power
persists even when application boundaries are defined differ-
ently (here we use customers instead of PDU).

4. POWER PROVISIONING
Section 3 showed that peak power was nonmonotonic rela-

tive to actual power needs because the studied datacenters sup-
ported diverse power workloads. For this section, we studied
commonly used power provisioning approaches to understand
how frequently they waste circuit capacity on inverted PDU.
Each approach was used to select k applications from N under
the following rules:

1. The total peak needs of the selected k applications can
not exceed preset capacity limits.

2. The goal is for the selected k applications is to use as
much actual power as possible.

These rules were chosen to help the managers of our studied
datacenters support large customers supplying their own equip-
ment. In one datacenter, managers received a new order for
several PDU clusters that had peak needs greater than the actual

OSU CSE PROD
Util. Meas. Util. Meas. Util. Meas.

Peak Peak Peak
4% 3119W 99% 948W 82% 917W
4% 3119W 99% 1946W 93% 1236W
13% 3823W 98% 700W 66% 1144W
9% 3823W 100% 84W 92% 762W

100% 480W 96% 240W 97% 1448W
33% 1080W 93% 1348W 98% 1440W
5% 2500W 98% 1006W 15% 1416W
4% 960W 99% 948W 91% 1157W

Table 2: Measured peak-power needs and power utilization
of 8 PDU recently added to the studied datacenters. Actual
power needs were observed during the morning (7–11am).

available power on any given circuit. To make room, they had
to move k applications from circuits targeted for the new order.
That is, for each targeted circuit, they wanted to migrate appli-
cations in a way that moved as much actual power as possible
within the capacity limits of other circuits. At another datacen-
ter, managers always considered large future orders when they
assigned applications to circuits. There, managers attempted to
fill the most-filled circuits with k of N new orders before plac-
ing the remaining new orders on unfilled circuits.

Our rules also related to provisioning goals outlined in re-
search works. Load unbalancing [22] attempts to fill circuits
(i.e., areas in the datacenter) to their capacity for power sav-
ings. Recent works have also proposed soft peak limits [2, 13],
for instance for evenly spreading power across circuits. After
these limits are set, the goal is to fill them.

4.1 Provisioning Approaches
We studied the following approaches: integer programming,

smallest peak power first, largest peak power first, first come
first serve, and our own approach that considers power work-
load diversity. Throughout this section and in our results, we
refer to the PDU listed in Table 2, which shows the workloads
of 8 PDU recently added to each studied datacenter, including:
their power utilization and measured peak power.

Integer Programming.
When peak needs match actual needs, our provisioning prob-

lem is an instance of weighted knapsack, a well known integer
programming problem. Weighted knapsack is NP-complete,
but approximation schemes can find good nearly optimal solu-
tions quickly and have been known for decades [15]. Unfortu-
nately in practice, actual needs often fall below peak needs and
peak needs are used in provisioning. Here, we used the knap-
sack integer programming model: 1) measured peak power
needs, 2) use circuit capacity as a constraint, and 3) find the as-
signment of peak-power needs that uses as much circuit capac-
ity as possible. Recall from Section 1 that we use peak needs
because actual needs could lead to circuit breaks.

Section 3 showed that peak needs are nonmonotonic rela-
tive to actual needs. Such nonmonotonic peak power means
that a subset of applications with high combined peak power
may perform poorly in terms of actual power. For example,
consider the integer programming approach under a circuit ca-
pacity of 960W in OSU (see Table 2). The 960W and 480W
PDU are inverted, but knapsack selects the PDU that uses only
38W of actual power— maximizing peak power. The better



choice would be the PDU with actual needs of 480W. Note, the
integer-programming approach’s choice is poor for 2 reasons:
First, it does not use as much actual power as possible. Second,
it uses less actual power than the choice under 959W circuit
capacity. The latter point makes this approach unpredictable
since capacity increases lead to choices that perform worse.

Smallest Peak Power First.
Inverted PDUs only waste circuit capacity when the PDU

with larger peak power is chosen instead of the PDU with larger
actual needs. The smallest peak power first (SPPF) approach
never makes this mistake by filling capacity in ascending order
of peak power needs. PDU with larger peak needs are cho-
sen only if the PDU with smaller peak needs are chosen also.
SPPF provides predictable monotonic results, i.e., an increase
in circuit capacity never decreases the actual power draw of
selected applications. Recall from Section 3, the average in-
version could use 24–58% more circuit capacity than needed.
Since SPPF never chooses the wrong PDU, it recovers such lost
capacity that may hinder other approaches, e.g., integer pro-
gramming.

SPPF performs poorly when applications with large peak
power should be assigned to a circuit, i.e., PDU with large peak
and large utilization. Recently added PDU in CSE (shown in
Table 2) provide an example of this scenario. Hosting scien-
tific research-oriented applications, the PDU in CSE normally
operate near their measured peak power.

Diversity-Aware Provisioning.
The integer programming approach fills the available peak

power capacity. SPPF handles inverted PDUs correctly. We
believe that the best of both can be achieved by approaches that
consider a datacenter’s diverse power workloads. As a proof of
concept, we designed the approach in Table 3.

Our approach accepts 3 inputs: 1) the list of candidate PDUs,
2) a target capacity, and 3) the CDF of power utilization across
the whole datacenter. First, we compute the SPPF assignment.
If the SPPF approach uses all available capacity, we simply re-
turn this assignment. Otherwise, we save it as our base assign-
ment and look for knapsack assignments that use more avail-
able capacity. When we find a possible knapsack solution, we
compute its diversity aware (DA) score by subtracting the ca-
pacity that each PDU could lose to an inversion from the capac-
ity used. (Note, the inversion may include any unused PDU.) If
the DA score of the new solution is greater than the DA score
of our base, the new solution becomes the base.

Our approach is a heuristic. We sacrifice the guaranteed pre-
dictability of SPPF for the ability to select PDU with large
peaks. Inverted PDU can cause our approach to make poor
choices. On the other hand, our approach can make choices
that use PDU with large peaks and large utilization, potentially
improving performance beyond SPPF. As shown in Table 3, we
set a certainty parameter (cert = 0.1 in the table). This param-
eter describes the manager’s willingness to risk inversions. As
the certainty parameter approaches 0.5, our approach behaves
like the integer programming (knapsack) approach. As it ap-
proaches 0, our approach favors SPPF. Note, our approach was
created to show that diversity-aware provisioning can perform
well. We leave the design of an optimal diversity-aware ap-
proach to future work.

4.2 Results

DA_Provsioning (candidates, capacity, utilCDF) {
# candidates –> {Pmp(0), ...,Pmp(i)}
# capacity –> int C
# utilCDF –> Hashtable(keys=Kth percentile, val=power util.)

assignment base_solution = {};
assignment alt_solution = {};

base_solution = SPPF(candidates, capacity);
int alt_count=sumPeakNeeds(base_solution);
while (alt_count < capacity)

alt_count++;
alt_solution = knapsack(candidates, capacity);
if (DA(alt_solution) > DA(base_solution)

base_solution = alt_solution;
return base_solution;

}

float DA(assignment A) {
float tot_cost = 0;
float cert = 0.1;
forall a in A

float max_cost = 0;
forall c in candidates and not in A

if (Pmp(c)*utilCDF{1 - cert} >
Pmp(a)*utilCDF{cert})

if (Pmp(a) > Pmp(c)) # Inverted PDU
float this_cost = (Pmp(a)−Pmp(c))
if (this_cost > max_cost)

max_cost = this_cost;
tot_cost += max_cost;

return sumPeakNeeds(a) - tot_cost;
}

Table 3: Pseudo-code of our provisioning approach.

Figures 9 and 10 compare the three approaches detailed above
under nameplate ratings and measured peak power respectively.
Integer programming results were very hard to predict under
nameplate ratings, reflecting the large impact of software work-
loads on actual power needs. Under measured peak power, in-
teger programming results were less varied (esp. for CSE), but
inverted PDU still led to poor choices for OSU and PROD. Re-
call, OSU and PROD host web and enterprise workloads where
actual and measured peak power could differ a lot. As ex-
pected, SPPF assignments were monotonic as circuit capacity
increased. However, SPPF also tended to make sub-optimal
choices as the available capacity increased. As described ear-
lier, this occurs because SPPF can waste circuit capacity too,
up to the peak needs of the next largest PDU to be selected.

Our approach made good decisions in the face of inverted
PDU, falling back to the safe SPPF approach when integer pro-
gramming performed poorly. Further, it exploited peak power
as proxy for actual power—often performing better than both
SPPF and integer programming. Note, the while loop in Ta-
ble 3. Our approach consistently selects the best of many inte-
ger programming approaches. Specifically, it matched or out-
performed SPPF in 98% of the measured-peak experiments re-
ported in Figure 10. It matched or outperformed the integer
programming approach in 89% of measured-peak experiments.
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Figure 9: Comparison of provisioning strategies. X-axis shows the circuit capacity relative to sum of nameplate ratings
observed across cadidate PDU (i.e., c

∑n∈N Pnr(n) ). Y-axis shows the actual power draw on the circuit relative to the sum of

actual power across candidate PDUs (i.e., ∑i∈Assignment Pa(i)
∑n∈N Pa(n) ). Larger values on x-axis indicate larger circuit capacity. Larger

values on the y-axis indicate a better provisioning strategy.

0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

IP
SPPF
DA

0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

IP
SPPF
DA

0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

IP
SPPF
DA

OSU CSE PROD

Relative Circuit Capacity Relative Circuit Capacity Relative Circuit Capacity

R
e

la
tiv

e
 U

se
d

 C
a

pa
ci

ty

Figure 10: Comparison of provisioning strategies. X-axis shows the circuit capacity relative to sum of measured peak power
observed across cadidate PDU (i.e., c

∑n∈N Pmp(n) ). Y-axis shows the actual power draw on the circuit relative to the sum of
actual power across candidate PDUs.

Also, it was mostly predictable. Most of the time its assign-
ments improved as circuit capacity increased.

Impact of Number of Candidates Figure 11 shows simi-
lar qualitative behavior as the number of PDU candidates in-
creases. The integer programming approach under OSU ex-
hibits a sudden unexpected drop in actual power provisioned
to the circuit. Our diversity-aware approach performs the best
under all tested conditions.

Comparison of other provsioning strategies We also im-
plemented three other competing provisioning strategies. First
come first serve orders PDU according to their arrival in the dat-
acenter (inferred from the dates of their server makes and mod-
els). Largest peak power first orders PDU according to their
peak power, but in descending order (the opposite of SPPF).
Smallest then Largest implements an alternative heuristic that
applies SPPF then LPPF alternatively. Our diversity-aware out-
performs these approaches in 80%, 93%, and 70% of our measured-

peak conditions. Even taking the absolute best across all stud-
ied approaches, our diversity-aware approach was the best in
62% of our tests. Further, when our approach was not the best,
it trailed the leader on average by only 12%.

5. RELATED WORK
Power provisioning for datacenters has been studied by a

number of researchers. Our data collection technique addresses
the challenges presented by restricted access to the datacen-
ter floor. In our study, we were not allowed to migrate ap-
plications to non-production hardware for offline power pro-
filing [6, 13]. We did not have permission to access applica-
tion logs for request-granularity regression [29]. We could not
issue controlled workloads at production servers (recall from
Section 2 that some managers hid server functionality), mak-
ing the non-intrusive Red Pill approach [18] inapplicable.
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Figure 11: Provisioning strategies with different number of PDUs. Relative circuit capacity is set to 0.75. X-axis shows the
number of PDU avaialble for an assignment. Y-axis shows the actual power draw on the circuit relative to the sum of actual
power across candidate PDU.

Nathuji et al. [20] exploit the platform heterogeneity of data-
centers. They also expose that the variance of power efficiency
can be very high when the application workloads are assigned
under heterogeneous environments. Such heterogeneity sup-
ports our diverse workload observation in the datacenters. Our
work is based on this diverse range of power utilization obser-
vation, and further we find that there is a nonmonotonic rela-
tionship between the actual power and the peak power estima-
tion.

Fan et al. [10] show different peak power needs for different
types of applications and they also confirm that nameplate rat-
ings tend to overestimate actual power needs, leading to wasted
circuit capacity. They also quantify the significant gap between
nameplate ratings and measured peak power. Our work shows
that both of these peak power estimators are nonmonotonic rel-
ative to actual power needs. We also study diverse power uti-
lization as an underlying cause.

In PowerNap, Meisner et al. [19] observe that the average
CPU utilization in the datacenter is 20-30%. Datacenter servers
spend a lot of time idle. They propose a server architecture
that uses very little power when idle. To the extent that CPU
and power utilization are related, we observe similar results in
3 real datacenters. In Power Routing, Pelley et al. [21] pro-
pose software control for the mapping of servers to circuits,
allowing datacenter managers to dynamically control the ap-
plications placed on a circuit. On one hand, this infrastructure
would allow managers to acquire the measured peak power, but
some order inversions persist even under the measured peak
power. If these inversions are ignored, capacity is wasted or
performance is capped.

Ahmad et al. [2] presents PowerTrade and SurgeGuard that
reduce both the power consumption and cooling costs. They
use an integer programming method to optimize both the idle
and cooling power. We show that diversity-aware power provi-
sioning can improve upon the traditional integer programming
solutions when applications with large peak power have low
actual power needs. We believe that our provisioning approach
should complement PowerTrade on the datacenter floor. Wang
et al. [30] and Femal et al. [11] focus on the dynamic infrastruc-
tures and dealing with peak power allocation for overprovision-

ing circuits based on their workloads. Femal et al. [11] allocate
peak power while maximizing throughput and balancing load
according to service-level requirements. Our work goes beyond
these various methods by comparing commonly used power
provisioning methods with our approach, we observe that the
nonmonotonic relation between the peak and actual power fa-
vors a diversity-aware provisioning approach. Here again, we
see our contribution as a complement to both Wang et al. [30]
and Femal et al. [11].

Gandhi et al. [12] studied the power distribution among servers
in a server farm in order to minimize mean response time. They
apply a particular power cap on a server and run jobs back-to-
back to ensure that the server is fully-utilized, and shift between
frequency states to ensure that a server doesn’t exceed the max-
imum power. They observe an relationship between power and
frequency within a server for a given workload based on DFS
and DVFS. They also experiment with diverse workloads and
they use the observed maximum power to be the peak power
values in their experiments.

6. CONCLUSION
We studied power workloads across 3 real datacenters and

uncovered a key result: peak power needs were nonmonotonic
relative to actual needs. While prior work has shown that peak
power needs overestimate actual needs, our result found that the
factor by which actual needs are overestimated (i.e., power uti-
lization) varied across applications. Such diverse power work-
loads persisted whether we used nameplate ratings or measured
peak power. Based on this result, we argued that power provi-
sioning approaches should consider the datacenter’s workload
diversity. We designed and evaluated a proof-of-concept ap-
proach. Under realistic data, our approach outperformed com-
monly used approaches like integer programming and first come
first serve (performing as well or better in 89% and 90% of our
tests respectively).

Finally, we also overcame strict but common access policies
that limited the data that we could collect from the datacenter
floor. Specifically, we found noninvasive ways to collect PDU-
level power usage and nameplate ratings. We believe these



techniques could help researchers conduct empirical datacen-
ter studies in the future.
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