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ABSTRACT
Database search techniques try to obtain the most relevant
information and rank it according to the degree of similar-
ity to the queries. However, diversity in query results is
also preferred by a variety of applications since very simi-
lar results do not give complete view of the queried topic.
In this work, we focus on providing diverse query results
for the k-nearest neighbor search on spatial data. We make
an analogy with the concept of natural neighbors and pro-
pose a natural neighbor-based method for 2-d and 3-d data,
and an incremental browsing algorithm based on Gabriel
graphs for higher dimensional spaces. We also introduce
a diverse browsing method based on the popular distance
browsing feature of spatial index structures, such as R-trees.
The algorithm maintains a priority-queue with the ranks
of the objects depending on both relevancy and diversity,
and efficiently prunes non-diverse items and nodes. The ef-
ficiency and effectiveness of the models and each algorithm
are demonstrated with different settings, and compared with
the methods found in the literature.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query for-
mulation, Search process

1. INTRODUCTION
Most similarity search methods in the literature produce
results based on the ranked degree of similarity to the query.
However, the results are typically unsatisfactory, especially
when there is an ambiguity in the query, and when the search
results include redundantly repeating similar documents.

To resolve ambiguity, it would be better to answer the query
with diverse search results instead of homogeneous results
representing similar cases. For example, the query Barcelona
is ambiguous since the system cannot decide whether it rep-
resents a city, a football team, or a movie [2]. One of the rea-
sonable strategies for responding to ambiguous queries is to

return a mixture of results covering all aspects of the query.
Redundantly repeating search results is another problem of
conventional similarity search techniques, particularly for
search spaces that include many duplicate data. In this
case, similar but homogeneous information will fill up the
top results. This situation has been discussed in several ap-
plication areas, such as recommender systems [26], online
shopping [22], and web searches [7].

Similar problems also exist when querying and browsing
spatial data. With the popularity of location-based ser-
vices, most smartphones today come with GPS and solid
state compasses, and people use this technology for navi-
gation and searching nearby restaurants, gas stations, etc.
A location-based service application that defines user’s po-
sition with a number of point-of-interests (POI) can be af-
fected adversely with the information overload (see Figure 1).
Instead of returning the closest POIs, close but a more di-
verse result set is preferred for such an application.
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Figure 1: Sample location-based service application
that defines user’s position (red star) with 5 POIs.
A conventional similarity search technique (i.e. k-
nearest neighbor search) returns redundant results,
white circles, because of the information overload; on
the other hand, diverse browsing can capture spatial
distribution around the query point and can provide
superior results, red dashes.

The relation between relevance and diversity in informa-
tion retrieval is investigated by Carbonell and Goldstein [5]
and they propose the Maximal Marginal Relevance (MMR)
method for text retrieval and summarization. Researchers
have been trying to apply the same idea to various fields;
however, maximizing diversity of a result set is known to



be NP-hard. Addressing the aforementioned problem, some
studies [14, 24] develop heuristic techniques to optimize the
results. Yu et al. [24] concentrate on the issue of diversifica-
tion in recommender systems and introduce two heuristic al-
gorithms to maximize diversity by considering relevance con-
straints. In the spatial domain, leveraging the advantages of
an index structure and its incremental browsing is necessary
for an efficient diversification algorithm. Jain et al. [14] in-
vestigate the k-nearest diverse neighbor search (KNDN) and
present greedy approaches based on the distance browsing
feature [12] of the R-tree index; however, they use the dis-
tance browsing only to retrieve the next nearest neighbor to
the query point.

Considering the diversification problem in the spatial do-
main, it is possible to present an intuitive solution based
on clustering. Data can be initially clustered, then repre-
sentatives of diverse clusters around the query point can be
given as the results of a diverse nearest neighbor search. Al-
though clustering can be computationally expensive, there
are methods to generate those representatives with tree-
based approaches [17]. The problem of clustering-based
methods is that initial clusters may be unsatisfactory de-
pending on the settings of the query. Furthermore, if data
needs to be clustered for each query, the method is obviously
not scalable. Today, most database management systems
support a spatial index, i.e. R-tree or one of its variants;
therefore, diversity can be obtained by taking advantage of
the spatial index without any extra cost of clustering.

In this study, we first give a geometric definition of diversity
by making an analogy with the concept of natural neighbors
and propose a natural neighbor-based method and an incre-
mental browsing algorithm based on Gabriel graph. We also
introduce a diverse browsing method based on the popular
distance browsing feature of R-tree index structures, which
maintains a priority-queue with the ranks of the objects
depending on both relevancy and diversity, and efficiently
prunes non-diverse items and nodes. Providing a measure
that captures both relevancy and diversity, we show that
using the advantages of the R-trees and pruning internal
nodes with respect to their diversity from the items in the
result set, we can achieve more diverse results. Briefly, the
contributions of this paper can be summarized as follows:

• We formalize λ-diverse k-nearest neighbor search
based on angular similarity, and develop measures that
evaluate the relevancy and diversity of the retrieved
results.
• We propose two geometric diverse browsing approaches

for static databases, each of which effectively captures
the spatial distribution around a query point, hence
gives a diverse set of results.
• Extending the distance browsing feature, we introduce

an efficient λ-diverse k-nearest neighbor search algo-
rithm on R-trees, namely diverse browsing, which does
not require any change in the index structure, and
prove its correctness.
• We conduct experiments on 2-d and high-dimensional

datasets to evaluate the performance of the proposed
methods.

The rest of the paper is organized as follows: Related work
is discussed in Section 2. Problem formulation is given in
Section 3. Geometric approaches are defined in 4, and index-
based diverse browsing is proposed in Section 5. Experi-
ments are reported in Section 6. Section 7 gives conclusions
and future work.

2. RELATED WORK
There are notable works on diverse ranking in the literature.
Carbonell and Goldstein [5] describe the Maximal Marginal
Relevance (MMR) method for text retrieval and summariza-
tion. MMR attempts to find a result set by maximizing the
query relevance and also minimizing the similarity between
documents in the result set. The proposed method com-
bines relevancy and novelty with a user-defined parameter
(λ), which affects the relevancy and diversity of the results.

Since the problem of finding diverse results is known to be
NP-hard, Jain et al. [14, 11] investigate the k-nearest di-
verse neighbor search and develop two greedy approaches to
optimize the results in terms of both relevancy and diver-
sity. Both proposed methods employ the advantages of an
available R-tree index. Immediate Greedy (IG) incremen-
tally grows the result set R by including nearest points only
if they are diverse enough from the data points already in
R. Buffered Greedy (BG) tries to resolve some poor choices
of IG. They use the R-tree index only for getting the query’s
nearest neighbors in the dataset. Yu et al. [24, 23] address
the issue of diversification in recommendation systems and
introduce two heuristic algorithms to maximize the diversity
by considering relevance constraints. They state that maxi-
mizing diversity is about finding a balance between relevance
and diversity. The proposed Swap algorithm basically tries
to swap elements which are less likely to contribute to the
set diversity with diverse ones. Greedy algorithm, similar to
IG in [14], includes the next most relevant item to the re-
sult set only if that item is diverse with respect to the items
already in the result set.

Some other studies attack on the diversity problem in vari-
ous ways. Liu and Jagadish [17] employ the idea of cluster-
ing to find a solution to the Many-Answers Problem. They
suggest that taking one representative from each cluster re-
sults in a better answer to this problem. This paper pro-
poses a tree-based approach for finding the representatives
efficiently, even if the search space is modified with select
conditions at runtime. Halvey et al. [10] compare dissimi-
larity and clustering-based diversity re-ranking methods to
introduce diversity in video retrieval results.

The notions of diversity and novelty are generally discussed
in information retrieval and recommendation systems. Clarke
et al. [7] investigate the problems of ambiguity in queries
and redundancy in results and propose an evaluation frame-
work. Chen and Karger [6] describe a retrieval method for
maximizing diversity, which assigns negative feedback to the
documents that are included in the result list. Vee et al. [22]
present inverted-list algorithms for computing diverse query
results in online shopping applications. Ziegler et al. [26, 25]
present an algorithmic framework to increase the diversity
of a top-N list of recommended products. In order to show
its efficiency they also introduce a new intra-list similarity
metric.



3. PROBLEM FORMULATION
Angular similarity and diverse k-nearest neighbor search is
defined in Definition 3.1 and Definition 3.2, respectively.

Definition 3.1. Angular similarity. Given a query
point x, two points p1 and p2, and an angle θ, angular simi-
larity (simang) of p1 with respect to x and another point p2

is:

simang(p1, x, p2) =



1− p̂1xp2/θ if p̂1xp2 < θ
0 otherwise

(1)

simang results in 0 if the angle p̂1xp2 is greater than θ. It
becomes 1 if both of them point the same direction.

Definition 3.2. λ-diverse k-nearest neighbor search.
Given a dataset S, a query point x, a diversity ratio λ, and
an integer k, the λ-diverse k-nearest neighbor search on x
retrieves a set of k resulting points denoted by R that mini-
mizes pairwise angular similarity (depending on λ) and max-
imizes relevancy (depending on 1-λ) of the results.

4. GEOMETRIC DIVERSE BROWSING
In the spatial domain, diverse nearest neighbor search is con-
ceptually similar to the idea of natural neighbors, which is
calculated with Voronoi diagrams (VD) and Delaunay tri-
angulation (DT) [15, 3]. In this section, we first present an
analogy of diversity with natural neighbors. Based on the
analogy, we propose the NatN-based method along with the
techniques that are used to retrieve natural neighbors of a
query point efficiently. Although the discussions are mostly
on 2-d space, the method can be extended to work on 3-
d space. Observing the limitations of NatN-based method
in higher dimensional spaces, we present another geometric
approach, Gabriel graph-based diverse browsing method.

4.1 Analogy with Natural Neighbors
The natural neighbors (NatN) of a point p ∈ S are the points
in S sharing an edge with p in DT. They are also the ones
whose Voronoi cells are neighbors of Vp. In the case of a
point x /∈ S, its natural neighbors are the points in S whose
Voronoi cells would be modified if x is inserted in VD(S).
The insertion of x creates a new Voronoi cell V +

x that steals
volume from the Voronoi cells of its potential natural neigh-
bors (see Figure 2).
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Figure 2: Natural neighbor coordinates wi of x in
2-d (left), DT with and without x (right).

To capture the influence of each NatN, we use natural neigh-
bor weights/coordinates in natural neighbor interpolation [21].

Let D be the VD(S), and D+ = D ∪ {x}. The Voronoi cell
of a point p in D is defined by Vp, and V +

p is its cell in D+.
The natural neighbor weight of x with respect to a point pi

is

wi(x) =
V ol(Vpi

∩ V +
x )

V ol(V +
x )

(2)

where V ol(Vpi
) represents the volume of Vpi

, and 0 ≤ wi(x) ≤
1. The natural neighbor weights are affected by both the
distance from x to pi and the spatial distribution of the pi

around x.

4.2 Natural Neighbor-based Method
Based on the property of the natural neighbor concept which
captures both the distance to a query point and also the
spatial distribution around it, we propose that the natural
neighbors of a query point x give a diverse set of similar-
ity search results, where the natural neighbor coordinates
wi(x) are used as ranking measures. The method works
as follows: (1) simulate the insertion of x into DT(S), (2)
find the natural neighbors of x: {p1, · · · , pk} along with the
weights {w1, · · · , wk}, and (3) report results according to
the weights in descending order. Details are provided be-
low:

Offline Generation of DT: In the preprocessing stage, DT(S)
for all the data points in S is calculated. Although
the weights are calculated with the overlapping areas
of these cells, and the definition of Natural neighbor
is defined (and also easier to understand) in terms of
Voronoi cells, performing operations on DT is compu-
tationally more efficient.

There are I/O and memory efficient methods for build-
ing Delaunay triangulation in 2-d and 3-d [13, 1] which
can generate DTs for billions of points very efficiently.
There are also publicly available implementations for
2-d [20] and for higher dimensions [4]. We use Qhull
implementation [4] to generate DT(S).

Step 1 - Flip-based Incremental Insertion: We simu-
late the insertion of x into DT(S) with a flip-based
insertion algorithm. It is easy to determine the simplex
of DT(S) containing x within linear time by inspecting
all the triangles.

Let τ be the DT(S) and pi the natural neighbors of
x once it is inserted in DT(S). All the 3 vertices of
simplex τ that contain x automatically become natu-
ral neighbors of x. Then, the necessary edge flips are
carried out until no further edge needs to be flipped.

The number of flips needed to insert x is proportional
to the degree of x (the number of incident edges) af-
ter its insertion. The average degree of a vertex in a
2-d DT is 6. This number increases along with the
dimensionality.

Step 2 - Find NatNs and weights: Vertices pi adjacent
to x in DT(S ∪ x) are the natural neighbors of x. The
volume of a d-dimensional Voronoi cell is computed
by decomposing it into d-simplices and summing their
volumes. The volume of a d-simplex τ is computed
with [15]:

V ol(τ ) =
1

d!

˛

˛

˛

˛

det

„

v0 · · · vd

1 · · · 1

«˛

˛

˛

˛

(3)



where v is a d-dimensional vector representing the co-
ordinates of a vertex and det is the determinant of the
matrix. Weights wi are then calculated with Equa-
tion 2.

Step 3 - Report for Diverse kNN: NatN-based method
naturally returns k′ results as an answer to query point
x. The result set R is ranked according to the weights
wi of each neighbor. If k′ ≥ k, we report top k ranked
result. Otherwise, k′ points are returned.

Overview of the method is given in Algorithm 1. Note that
if the number of natural neighbors is greater than k, the
points with smaller weights wi are eliminated. Otherwise,
the method may return less than k results.

Algorithm 1 Algorithm NatNDiversitySearch

1: procedure NatNDiversitySearch(x,k,DT)
2: DT′ ← Insert(DT,x)
3: W ← {}
4: for each point pi in adj[x] do
5: wi ← CalculateWeight(DT′, pi, x)
6: W ← W ∪ {wi}
7: end for
8: W ′ ← Sort(W )
9: if adj[x] > k then

10: W ′ ←W ′[1 : k]
11: end if
12: return W ′.i
13: end procedure

4.3 Limitations
The drawback of using natural neighbors in the diverse k-
nearest neighbor search is that there always is a fixed num-
ber of natural neighbors of a point, and the number is pro-
portional to the dimensionality of the space. This can be
seen even as an advantage since the parameter k is not
specified by the user, it is inherently captured by the pro-
cess. For browsing purposes, one cannot restrict the search
with only natural neighbor results as the user may demand
more search results. The search needs to continue incre-
mentally through the neighbors of neighbors with Voronoi
cells. Without any assumptions on the distribution of the
data, the average degree of a vertex in a 2-d DT is 6 [15]. In
this case, diverse k-nearest neighbor search with the NatN-
based method for 2-d space may not return a result set with
k items. As a result the method is forced to investigate the
neighbors of neighbors with Voronoi cells which were not
modified with the insertion of x.

For higher dimensional spaces, average degree of a point
in DT grows quickly with d (approximately dd) [8]. The
problem of selecting a subset of elements in this set to obtain
a diverse set of k items cannot be trivially solved with a
NatN-based approach. Because of the disadvantages, NatN-
based method is more appropriate for low-dimensional data
and small k values.

4.4 Gabriel Neighbor-based Method
In high dimensions, DT is intractable in terms of both con-
struction complexity O(ndd/2e) and browsing efficiency (be-

cause the average node degree is ∼ dd). For better scalabil-
ity and browsing capability in high dimensional spaces, we
propose using Gabriel graphs instead of DT.

The Gabriel graph [9] is the set of edges eij subset of DT(S),
for which the circle with diameter [pipj ] contains no other
points from S.

GG(S) = {eij ⊆ DT(S)| ∀pk ∈ S, |pkpi|
2+|pkpj |

2 ≥ |pipj |
2}
(4)

Observe that the Gabriel graph (GG) contains those edges
of DT that intersect their Voronoi faces [18]. Hence, GG
can be constructed in O(n log n) time by first constructing
DT and VD, and then adding each edge in DT to GG if it
intersects its Voronoi face. Without DT and VD, GG can
always be constructed by brute-force in O(n3) time.

The advantage of working with GG is that both nearest
neighbor graph (NNG) and minimum spanning tree (MST)
are subgraphs of it; therefore, GG still captures proximity
relationships among data points. Furthermore, GG is rea-
sonably sparse and simple: for planar graphs |GG(S)| ≤
3n− 8 [18]. As a result, Gabriel graph is particularly popu-
lar in constructing power efficient topology for wireless and
sensor networks [16].

Our solution for diverse k-nearest neighbor search is to browse
GG layer-by-layer, starting from the nearest point pnn to the
query point x. Figure 3 shows an example of GG layers con-
nected with B-spline. For efficiency, the query point is not
inserted into GG(S), but rather the spatial location of x is
imitated with its nearest neighbor.
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Figure 3: Incremental browsing of Gabriel graph.
Delaunay triangulation of the points with Gabriel
edges highlighted (i). For a query point x, diverse
results are gathered layer-by-layer starting with pnn

(ii).

After finding pnn, the algorithm iteratively search the n-
degree neighbors of pnn in GG(S), starting with n = 1.
GGDiversitySearch stops when k or more points are in-
cluded in R. Note that the resulting points are added layer-
by-layer; therefore there is a ranking among layers. However,
they are not sorted within layers, since there is no concept
similar to natural neighbor weights in Gabriel graphs. In
addition, |R| ≥ k, meaning that the algorithm may return
more than k results. The method is given in Algorithm 2.

It is possible to return exactly k results by examining the



Algorithm 2 Algorithm GGDiversitySearch

1: procedure GGDiversitySearch(x,k,GG,S)
2: pnn ← NearestNeighbor(S,x)
3: R← {}
4: R′ ← {pnn}
5: while |R| < k do
6: R← R ∪R′

7: R′′ ← {}
8: for each point p in R′ do
9: R′′ ← R′∪ adj[p]

10: end for
11: R′ ← (R′′ \ R)
12: end while
13: return R
14: end procedure

last layer of points added into R. One method is to choose
a subset of points from the last layer, which optimizes the
overall diversity of R. We are using a similar approach in
the experiments.

5. INDEX-BASED DIVERSE BROWSING
Spatial databases mostly come with an index structure, such
as the widely used R-tree [19]. A popular technique called
distance browsing [12] tries to find the k-nearest neighbors
(kNN) of a point in a spatial database that uses the R-tree
index. Based on this method, we introduce diverse brows-
ing for the diverse k-nearest neighbor search over an R-tree
index.

The principal idea of diverse browsing is to use the distance
browsing method defined in [12] with a pruning mechanism
that omits non-diverse data points and minimum bounding
rectangles (MBR). A priority queue is maintained with re-
spect to a rank, which is a combination of the mindist and
the angular similarity for the object (either data point or
R-tree index node). In each iteration the closest object is
investigated (see Figure 4).
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Figure 4: Example for diverse browsing. Suppose
MBR1 and MBR2 are two internal nodes of the R-
tree index (i). When the closest MBR is investigated
and the closest point p1 is added to the result set, p2

is pruned because of the angular and distance simi-
larity to p1 (ii). The rank of p3 is also increased here
due to its angular similarity to p1. Next, p4 is added
to the result set and causes MBR2 to be pruned since
none of the items in MBR2 can be diverse (iii).

5.1 Pruning and Ranking
When a point p is added to the result set R, we draw an
imaginary sector from the query point x in the direction of
p with θsector = 2 × θs angle and rsector = rs × | ~qp|. Every
point in this sector (~) will eventually be pruned. In default,
rs = 1 + λ and θs = 2π

k+ε
, unless specified otherwise.

We use the term rank as an alternative to mindist in dis-
tance browsing. Rank of each point and MBR in the priority
queue is calculated according to the angular similarity and
distance with respect to the elements in R (see Alg 3). Note
that the points with ranks closer to 0 are more likely to be
included in the result set.

Points without enough angular diversity and distance from
another point in R are pruned. Similarly, the algorithm also
prunes MBRs only if none of the corners of the object are
diverse enough to be in the result set. The advantage here is
that all the pruned data can be displayed as similar results
of each resulting point with a small modification, since we
have the information why a point is pruned.

Algorithm 3 Algorithm GetRank

1: procedure GetRank(x, obj, R, λ)
2: θs ←

2π
k+ε

; rs ← 1 + λ

3: dist← mindist(x, obj)
4: if obj is a point then
5: for each point p in R do
6: angsim [p]← simang(obj, x, p)
7: if angsim [p] > 0 and dist < | ~qp| × rs then
8: return Prune(obj) . obj is inside ~

9: end if
10: end for
11: rank← λ×max(angsim) + (1 − λ)× dist
12: else if e is a rectangle then
13: for each point p in R do
14: angsim← miny∈e.corners(simang(y, x, p))
15: if ∀y ∈ e.corners in ~ then
16: return Prune(obj)
17: else if ∃y ∈ e.corners in ~ then
18: dist← min(| ~qp| × rs, | ~qy|)
19: end if
20: rrank [p]← λ× angsim + (1 − λ)× dist
21: end for
22: rank← max(rrank)
23: end if
24: return rank
25: end procedure

5.2 Maintaining the Priority Queue
The efficiency of the proposed method comes from the di-
verse browsing of R-tree structure. As in incremental near-
est neighbor search algorithms and distance browsing [12],
a min-priority queue (PQ) is maintained after each opera-
tion. However, instead of MinDist metric we use the result
of GetRank function as the value of each object in PQ.
GetRank gives a non-negative value which is the rank of
the point or the rectangle with respect to its angular diver-
sity and distance from the query point depending on R and
λ. In each iteration, the object with the lowest rank (top of
PQ) is investigated.



As the rank of each object in PQ depends on the current
state of R, some of the ranks will be obsolete after another
point is inserted into R. But instead of updating all the
objects in PQ (which would be inefficient), we argue to up-
date only the top of PQ with a timestamp-based approach
until an up-to-date object is acquired. The timestamp is
incremented every time a point is included in the result set.
The proposed method based on timestamp-based update of
ranks in PQ is proved by Lemma 5.1 and Theorem 5.2.

Lemma 5.1. Update operation on an object, which is on
top of PQ and has an earlier timestamp, can either increase
the rank of the object, or does not affect it at all.

Proof. An object (obj) is updated only when ts[obj] <
timestamp. Since the timestamp increases when a new item
is added to R, there are exactly (timestamp− ts[obj]) new
items (Rnew) in the result set compared to the time when
rank[obj] was calculated.

Suppose the new rank of obj at current timestamp is rank′[obj].
If obj is a point, three outcomes of the update are:

1. Prune(obj), if it resides in a pruning sector ~ of a new
point in R,

2. rank′[obj] > rank[obj], if ∃p ∈ Rnew ,
simang(obj, x, p) > maxr∈R(simang(obj, x, r))

3. rank′[obj] = rank[obj], if ∀p ∈ Rnew ,
simang(obj, x, p) ≤ maxr∈R(simang(obj, x, r))

On the other hand, if obj is a leaf or internal node, the rank
depends on the corners of the MBR:

1. Prune(obj), if ∀y ∈ obj.corners in a pruning sector ~

of a new point in R,
2. rank′[obj] > rank[obj], if ∃p ∈ Rnew , y ∈ obj.corners,

simang(y, x, p) > maxr∈R(simang(obj, x, r))
3. rank′[obj] = rank[obj], if ∀p ∈ Rnew , y ∈ obj.corners,

simang(y, x, p) ≤ maxr∈R(simang(obj, x, r))

We have shown that the updated object can be pruned. Oth-
erwise its rank either increases or stays the same. Therefore,
update operation never decreases the rank of an object.

Theorem 5.2. An object on top of PQ with the current
timestamp provides the lower-bound for the ranks of all the
objects in PQ, even if there are other objects in PQ with
earlier timestamps.

Proof. Suppose obj is on top of PQ with the current
timestamp, and let obj′ be another object in PQ with a prior
timestamp (ts[obj′] < timestamp). Following Lemma 5.1,
even if the rank of obj′ is updated, it is either pruned or
rank+[obj′] ≥ rank[obj′]. Since obj′ is not on top of PQ,
rank[obj′] ≥ rank[obj]. Hence rank+[obj′] ≥ rank[obj],
therefore rank[obj] is still a lower-bound for the ranks of
the objects in PQ.

5.3 Incremental Browsing
After extending the distance browsing feature of R-trees
with diverse choices, incremental browsing of an R-tree gives
diverse results depending on λ. Details of the method are
given in Algorithm 4, excluding the specific conditions, i.e.,
when λ = 1 and PQ is empty.

Algorithm 4 Algorithm DiverseKNNSearch

1: procedure DiverseKNNSearch(x,k, λ, R-tree)
2: R← {}
3: ts← 0
4: PQ←MinPriorityQueue()
5: Enqueue(PQ,<R-tree.root,ts, 0>)
6: while |R| < k and not IsEmpty(PQ) do
7: while Top(PQ).ts < ts do
8: e← Dequeue(PQ) . update top
9: Enqueue(PQ,<e, ts,GetRank(e)>)

10: end while
11: e← Dequeue(PQ)
12: if e is a point then . add point, inc. ts
13: R← R ∪ {e}; ts← ts + 1
14: else . leaf or internal node
15: for each obj in node e do
16: Enqueue(PQ,<obj, ts,GetRank(obj)>)
17: end for
18: end if
19: end while
20: return R
21: end procedure

The proposed algorithm has the following properties:

Property 1. Diverse k-nearest neighbor results obtained by
the diverse browsing method always contain pnn, the nearest
neighbor of the query point x.

Proof. Initially R = , therefore the rank of every object
oi ∈ PQ is calculated solely depending on the mindist of
the nodes and the points (see Algorithm 3). The algorithm’s
behavior is similar to that of distance browsing method at
this stage. When the first point p is dequeued from PQ,
it is included to R. p is also the point with the minimum
distance to x, hence pnn ∈ R.

Property 2. Diverse browsing can capture the set Pc, which
comprises k points uniformly distributed around x with the
same distances as pnn.

Proof. The method selects the points in Pc without prun-
ing any of them. We guarantee that the points in Pc are re-
trieved without any assumptions on the order. In addition,
min p̂ixpj = 2π/k where pi, pj ∈ Pc, therefore [2π/k] ≥
[2π/(k + ε)] = θs, therefore no point in Pc is pruned.

Dissimilarity-based diversification methods (e.g. [14]) do
not support this property since they are likely to prune some
points in Pc, especially when k > 6.



6. EXPERIMENTS
We define the evaluation measures in Section 6.1. Real and
synthetic datasets used in the experiments are summarized
in Section 6.2. Evaluation and discussion of the methods
for spatial and high-dimensional datasets are given in Sec-
tion 6.3.

6.1 Evaluation Measures
In order to measure how well the methods capture the rel-
evancy and the spatial distribution around the query point,
evaluation measures are given in Definition 6.1, 6.2, and 6.3.

Definition 6.1. Angular diversity. Given a query point
q and a set of results R, angular diversity measures the spa-
tial diversity around the query point:

DIV (q, R) = 1 −

‚

‚

‚

P

pi∈R
~qpi

‖ ~qpi‖

‚

‚

‚

|R|
(5)

The intuition behind this measure is that each of the points
in R tries to influence the overall result in the direction of the
point itself. If the result set is fully diverse, sum of these
‘forces’ will be closer to the center; therefore the average
influence on the query point gives an idea of how diverse the
result set is. This measure can be easily applied to higher
dimensions since it consists of simple vector additions and
normalization. See Figure 5 for the angular diversity of the
points in Figure 2.
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Figure 5: Angular diversity measure. Suppose
diverse 6-nearest neighbor search for x retrieves
{p1, · · · , p6} (i). Angular diversity of the result set
is calculated by the sum of vectors ~qpi on a unit cir-
cle/sphere (ii). When the result set is diverse (iii),
the average of these vectors will be close to the cen-
ter; otherwise, as in (iv), the average will be close
to the circle. For example, maximum angular diver-
sity (DIV = 1) in 2-d for k = 3 can be achieved with
points which have an angle of 2π/3 pairwise (v).

However, the angular diversity measure is not adequate to
evaluate the diversity of a result set, since an algorithm can

always return a better set of items more distant than the
nearest neighbors if the distance factor is omitted.

Definition 6.2. Relevance measure. Given a query
point q, its k-nearest neighbors KNN, and a set of results R,
relevance measure calculates the normalized average distance
of the points in R with respect to the k-nearest neighbors:

REL(q,R) =

P

pj∈KNN
‖ ~qpj‖

P

pi∈R ‖ ~qpi‖
(6)

The result of REL is in the interval [0,1]. Magnitude of each
vector is calculated in Euclidean space; although any metric
distance measure can be applied to the function, as long as
it is consistent with the one used for the calculation of the
kNN.

Definition 6.3. Diverse-relevance measure. Given
a query point q, a set of results R, and a parameter λ spec-
ifying the importance of diversity over relevancy, diverse-
relevance measures both relevancy and angular diversity of
the results:

DIV REL(q, R) = λ×DIV (q, R)+(1−λ)×REL(q, R) (7)

DIVREL is based on the Maximal Marginal Relevance (MMR)
method [5]. When λ = 0, the measure evaluates the rele-
vance of the results excluding the diversity. The aim of our
methods is to maximize the diverse-relevance of a result set
depending on the value of λ.

6.2 Datasets
We conduct our experiments on both real datasets of points
of interests (2-d) and synthetic high-dimensional datasets.
The datasets are summarized in Table 1.

Real spatial datasets. We deploy three real-life datasets
in our experiments. ROAD is the latitude and longitude
data of road crossings in Montgomery County MD, with
63,830 cardinality. 10% of ROAD dataset is randomly se-
lected as query points. North East (NE) dataset contains
123,593 postal addresses, which represent three metropoli-
tan areas (New York, Philadelphia and Boston) 1. CAL
dataset consists of 104,770 points of interest in California 2.
To avoid querying outside of the data region, 500 points from
each of two datasets (NE and CAL) are randomly selected
as queries.

Synthetic high-dimensional datasets. We generate four
synthetic high-dimensional datasets to evaluate the efficiency
and the effectiveness of the proposed methods. NORM is
6-d dataset with 500,000 points generated with Normal dis-
tribution (µ = 0, σ2 = 1). UNI is the dataset with 6-d
and 500,000 cardinality generated with Uniform distribu-
tion. SKEW is 6-d dataset with 500,000 points generated
with Skew Normal distribution (µ = 0, σ2 = 1, α = 1).
HDIM is a 10-d dataset, also generated with Uniform dis-
tribution, but has 1,000,000 data points. For each of those

1http://www.rtreeportal.org
2http://www.cs.fsu.edu/∼lifeifei/SpatialDataset.htm



synthetic datasets, 200 query points are produced with the
same distribution and parameters.

Table 1: Description of the datasets.

Dataset d Card. Description

ROAD 2 63,830 road crossings, Montgomery County

NE 2 123,593 postal addresses, northeast of USA

CAL 2 104,770 points of interest in California

NORM 6 500K normal distribution (µ = 0, σ2 = 1)

UNI 6 500K uniform distribution

SKEW 6 500K skew normal dist. (µ=0,σ2=1,α=1)

HDIM 10 1M uniform distribution

6.3 Evaluations
Spatial real data. We compare the results of geomet-
ric approaches (NatN-based and GG-based) with diverse
browsing of R-tree and KNDN [14] on ROAD, NE, and CAL
datasets. In order to be consistent, the results of the NatN-
based method is obtained first. Depending on the number
of natural neighbors of each query point, we run other algo-
rithms for each query with k = #NatN . R-trees are built
with a page size of 512 bytes (which holds 64 data points)
and fill factor of 0.5. Immediate greedy approach of the
KNDN method is adopted for the spatial domain: threshold
parameter MinDiv is updated according to the value of λ.
Note that when λ = 0, both KNDN and diverse browsing
on R-tree methods reduce to kNN.

Similar results for all real datasets (see Figure 6) proves
that geometric methods naturally produce diverse results
in terms of DIV measure. Since the natural and Gabriel
neighbors of a point are fixed in a dataset, these methods are
the most efficient ones, only if (1) the purpose of the search is
angular diversity, and (2) the spatial database is stable. GG-
based method has an advantage over NatN-based method,
while it enables for incremental diverse browsing.

However, life itself is always changing. In most cases a spa-
tial index is used to represent certain points-of-interests, and
those databases are updated constantly. Roads are built,
new restaurants are opened, old buildings are replaced by
the new ones, etc. Because geometric methods require a pre-
processing time for building the entire DT or GG, they are
not appropriate for dynamic databases. In addition, users
may want to adjust how diverse vs. relevant the search
results are. Index-based methods provide such flexibility.
We will discuss the advantages and disadvantages of each
method in Section 6.4.

If we focus on index-based search methods, both diverse
browsing and KNDN start with DIV REL ≈ 1 when λ =
0, and they try to adjust their results as the user asks for
more diversity. It is seen that diverse browsing performs
better producing a more diverse result set for the spatial
domain compared to KNDN (about 20% improvement for
λ = 1, 10% improvement overall). Diverse browsing method
also gives a high diverse-relevant set of results as user seek
diversity in the results (about 15% to 25% improvement).
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Figure 6: Comparison of the algorithms on ROAD
(a,b), NE (c,d), and CAL (e,f) datasets. Aim of the
methods is to maximize the diverse-relevance (DI-
VREL) of the results. Angular diversity (DIV) of
the geometric approaches are stable, because natu-
ral and Gabriel neighbors of a point are fixed.

Synthetic high-dimensional data. The purpose of ex-
perimenting in high-dimensional space is to show the effi-
ciency of each compared algorithm and the diverse-relevance
of the results. Figure 7 shows the comparison of diverse
browsing, GG-based and KNDN methods on synthetic 6-d
datasets. NatN-based method is omitted, because it is not
scalable to high dimensions due to its high average degree
(see Section 4.3). In order to measure the efficiency of each
index-based method, we spot the page accesses when λ = 1,
for which the algorithms investigate the highest number of
internal nodes.

For the queries where relevance is preferred over diversity
(i.e., λ < 0.5), diverse browsing and KNDN perform bet-
ter that GG-based method, since they are both based on
distance browsing feature of R-trees. On the other hand,
Gabriel graph-based method is extremely powerful for diversity-
dominant queries (i.e., λ ≥ 0.5) in terms of both compu-
tational efficiency and the diverse-relevance of the results.
After retrieving the nearest neighbor pnn in the database,
it only takes page accesses equal to the number of layers
lGG(k) required to obtain k Gabriel neighbors. From our
observations, lGG(k) ≤ 2 for k = O(d2). GG-based method
also improves the diverse-relevance of the results up to 25%
when λ ≥ 0.5.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

λ (NORM, k=10)

DI
VR

EL

 

 
Diverse browsing
Gabriel graph
KNDN

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

Queries (NORM, k=10, λ=1, sorted)

pa
ge

 a
cc

es
se

s

 

 
Diverse browsing
KNDN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

λ (UNI, k=10)

DI
VR

EL

 

 
Diverse browsing
Gabriel graph
KNDN

0 50 100 150 200
0

200

400

600

800

1000

Queries (UNI, k=10, λ=1, sorted)

pa
ge

 a
cc

es
se

s

 

 
Diverse browsing
KNDN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

λ (SKEW, k=10)

DI
VR

EL

 

 
Diverse browsing
Gabriel graph
KNDN

0 50 100 150 200
0

500

1000

1500

2000

2500

Queries (SKEW, k=10, λ=1, sorted)

pa
ge

 a
cc

es
se

s

 

 
Diverse browsing
KNDN

Figure 7: Comparison of the algorithms on NORM
(a,b), UNI (c,d), and SKEW (e,f) datasets.

The most challenging dataset we experiment on is 10-d HDIM
dataset, which consists of 1M entries. Because generat-
ing the GG efficiently in high-dimensions is not the con-
cern of this paper, we decided to extract only the necessary
Gabrial-edges for this experiment. Figure 8 suggest that
GG-based method is highly effective for diversity-intended
queries, where index-based methods return similar results
for different λ values. This is obviously because Euclidean
distance in higher dimensions may not accurately measure
the similarity. But still, diverse browsing method is able
to produce the same results as KNDN with 36% less page
accesses.
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Figure 8: Comparison of the algorithms on HDIM
(a,b) dataset.

6.4 Discussions
Proposed geometric and an index-based diverse browsing
methods have their own advantages in terms of preprocess-

ing, querying, flexibility, and scalability. A summary of the
proposed methods are given in Table 2.

Preprocessing. The advantage of index-based diverse brows-
ing method is that it does not require any preprocessing, and
ready to execute on any spatial database that use data par-
titioning method, such as R-tree, R*-tree, etc. On the other
hand, geometric methods require to build DT or GG, which
can be very complex depending on dimensionality and cardi-
nality. As a result, we suggest index-based diverse browsing
for a dynamic database, which is more likely based an index
that handles insert, delete and update operations efficiently;
and geometric methods for static databases, which would
not cause DT and GG to be calculated frequently.

Querying. As mentioned, NatN-based method naturally
returns a result set with a fixed number of points. If the user
does not specify k and the purpose is to find a perfectly bal-
anced diverse and relevant set of results (see DIVREL graphs
at λ ≈ 0.5), NatN-based method is appropriate. However,
diverse browsing is more suitable for diverse k-NN search,
which requires exactly k results returned. If the query asks
for at least k results, GG-based method can be used as well.

Flexibility. We can investigate this property in two differ-
ent ways. First is the flexibility of setting the importance of
diversity over relevance. Only diverse browsing method ad-
justs itself for various λ values, since the natural and Gabriel
neighbors are fixed in a graph. Second is the flexibility of
incremental diverse browsing, where the user demands more
search results. Both index-based diverse browsing and GG-
based methods enable the retrieval of additional diverse re-
sults.

Scalability. For high dimensional spaces, NatN-based method
is intractable (see Section 4.3). Since data partitioning meth-
ods are shown to be inefficient for high dimensional data,
Gabriel graph-based method can be preferred over index-
based diverse browsing. Experiments (see Figure 8) show
that GG-based method is in fact very efficient (∼10K vs.
lGG(k) page accesses) and effective (0.6 vs. 0.85 DIVREL
for λ = 1) in high dimensional datasets.

Table 2: Comparison of the methods.

Method Results Ordered Prep. Incremental

NatN #natn by wi build DT NO

GG ≥ k by layer build GG YES

Diverse
k by Rank NO YES

Browsing

7. CONCLUSIONS
In this work, we investigate the diversification problem in
the spatial domain. Because the diverse k-nearest neighbor
search is conceptually similar to the idea of natural neigh-
bors, we give a definition of diversity by making an analogy
with the concept of natural neighbors and propose a natural
neighbor-based method. Observing the limitations of NatN-
based method in high dimensions, we then present another
geometric approach based on Gabriel graphs. For spatial
databases, we introduce an index-based diverse browsing



method, which maintains a priority-queue with the ranks
of the objects depending on both relevancy and diversity,
and efficiently prunes non-diverse items and nodes in order
to get the diverse nearest neighbors efficiently. To evaluate
the diversity of a given result set to a query point, a mea-
sure that captures both the relevancy and angular diversity
is presented. We experiment on spatial and high dimen-
sional, real and synthetic datasets to observe the efficiency
and effectiveness of each proposed method, and compare
with another R-tree-based technique found in the literature.

Results suggest that geometric approaches are suitable for
static, index-based diverse browsing is for dynamic databases.
In addition, Gabriel graph-based method performed well in
high dimensions, which can be investigated more and ap-
plied to other research fields where search in high dimen-
sional space is required.

Since there are numerous application areas of diverse k-
nearest neighbor search, we plan to extend our method to
work with different types of data and distance metrics.
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