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Abstract

Modern multi-core platforms are evolving very rapidly.
Scientific applications are leveraging this growth in com-
puting power to continually increasing the computational
complexity of problems that can be solved. These appli-
cations are typically written using the Message Passing
Interface (MPI), the pre-dominant parallel programming
model. Currently, multi-core platforms have multiple sockets
with each socket housing a multi-core processor chip. There
are various levels of cache hierarchy and sharing in this
platform. Cores in the same socket may have private L1
and L2 caches and share L3 cache, while cores on different
sockets do not share any caches. MPI processes are placed
on one process per core. These processes communicate us-
ing user-level shared memory. This involves memory copies,
to and from shared buffers. Thus, making performance of
memory copy routines critical to overall performance. The
Streaming SIMD Extensions (SSE) provide instructions that
can perform streaming and non-temporal memory moves.
Utilizing these instructions can improve memory bandwidth
and reduce cache pollution. The impact of these instructions
may depend on the levels of shared cache hierarchy between
the communicating processes.

In this paper, we investigate whether SSE non-temporal
instructions are beneficial for intra-node MPI communi-
cation. We design a framework for optimizing memory
copy functions within MVAPICH2, a popular implemen-
tation of MPI on InfiniBand. We investigate six different
possible memory copy functions using different instructions
and integrate them into MVAPICH2. We present perfor-
mance investigation on latest multi-core architectures: AMD
Barcelona, Intel Nehalem, and AMD Magny-Cours. Our in-
vestigation reveals that using non-temporal instructions for
communicating processes located on different sockets can
significantly improve bandwidth at 64K Byte messages by
60% and 13% for the multi-pair bandwidth benchmark, and
improve NAS benchmark and HPCC benchmark from 2% to
14% on AMD Barcelona and Intel Nehalem architectures.

I. Introduction

Over the past several decades, scientific applications have
proved their insatiable need for more computation power.
Most scientific applications attempt to simulate a wide
range of natural phenomena from cosmology, molecular
dynamics, weather prediction, etc. In order to reach the level
of accuracy and length of simulations, application scientists
increase their problem size and resolution and these applica-
tions consume tens of thousands of processor cycles on large
scale supercomputing systems, each year. Over the past few
years, we have witnessed a dramatic change in compute
node architecture. Due to power requirements and heat
dissipation issues, individual processors cannot be made
arbitrarily fast by increasing clock frequency. As a result,
processors have evolved to have multiple computation cores
operating at relatively lower clock frequencies. Recently,
AMD Magny-Cours [1] compute platforms with up to 24
cores per node have been released. The compute platform
typically consists of multiple sockets, with each socket
housing a multi-core chip. These chips contain multiple
cores inside. Current generation commodity processors typ-
ically have 8-12 cores, with many more planned for the
future. Compute cores that reside within a socket may share
caches. For example, in the Intel Nehalem architecture [2],
the cores that are on the same socket share L3 caches, while
L1 and L2 caches are private for each code. Cores that do
not live in the same socket may not share any caches at all.

The Message Passing Interface (MPI) is the most popular
parallel programming model among scientific applications.
Typical MPI implementations use IPC shared memory for
intra-node communication. This is done at user-level by
copying the message into a shared memory buffer and then
copying it back into the destination process memory. Al-
though, this scheme involves two copies, this is the preferred
method for a very large percentage of MPI users. Production
systems, such as those in supercomputer centers, have
traditionally avoided OS-kernel assisted approaches [3], [4]
even though they avoid one copy in the message passing
process due to security concerns and to remove the chance
of entire nodes failing when kernel components are buggy,



as opposed to the MPI process aborting when bugs are
encountered in user-level. Due to this continued interest in
user-level techniques, we make it the focus of our paper.

Based on the node architecture, and the communication
pattern, cores with various levels of shared cache hierarchy
may communicate. In the case of cores sharing caches, mes-
sage passing may be optimized by leveraging the caches,
by avoiding memory bus transactions. However, in the case
where caches are not shared, it may not be optimal to pollute
the caches further by occupying them with intermediate
shared memory buffers. Additionally, there are multiple
types of processor instructions that are available on modern
multi-core machines. The streaming SIMD instructions in
the SSE instruction set provide a whole range of memory
copy operations that may be individually more efficient
in certain cases. For example, non-temporal moves, which
bypass cache hierarchies may be more efficient when the
communicating cores do not share caches. On the other
hand, temporal moves may be more efficient in a shared
cache environment.

Depending upon patterns of communication and MPI
usage characteristics by scientific applications, the answer
may differ. To the best of our knowledge, there has been
no contemporary study on the impact of specific memory
copy instructions on MPI performance on multi-core ma-
chines. There are several open research questions that need
answering:

1) Can standard memory copy routines provided by C
compiler libraries provide near optimal performance
for inter-socket communication (no cache sharing)?

2) Can advanced SSE2 non-temporal instructions be
utilized to implement a special memory copy function
for inter-socket communication? What are the perfor-
mance advantages?

3) Can the potential performance advantages be always
realized on different modern multi-core systems?

4) Can the benefits be observed at the MPI level with
an enhanced set of micro-benchmarks and application
kernels?

In this paper, we investigate whether non-temporal in-
structions, such as those provided by SSE, are beneficial
for intra-node message passing, especially in the case where
there are no levels of caches that are shared. We design a
framework for optimizing memory copy functions within
MVAPICH2, a popular implementation of MPI on Infini-
Band on multi-core platforms. We investigate six different
possible memory copy functions using different instructions
and integrate them into MVAPICH2. We present a thorough
performance investigation on latest multi-core architectures:
AMD Barcelona, Intel Nehalem, and AMD Magny-Cours.
Our investigation reveals that usage of non-temporal in-
structions for communicating processes that are located
on different sockets can significantly improve bandwidth.

Performance can be improved by 60% and 13%for 64K
Byte message sizes over the default shared memory im-
plementation for the multi-pair bandwidth benchmark on
Barcelona and Nehalem architectures.

The rest of the paper is organized as follows. In Sec-
tion II we provide background information about the topics
discussed in this paper. Then in Section III, we describe the
design of our framework of optimal memory copy in MVA-
PICH2. Experimental results are presented and discussed
in Section IV. Related work in this field is presented in
Section V. Finally, we conclude the paper in Section VI
and discuss future directions.

II. Background
In this section, we provide requisite background about

the topics discussed in this paper. We begin our discussion
with streaming SIMD extensions and the modern multi-core
platforms used in this paper. Then, we discuss user-level
intra-node message passing techniques employed by state-
of-the-art MPI implementations.

A. Streaming SIMD Extensions (SSE)

Streaming SIMD instruction set was proposed in the
late 1990s as an extension to the x86 instruction set. The
motivation behind this extension was to provide advanced
instructions that could use novel processor features to
optimize many applications. These instructions applied to
integer operations, floating point operations, branching, and
data moving. The single instruction multiple data (SIMD)
aspect improves the utilization of processor, cache and
memory subsystems by leveraging data parallelism. In this
paper, we focus exclusively on the data moving operations
or mov instructions.

There are multiple variations of mov instructions avail-
able that move 32-bits, 64-bits and 128-bits of data using
one instructions. When multiple words can be moved to-
gether, the memory bus bandwidth usage is maximized.
Aligned moves are particularly bandwidth efficient as they
reduce the number of bus transactions. These instructions
obey the cache hierarchy. Peak performance is typically
observed when data is moved between caches.

In a multi-processor system implementing various levels
of cache hierarchy, one of the major performance consider-
ations is to maximize cache performance by reducing cache
pollution. In order to provide opportunities for software to
prevent cache-pollution, various versions of non-temporal
instructions are provided (32-bit, 64-bit, 256-bit). These
instructions bypass caches, and have the potential of im-
proving performance in the cases that caches are not shared,
and the amount of data being moved is too large to fit in
destination cache anyways. i.e. reduce cache thrashing.

Although compilers are able to generate assembly code
with more fancy SSE instructions usage, compilers are hard
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to generate instructions considering cache sharing between
processes due to lack of the run time information. The
availability of various instructions for moving depending on
different case scenarios provides an opportunity to optimize
memory copy functions in MPI libraries. We will discuss it
in detail in Section III.

B. Modern Multi-core Platforms

The increasing demand for computational cycles is being
met by the emergence of modern multi-core architectures.
Current generation high-end servers are comprised of sev-
eral sockets with each socket comprising of 4 to 8 compute
cores. The number of compute cores are constantly on the
rise with experimental chip-sets already offering about 64
cores per socket [5]. We expect to see several main-stream
systems offering such capabilities in the near future, as well.
Owing to such trends, we believe that the performance of
communication operations between processes that are on the
same compute node is bound to play a key role in scaling
scientific applications. As the number of compute cores
increases, the aggregate compute power offered by the com-
pute node improves. However, we need to note that more
resources will invariably be shared across several processing
units. Current generation multi-core architectures rely on
technologies such as the QuickPath Interconnect(QPI) [6]
and the HyperTransport [7] to deliver low latency and
high bandwidth between different sockets. Next generation
systems will necessarily use a complex network within a
socket to provide connectivity between the compute cores.
Most current generation architectures involve some degree
of cache sharing between processes that are on the same
socket, while processes belonging to different sockets do not
share cache and could have different memory controllers, as
well. It is hence necessary to consider the subtle differences
introduced by the various hierarchies while designing a
high-performance message passing library that ensures low
communication latencies for all types of intra-node commu-
nication operations.

C. User-Level Shared Memory Message Passing
Techniques

With the advent of multi-core processors, the amount of
communication within a node is rapidly increasing. Typical
MPI implementations utilize IPC shared memory message
passing for intra-node communication. In this mechanism,
a circular pool shared memory buffers is created prior to
message passing. When a process wants to send a message
to another process on the same node, a buffer is consumed
from the circular pool. The message is then copied to the
shared memory buffer, from which the receiver again copies
it to the destination buffer. Thus, there are two copies
involved in this method. The interaction with the cache
hierarchy in a two-socket quad-core processor system is

shown in Figure 1. We consider the inter-socket communi-
cation with sufficiently large message sizes, concentrating
on the last-level cache, L3. In the first step, the source
buffer is brought into the L3 cache. Then it is copied to the
shared memory buffer that also in the cache in the second
step. This cache line is then evicted to memory, when the
receiver attempts to read the message in the third step. The
shared memory buffer is then copied to the receiver’s cache
and finally placed into the destination buffer in the fourth
step. Current MPI stacks, MVAPICH2 [8], MPICH2 [9] and
OpenMPI [10] follow such a technique.

III. Design and Implementation

In this section, we discuss the design and implementa-
tion of our design of cache hierarchy aware non-temporal
memory copy instructions. We describe the framework in
MVAPICH2.

A. Design Considerations

As discussed in Section II-C, user-level shared memory
based copy techniques involve two memory copies. There
can be two types of cache sharing relationships. One is
when two communicating cores share the last level of cache.
Secondly, the communicating cores may share no caches
at all. The two memory copies used in this method are:
copy from send buffer to shared buffer, or copy from shared
buffer to receive buffer.

When two communicating cores share a cache, the
performance of the two memory copy technique is almost
completely determined by the cache performance. The
cache performance depends on cache size (compared to
size of messages being exchanged), cache replacement
policy and coherence policy. The best performance is
expected when both sender and receiver buffers, along with
intermediate shared memory buffer fit within the cache
hierarchy. In-fact, when caches are shared, non-temporal
copies can in-fact adversely affect performance. When two
communicating cores do not share a cache, non-temporal
instructions have the possibility to improve performance.
From the point of view of cache utilization, the data in
shared buffer illustrated in Figure 1 shouldn’t be put into
cache either on sender side or on receiver side due to the
following reasons:

1. The shared memory created and managed by MPI
library is not visible to applications. It cannot be used by
applications directly.
2. The shared memory is usually organized as a ring buffer
and used with a circular fashion. Individual cache lines
will not be reused before the entire ring of buffers is used.
This is especially true in a large share memory pool that
exceeds the L3 cache size.
3. The sender side issues write operations and the receiver
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Fig. 1. Memory accesses for User-Level Shared Memory Implementation

side issues read operations. The shared memory data in
cache will become invalid before it can be reused by read
operations.
4. The data in shared memory may also compete for cache
with application’s data that could potentially be reused,
which could result in application data being evicted from
the cache, leading to higher conflict misses.

In Section III-B, we implement different memory copy
routines and verify whether non-temporal instruction can
improve performance when two communicating cores don’t
share a cache in Section IV.

B. Memory Copy Instruction

In order to understand the performance characteristics of
different move instructions for intra-node communication
on the modern multi-core processors, we use the following
move instructions [11] to implement six different memory
copy functions.

1. 32 bit move: original x86 instruction mov and movsb;
2. 64 bit move: MMX instruction movq;
3. 128 bit move: SSE2 instruction movdqa and movdqu;
4. 32 bit non-temporal move: SSE2 instruction monti;
5. 64 bit non-temporal move: SSE instruction movntq;
6. 128 bit non-temporal move: SSE2 instruction movntdq,
and SSE4.1 instruction movntdqa.

For situations in which the communicating processes are
on different sockets and do not share caches, we investigate
non-temporal move instructions. The main rationale of using
the non-temporal instruction is to minimize cache pollu-
tion. We also evaluate the performance impact of choosing
move instructions with different widths on MPI benchmarks
and applications performance, particularly those that are
sensitive to bandwidth. We use four non-temporal move
instructions: MOVNTI (32 bit), MOVNTQ (64 bit), MOVNTDQ
(128 bit), and MOVNTDQA (128 bit). MOVNTI, MOVNTQ,
and MOVNTDQ move data from registers to memory (write
to memory); and MOVNTDQA move data from memory to
registers (load from memory). The MOVNTDQA instruction
is used to implement non-temporal load and others are used
to implement non-temporal store.

1) Non-temporal Store: Algorithm 1 illustrates the de-
signs associated with a non-temporal memory copy function
with MOVNTDQ instruction, which has input parameter n as
original data size need to be copied, dst as the destination
address and src as the source address.

Although there are sixteen 128 bit registers, xmm0-
xmm15 that can be used to implement the 128 bit non-
temporal move operation, registers xmm8 through xmm15
cannot used since they are accessible only in 64-bit op-
erating mode, and one more byte is required to store the
instruction itself. For example, 4 bytes are required for
“MOVDQA (%rsi) %%xmm0”, but 5 bytes are required for
“MOVDQA (%rsi) %%xmm8”. In the memory copy function
amd64 cpy 128 nt store(), registers xmm0 to xmm7 are
used. It can copy 128 bytes in one loop (128 bit per
register x 8 registers). At the beginning of the Algorithm 1,
if the destination address is not aligned with the cache
line size, we copy the data in two steps. We first copy
the first few bytes of the data with another memory copy
operation amd64 cpy small which copy small amounts of
data with the MOVSB and MOVSQ instructions, such that
the remainder of the data is aligned. We then copy the rest
of the data, as described in Algorithm 1. We also use the
PREFETCH0 instruction twice to fill 128 bytes of data into
the cache at the start of the operation. In each iteration of
the loop, 128 bytes of data are fetched into the cache, by
pipeling the MOVUPS and the MOVAPS instructions with the
PREFETCHT0 instruction. The MOVUPS and the MOVAPS
instructions are used to load aligned or non-aligned data into
the xmm register, respectively. The MOVNTDQ instruction
is used to store data from the xmm register into the 128
bit memory location without cache pollution. Finally, the
SFENCE instruction is used to maintain ordering across
different write operations. Since the data in the shared-
memory buffers by-pass the L3 cache, our proposed copy
operation could lead to lower conflict misses and better
cache availability for applications.

2) Non-temporal Load: We also design another function
amd64 cpy 128 nt load() with the MOVNTDQA instruction
for the MPI receive operation to minimize the cache pollu-
tion on the receiver side due to the shared buffers. Unlike
the MOVNTDQ instruction, MOVNTDQA is only effective for
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Algorithm 1 MOVNTDQ memory copy
if n > 128 then

if dst unaligned with cache line size then
j = unaligned data size;
amd64 cpy small(dst, src, j);
n -= j;

end if
i = n >> 7; n = n - (i<<7);

end if
prefetcht0;
if i>0 then

if src misaligned then
for i>0 do

prefetcht0;
movups; movntdq;
src += 128; dst += 128
i -= 1;

end for
else

for i>0 do
prefetcht0;
movaps; movntdq;
src += 128; dst += 128
i -= 1;

end for
end if
sfence;

end if
if n>0 then

amd64 cpy small(dst, src, n);
end if

Write Combining (WC) memory type [11]. However, most
systems rely on the Write Back(WB) mechanism and the
memory type can be changed only in the kernel mode.

In order to enable the MOVNTDQA instruction, a ker-
nel module is implemented, where two kernel interfaces
of Page Attribute Table (PAT) [12] set memory wc()
and set memory wb() are called to change the memory
type. This kernel module is called to change a large
piece of shared buffer from WB to WC in MPI Init() if
amd64 cpy 128 nt load() is set in MPI environment vari-
able; and is called in MPI Finalize() to change the memory
type back. However, we don’t include its performance data
in Section IV, since the kernel module required, which is
out of the scope of this paper.

C. Dynamic Memory Copy Routines Selection

In order to enable memory copy routines selection for
different processes in the run-time, we design and imple-
ment a selection framework that considers the cache hierar-
chy and sharing. During MPI Init(), we utilize the Portable

Hardware Locality (hwloc) [13] interface to generate a
hierarchical topology tree. When MPI processes are bound
to different cores, depending on the hwloc tree, MPI library
detects cache sharing or no cache sharing between cores.
This step is implemented for all intra-node communication
channels. Finally, MPI environment variables are used to
choose between different memory copy routines at run-time.

IV. Experimental Evaluation
A. Experimental Testbed

The experimental testbed consists of three different types
of multi-core processors. The first platform is an AMD
Barcelona machine with four sockets. Each socket is a
Quad-Core AMD Opteron 8350 Processor with 2 MB
shared L3 cache. The second platform is an Intel Nehalem
machine with two sockets. Each socket is a Quad-Core Intel
Xeon E5530 Processor with 8 MB shared L3 cache. The
third platform is an AMD Magny-Cours machine with two
sockets. Each socket is two Hex-Core AMD Opteron 6174
Processors each with 12 MB shared L3 cache.

RedHat Enterprise Linux Server 5 with kernel version
2.6.18-164 is used on all machines along with Open Fabrics
Enterprise Distribution (OFED) version 1.5.1. We used
MVAPICH2-1.5 as our MPI library. We utilized GCC
version 4.1.2 for the purposes of our evaluation on micro-
benchmarks. Intel Compiler version 11.1 is used for all
application level evaluation. For micro-benchmarks, OMB
in Section IV-B and IMB in Section IV-D, performance with
GCC and ICC are the same, as time is communication dom-
inated. The MVAPICH2 code base and micro-benchmarks
are compiled with GNU compiler in these two sections. For
applications in Section IV-E, MVAPICH2 code base and
applications are all compiled with Intel compiler.

In the following figures, we refer to the default MPI
library with no memory copy optimizations as MV2-1.5.
We analyze the performance of different temporal memory
routines based 32, 64 and 128 bit move instruction and we
refer to these as MV2-1.5-32, MV2-1.5-64 and MV2-1.5-
128, respectively. We refer to the different non-temporal
memory schemes that we have used as MV2-1.5-32-nt,
MV2-1.5-64-nt and MV2-1.5-128-nt, respectively.

B. OSU Microbenchmarks

We ran various micro benchmark level tests from
OMB [14] suite. We used the single-pair and multi-pair la-
tency and bandwidth tests. The single-pair tests osu latency
and osu bw were run with two processes across two
sockets on three types of processors; the multi-pair tests
osu multi lat and osu mbw mr were run with four pairs
of processes across two sockets on Barcelona processor and
Nehalem processor and six pairs of processes on Magny-
Cours processor, using all cores on two sockets. As a result,
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Fig. 5. Multi-Pair Bandwidth Performance
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Fig. 6. Multi-Pair Latency Small Message Performance

all MPI channels use no cache sharing communication. In
OMB micro benchmarks, the send buffer and the receive
buffer are allocated as 4MB in the beginning and aligned
with the page size. For each data size, the corresponding
size data from the start of the send buffer will be send out,
and it will repeat default loop time to get the stable number.

1) Bandwidth Performance: Figure 9 and Figure 5 show
the performance of single-pair and multi-pair bandwidth
benchmarks separately on different platforms.

On Barcelona processor, non-temporal memory copy
routines have better performance compared with standard
memcpy() function, which is illustrated as “MV2-1.5” in
all the figures, and temporal memory copy routines. The
non-temporal routine “MV2-1.5-128-nt” achieves up to 48%
improvement for single-pair bandwidth testing (Figure 2(a))
and 60% improvement for multi-pair bandwidth testing
(Figure 5(a)), compared with standard memcpy() function.
The performance improvement comes from the data send
and receive mode: on the send side, the data in the send
buffer will be sent in each loop; after the first loop, the
memory has been filled into sender side L3 cache; in the
followed loops, the data in the L3 cache will be reused.
Due to cache contention between the send buffer and the

shared buffer, when non-temporal memory copy minimizes
the shared buffer data into the L3 cache, the send buffer
data has more possibility kept into cache and reused in the
next loop.

On Magny-Cours processor, as on Barcelona proces-
sor, non-temporal memory copy routines have better per-
formance. Figure 2(b) shows that “MV2-1.5-128-nt” can
get 51% improvement for single-pair bandwidth testing.
However, for multi-pair bandwidth performance as shown in
Figure 5(b), non-temporal only achieve similar bandwidth as
standard memcpy() function. One possible reason is that: we
use die 0 and die 3 of Magny-Cours in the experiments, and
there is x8cHT (Hyper Transport) connection between these
two dies instead of x16cHT for dies intra socket. When
all six cores are used in multi-pair tests, it is hard to im-
prove bandwidth considering the upper bandwidth limitation
4GB/s which is tested on our Magny-Cours processor with
STREAM benchmark [15] even after we upload the latest
BIOS version.

On Nehalem processor, non-temporal routines improve
multi-pair bandwidth peroformance in Figure5(c). “MV2-
1.5-128-nt” gets up to 31% performance. But for single-pair
test, Figure2(c) illustrates that non-temporal routines can’t
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Fig. 7. Multi-Pair Latency Large Message Performance

get better performance. We will explain this phenomenon in
Section IV-C, with a discussion including cache miss num-
ber and efficient bandwidth utilization issue on Nehalem
processor.

2) Latency Performance: Figure 3, Figure 4, Figure 6,
and Figure 7 show the performance of single-pair and multi-
pair latency for the small message and the large message
respectively.

Similar to bandwidth performance, on Barcelona system,
“MV2-1.5-128-nt” can achieve 18% for single-pair test and
17% for multi-pair test at 1MB message. However, for small
message less than 1KB, 32 bit non-temporal memory copy
adds an 0.7 mirco-second extra overhead.

On Magny-Cours processor, for non-tmporal routines, we
observe the improved latncy for one-pair test, but there is
no significant improvement for multi-pair test, as same as
multi-pair bandwidth test.

Also similar to bandwidth performance, on Nehalem
processor, non-temporal memory copy performs even worse
for single-pair benchmarks.

C. Measuring Cache Miss and Bandwidth Usage

Our work focuses on the intra-node communication,
so cache effect and bandwidth requests play an important
role, especially for non-temporal memory copy routines.
Considering the performance variation on Nehalem
processor, we use the Linux tool perfmon2 [16] to measure
L3 cache misses and bandwidth request for the single-pair
and multi-pair bandwidth test. Linux kernel version is
upgraded to 2.6.30 to support perfmon tool in this section.
The test has three pair processes for multi-pair bandwidth
test to avoid sampling disturbed on core 0. Since we don’t
change memory copy on the receive side, we don’t compare
cache effect on this side. On the send side, it is the send
buffer data that filled and reused in L3 cache will affect
the performance; so the read cache miss and bandwidth
usage are measured. We use the following events to get the
bandwidth usage: 1) UNC_QMC_NORMAL_READS.ANY:

Read requests for quickpath memory controller; 2)
UNC_QMC_WRITES.FULL.ANY: Full cache line write
requests to DRAM; 3) CPU_CLK_UNHALTED: Number
of cycles during which the processor is not halted. We
name V read for UNC_QMC_NORMAL_READS.ANY,
V write for UNC_QMC_WRITES.FULL.ANY,
CLK for CPU_CLK_UNHALTED. The bandwidth
usage can be calculated from this formula:
(Vread + Vwrite) ∗ cache line size/CLK

Figure 8 compares L3 read cache miss number and
figure 9 compares bandwidth usage with varying message
sizes. Figure 9 illustrate the bandwidth usage for “MV2-
1.5” can be up to 3.5GB/s in osu bw test and 6.2GB/s in
osu mbw mr test. On Nehalem processor, the most inter
sockets bandwidth with STREAM benchmark is 9GB/s.
When bandwidth usage is at a low level, as illustrated in
Figure 9(a), which is 3.5GB/s in osu bw and smaller than
40% peak bandwidth, the read cache miss number cannot
determine the performance, since there isn’t bandwidth
contention to fill data into cache. As a result, in osu bw,
even though “MV2-1.5-128-nt” has lower cache misses,
there is not much performance compared with “MV2-1.5”.
When bandwidth usage is large enough, as illustrated in
Figure 9(b), which is 6.2GB/s in osu mbw mr and larger
than 65% peak bandwidth, the reduced read cache misses
improve the performance significantly.

D. Intel MPI Benchmarks

For IMB benchmarks, we run Allgather, Alltoall, and
Allreduce benchmarks to test collectives interfaces perfor-
mance. We use 16 processes on Barcelona processor and
Magny-Cours processor, and 8 processes on Nehalem pro-
cessor. MVAPICH2 offers flexible CPU mapping schemes
that allow users map specific process to specific core, based
on the application characteristics. The “bunch” scheme
involves mapping processes as close as possible, such that
they are on the same socket and can share caches. The
“scatter” scheme involves binding MPI process with rank

8
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Fig. 8. Read Cache Miss Analysis
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Fig. 9. Bandwidth Requirement and Effectiveness
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Fig. 10. Allgather(Scatter) Small Message Latency
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Fig. 12. Allreduce(Scatter) Small Message Latency

i to the socket (i%numberofsockets). This ensures that
neighboring MPI processes get mapped to different sockets
and do not share cache. We would like to note that these
CPU mapping schemes are different from the MPI Scatter
operation in the MPI Standard. Since the figures for the
small message size illustrate the simillar performance com-
paring as those for the large message size, we only focus
on those for the large data size in the evaluation part of this
sub section.

1) Allgather: Figure 13 illustrates the performance of
Allgather benchmark for the large message size on the
three platforms. From Figure13(a) and Figure13(c), we
observe that “MV2-1.5-128-nt” achieves up to 15% and
22% improvement compared with “MV2-1.5”.

The performance improvement by non-temporal memory
copy is determined by collectives interfaces’ implementa-
tion and processes binding policy. For example, Barcelona
processor includes 4 sockets each hosting 4 cores. In
MVAPICH2, Allgather uses Bruck [17] algorithm for small
messages: in step k (0 <= k < dlgpe), rank i process
receives a message from rank (i + 2k) process and sends a
message to rank (i− 2k) process; and Allgather uses Ring
based algorithm for large messages: in each step, rank i

process gets a message from rank (i+1) process and sends
a message to rank (i − 1) process. When “scatter” policy
is used, rank i is bound to socket j where j is modulo of
i over 4. For small messages, in the first two steps, rank i
communicates with the processes located in other sockets,
and in the last two steps, rank i communicates with the
processes in the same sockets. So, non-temporal memory
copy improve the performance not obviously; and we don’t
show collectives small message figures in this section. For
large message, in each step, rank i communicates with rank
(i + 1) and rank (i − 1) located in other sockets; and all
communications are inter sockets communications, always
being improved by non-temporal memory copy.

Figure 13(b) shows that non-temporal memory copy can
only achieve 2% improvement, which is consistent with
the multi-pair latency performance in Section IV-B: due to
16 processes scatted into 4 dies, x8cHT is used. We will
do further investigation on Magny-Cours processor in the
future.

2) Alltoall: In Figures 14, we compare the performance
of MPI Alltoall with different meomory copy routines
for large messages. In MVAPICH2, we use the pair-wise
exchange algorithm for large messages for MPI Alltoall, in
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Fig. 13. Allgather(Scatter) Large Message Latency
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Fig. 14. Alltoall(Scatter) Large Message Latency

which a processes with rank i sends and receives distinct
messages from process with rank (iXORj), in iteration
j of the exchange. The number of inter-socket exchanges
performed by each process remains the same whether we
use the “bunch” CPU mapping or the “scatter” mapping
and we did not see any difference in our experiments. For
uniformity, we have chosen to demonstrate the performance
comparison with the “scatter” mapping across the different
architectures. In Figure 14(a), we observe that “MV2-1.5-
128-nt” can deliver about 30% improvement at 16KB data
size and about 20% improvement at 4MB data size on
Barcelona processor. In Figure 14(c), we observe up to 16%
improvement of “MV2-1.5-128-nt” on Nehalem processor.
We observe that the benefits are much smaller on Magny-
Cours processor in Figure 14(b), which is similar to the
results that we have observed with this platform, thus far.

3) Allreduce: In MVAPICH2, we use the multi-core
aware shared-memory based algorithm for small messages.
For medium and larger messages, we use a point-to-point
based algorithm that first performs the “reduce-scatter”
operation, followed by an “Allgather” exchange to ensure
that all the processes have the globally reduced data buffer.
We use the recursive-doubling algorithm for both these

operations. As indicated in Section IV-D1, some of the
exchanges occur within the same socket, while the rest
of them involve inter-socket exchanges. Hence, we expect
to see some performance benefits with the inter-socket
exchange being optimized with non-temporal memory copy
routines. In Figure 14(a) and Figure 14(c), we observe up
to 20% improvement in latency on Barcelona processor and
up to 10% improvement on Nehalem processor.

E. Performance with Application Kernels

We choose several benchmarks from NAS benchmarks
suite and HPCC benchmark suite to evaluate non-temporal
memory copy routines comparing with standard memcpy()
function. The results are shown in Table I, which is divided
into three sections for three different platform: Barcelona,
Mangy-cours and Nehalem. To save space, we fill column
of “1.5” the actual executaion time or bandwidth number
for the standard memcpy() function. In “32nt”, “64nt” and
“128nt”, we show the improvement percentage by 32 bit,
64 bit and 128 bit non-temporal memory copy routine.

1) NAS Benchmarks: The NAS Parallel Benchmarks
(NPB) [18] are a small set of application kernels designed to
help evaluate the performance of parallel supercomputers.
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Fig. 15. Allreduce(Scatter) Large Message Latency
NAS PTRANS RandomRing

IS CG FT Lat Bw Lat Bw

Barcelona

1.5 4.1 68.86 64.49 0.61 1.34 3.11 0.23
32nt 8.78% 3.40% 3.66% 2.58% -0.17% 0.84% 14.82%
64nt 8.78% 3.53% 3.85% 3.60% 1.91% 2.59% 14.66%
128nt 8.54% 2.92% 4.12% 2.61% 1.40% 1.88% 14.23%

Magny-cours

1.5 3.46 37.38 49.48 0.84 0.98 3.10 0.21
32nt 1.45% 0.27% -2.36% 6.24% 4.71% -1.96% 6.51%
64nt 1.73% 0.51% -1.46% 5.97% 4.30% 3.36% 4.62%
128nt 1.45% -0.88% -1.64% 5.42% 3.12% 3.56% 6.65%

Nehalem

1.5 3.22 43.67 63.25 2.00 0.42 1.93 0.85
32nt 4.35% 0.16% 1.45% 2.12% 3.37% -0.99% -3.00%
64nt 4.66% 0.27% 0.51% 1.47% 4.39% 2.20% 1.91%
128nt 4.35% 0.18% 1.39% 2.11% 7.26% 1.17% 3.53%

TABLE I. Application evaluation

We focus on CG, FT and IS for our application evaluation
since these application kernels spend significant portion of
their time in MPI communication and use large messages.

From Table I, we can observe that, on Barcelona and
Nehalem, the non-temporal memory copy routines can
perform over the standard memcpy() function in most of the
situations, especially for IS benchmark, where collective op-
erations take a large portion in communication stage. Also,
on Magny-cours system, though non-temporal memory copy
routine can achieve same or slightly better performance for
IS and CG benchmark, for FT benchmark, it loses about
2% performance. We are investigating the reason.

2) HPCC Benchmarks: HPCC is a benchmark suite
which is used to examine the performance of HPC ar-
chitectures that stress different aspects of HPC systems
involving memory and network in addition to computa-
tion [19]. We utilized two benchmarks inside HPCC testing
suite to measure the performance of non-temporary memory
copy function: PTRANS and RandomRing (based on b eff
benchmark).

PTRANS measures the rate of transfer for larges arrays
of data from multiprocessor’s memory. The size of matrix
for PTRANS is 20480 and the blocking factor is 80. From
the result table, we can find out that the best latency result
comes on Magny-cours with 32 bit non-temporal memory
routine and the best bandwidth result comes on Nehalem
with 128 bit non-temporal memory routine.

Random Ring measures latency and bandwidth using
a random ordering where communication takes place be-
tween processes with adjacent ranks in the communica-
tor. For Random Ring bandwidth, non-temporal memory
copy routine can achieve about 14% better performance on
Barcelona, about 6% on Magny-cours and about 3% on
Nehalem, which is consistent with micro-benchmark results
that we have discussed in Section IV-B. But for latency
performance, the non-temporal memory copy routine can
only achieve -2% to +3% improvement.
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V. Related Work

Over the past several years, several researchers have
been studying the performance of communication inside
a node. As the multi-core phenomena has gathered more
momentum, this topic is getting more and more attention.

Subramoni et. al. have studied the performance differ-
ences of various memory moving instructions for intra-
socket and inter-socket communication in [20]. The study
focuses on only basic communication costs, as opposed to
performing a thorough analysis of various methods in the
context of MPI communication, as is done in this paper.
In [21], Chai et. al. present a technique to reduce memory
utilization for shared memory message passing, and improve
performance for large messages on NUMA platforms. Our
work is directly applicable to this past work by enhancing
the core memory copy routines that were utilized by Chai,
et. al. In [22], Buntinas et. al examined large intra-node
message transfers and utilized 32-bit non-temporal instruc-
tions. Non-temporal instructions are also explored in the
context of MP Lite in [23] by Chen et. al. In [24] Borg
has explored the choice of memory copy routines in a
dynamic fashion. In this paper, compared with [22] and
[23], we extend the concept and use more optimal quad-
word non-temporal instructions, and we provide a dynamic
memory copy routines selection mechanism. Compared
with [24], we also highlight the dynamic memory copy
routines selection due to architectural advances, the choice
of optimal memory copy function is determined at run-time
based on process-core-cache location. Compared with all
these related work, as far as we are aware, we are the
first to optimize MPI receiver side cache utilization through
SSE4.1 non-temporal load instruction, and the first one to
do a thorough performance investigation on the latest multi-
core processors.

VI. Conclusion and Future Work

In this paper, we presented performance analysis of
a state-of-the-art MPI messaging stack, MVAPICH2 en-
hanced with streaming SIMD non-temporal memory copy
instructions. We performed on our design and evaluation on
modern multi-core platforms with multiple levels of cache
hierarchy. We have designed a framework for choosing
optimal memory copy routines based on cache hierarchy
shared by communicating cores. Our evaluation reveals that
performance can be improved by 60% and 13% for 64K
message sizes over the default shared memory implemen-
tation for the multi-pair bandwidth, and by 2% to 14% for
NAS benchmark and HPCC benchmark on AMD Barcelona
and Intel Nehalem architectures.

We intend to continue working in this direction. The
memory copy routines developed in this paper will be
integrated into the public MVAPICH2 releases. We also

plan to evaluate the impact of our designs on large scale
performance runs of real applications.
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