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Abstract—
Licensed white space channels can now be used opportunisti-

cally by unlicensed users, provided the channels are relinquished
when needed by the primary users. With an estimated 85% of
channels that are unused, this vast spectrum if used judiciously
can revolutionize high speed wireless data services. We focus on
the problem of multi-channel allocation for access-points. The
objectives of our design include fairness, high throughput, low
overhead, and low rate of channel reconfigurations. The resulting
problem definitions are challenging due to their combinatorial
nature, and channel dynamics of the primary as well as the
secondary users across space and time. We allow neighboring
nodes to share channels among themselves leading to a new class
of problems, that to the best of our knowledge has not been
studied before in networking or the graph theory literature. Our
channel allocation problem translates to a particular problem
of this class that we call asSplit Coloring Problem. We also
introduce the concept of effective neighbor count that helps us
in estimating the expected throughput that access points will
receive. Our solution comprises of a centralized algorithm and
its localized version that work together to meet the objectives.
The centralized approximation algorithm is shown to have tight
bounds in terms of fairness while still providing high system
throughput. Results from extensive realistic simulations show that
our algorithm typically performs 2-3 times better than baseline
algorithms.

I. I NTRODUCTION

The Cognitive Radio (CR) technology has gained increased
attention due to an FCC mandate that now allows unlicensed
radios to operate in the unused portions of the UHF band. It
is estimated that 85% of these channels, also called the white
space channels, are currently unoccupied [1]. Such channels
however, need to be relinquished when primary (or incumbent)
users begin using it. Solutions that can opportunisticallyuse
such channels can help alleviate the congestion in the ISM
bands. In one of the first such efforts, the nation’s first TV
white space network was deployed in Claudville, VA in late
2009 [1]. We envision a proliferation of such white space
based wireless solutions that take advantage of thenewly found
vast spectrum. If used judiciously, it can revolutionize high
speed wireless data services using both infrastructured (access-
point based) [2] and peer-to-peer architectures. Our focusin
this paper is on the former.

Advances in hardware technologies have made it possible
to simultaneously use the capacity of a large number of
channels that may or may not be contiguous [3] by the
use of Non-Contigous OFDMA [4], [5]. Allocating multiple
channels increases the aggregate throughput. Nevertheless, if
the hardware restricts operation to a single channel, then multi-
channel allocation can be leveraged to rapidly migrate to other
assigned channels when primary users become active.

We define a channel assignment of white space channels to
a collection of Access-Points (AP) to befeasibleif a channel
assigned to an AP does not interfere with any primary user.
In addition, the following properties are important to achieve:
(1) Fairnessin the number of channels assigned to APs; (2)
High throughputof the system; (3)Low time and message
overhead; and (4)Fewer channel reassignments.
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Fig. 1. A fair channel allocation using 5 channels. The bounded
regions around the APs represent the interference ranges.

We seek to design a comprehensive and practical solution
that addresses all the above design objectives. But, the problem
is particularly challenging due to its combinatorial nature
of channel selection problems, and channel dynamics of the
primary as well as the secondary users across space and time.
The combinatorial structure is shown through an example in
Figure 1 where the solution for one specific objective, e.g.,
to achieve the largest lexicographic sequence of allocated
channels to each AP, is shown. In our system model, we allow
neighboring nodes to share the same channel. Throughput
shown in the figure are under the ideal conditions of no
loss due to collisions. For example, AP 2 and AP 4 share
channel 1, therefore, both of them receive a throughput of
0.5 on that channel. Sharing allows every node to get at least
1.5 units of throughput (Fig. 1). On the other hand, without
sharing, it is imposible to assign every node a throughput of
more than 1 unit. Clearly, in realistic scenarios by sharing
channels, some of the throughput of the channel will be lost
due to collisions. Even in such scenarios, sharing is expected
to improve fairness. Sharing also allows every node to have at
least one channel for communication even when the number
of available channnels are limited.

This sharing of channels among nodes gives rise to a new
set of problems which we call assplit coloring. To the best
of our knowledge, this has not been studied in networking or



graph theory literature. Split coloring is quite distinct from
other coloring problems previously studied like list coloring,
partial coloring, fractional coloring, defective coloring etc. (see
Section VI for details).

Achieving fairness and high throughput in a system where
neighboring nodes can share the same color is particularly
challenging due to the following reasons: (1) When multi-
ple neighbors are sharing the same channel, it is hard to
approximate the amount of throughput that each of the APs
would receive; (2) The transmission and interference rangeof
APs may not follow a disk model which makes modelling
the collisions difficult; (3) Ability of APs to transmit on
multiple channels further adds to the complexity as APs may
have different transmission and interference range on different
channels; and (4) Due to continuous arrival and departure of
licensed users, an AP’s available throughput may suddenly
decrease by a large amount. In such a case, reallocation of
channels among APs may require considerable number of
reconfigurations.

Our solution is comprised of a centralized algorithm,Split

and its localized version,lSplit, both of which seek to find
a fair assignment of channels to the APs. To minimize the
number of channel reassignments,lSplit operates in between
periodic executions of theSplit algorithm.

This paper makes the following key contributions:

• We propose a new system model in which neighboring
nodes can share channels among themselves. We call the
problem of fair allocation under this system model as
Split Coloringand prove that this problem is NP-Hard.

• Using a simple MAC layer model, we introduce the
concept ofEffective Neighbor Count. This helps us in
approximating the throughput that a node will receive
when it shares a channel with its neighbors.

• An approximation algorithm,Split with provable perfor-
mance bounds is proposed. The bound on the fairness
achieved bySplit is proven to be tight while the total
throughput achieved is also shown to behigh. Its localized
version lSplit is invoked in between the executions of
Split to reduce the number of channel reconfigurations.

• Through extensive realistic simulations that also consider
sensing uncertainties, we demonstrate the performance
improvement of our solution with respect to other algo-
rithms. Our solution typically performs at least 2-3 times
better than the baseline algorithms.

II. SYSTEM MODEL

We considerN Radio Access Points (APs)r1, r2, . . . , rN ,

which are located in a 2D space. We assume that every
access point in our system is capable of operating on multiple
channels. Two APs areneighborsof each other if a client
associated with one of the APs can be interfered by the other
AP on some channel.

The universal channel setU consists of channelsc1, c2,

. . . , c|U|. Even if a node has the capability of communicating
on a particular channel, it might not be able to do so because of
the presence of a primary user in the neighborhood. Every CR
node is capable of operating on multiple channels which has
been made possible by Non Contiguous OFDMA technology

TABLE I
SYMBOLS USED

Symbol Description
U Universal channel set
N Number of nodes in the network
∆ Maximum neighbors of any AP among all APs
ri (Radio) Nodei
ci Channeli in the universal channel setU
W (ri) Availability set of ri : W (ri) ⊆ U
N(ri) Set of neighboring APs ofri

A(ri) Set of channels assigned tori: A(ri) ⊆W (ri)
A Assignment of channels to over all the nodes
T (A, ri, cj) Effective throughput available tori on cj

T (A, ri) Total throughput available to noderi

[4], [5]. The set of channels on which a noderi can commu-
nicate without interfering with primary users is termed as its
availability setand is denoted byW (ri). The set of channels
that are assigned to noderi is denoted byA(ri). We denote
the assignment of channels over the whole network byA. We
assume that APs communicate with a central entity (commonly
known asChannel Assignment Server (CAS)) over a wired
backbone, such as the Internet.CAS is responsible for taking
decisions regarding channel assignment and propagating them
back to the nodes.

For the sake of simplicity, we assume that all channels
provide the same amount of bandwidth. We allow neighboring
nodes to share channels. If a noderi is assigned a channel
cj , then T (A, ri, cj) (Table I) denotes the throughput that
node ri receives on channelcj . Clearly, T (A, ri, cj) will
depend on the assignment ofcj in the neighborhood ofri.
If a channelcj is assigned only tori and not to any neighbor
of ri, then the amount of throughput thatri can receive on
cj is 1 unit. The total throughput thatri would get will be∑

1≤j≤|U| T (A, ri, cj) which is denoted byT (A, ri). We cal-
culate the throughput undersaturationconditions which means
that the transmission queues of all nodes are backlogged. In
practice, if this assumption is not correct, then nodes will
experience higher throughput.

Our analysis assumes that the following statement is true
for the underlying MAC protocol:When the number of users
contending for the channel increases, the total throughputof
the channel over all the users approaches a non-zero constant.
Authors in [6] have verified through analysis and experiments
that this condition is indeed true for 802.11 protocol. Various
heuristical techniques can be used for estimating the through-
put of a node under shared channel model. However, most
of the techniques available in literature either apply onlyto
single hop networks [6], or only show experimental analysis
[7], or can be used only after the channel assignment has
been completed [8], [9]. Authors in [10] have presented a
throughput estimation model which is applicable to mesh
networks. Estimating throughput in mesh networks is different
from that in Access Point based networks. In latter, we also
need to concern about the interference faced by the clients
associated with the AP. To that end, we present a simple
model that we use for estimating the expected throughput. In
section V, usingns-3, we show that our formula for estimating
throughput is able to capture the pattern in variation of actual
throughput even with varying degree of APs.



A. Throughput Estimation Model

The throughput that a noderi will receive depends on a
multitude of factors, including but not limited to the location
of all APs and their associated clients, actual transmission and
interference range of nodes, and the amount of downlink and
uplink traffic between all nodes. However, the following two
factors are the most important: (i) Number of neighbors ofri

over channelcj and (ii) Fraction of clients associated withri

that lie in the interference range of neighboring APs. In order
to simplify the expected throughput calculation, we introduce
the concept ofeffective neighbor countthat takes both these
factors into account. Note that in order to keep the model
simple, we only consider the downlink traffic, though it is
possible to arrive at a more accurate model by considering both
downlink and uplink model. By using the concept of effective
neighbor count, it becomes easier to quantify the expected
throughput that a node will receive after sharing the channel.

We first calculate the probability that a transmission by
ri will be unsuccessful. We categorize the clients ofri into
groups depending on how many neighboring APs they can be
interfered from. LetGik be the fraction of clients ofri that
lie within the interference range of exactlyk neighboring APs
of ri. The probability that a transmission byri will not be
successful is1−

∑
0≤k≤deg(ri)

Gik(1− p)k wheredeg(ri) is
the number of neighboring APs ofri andp is the probability
of transmission byri. We assume that neighboring nodes also
have the same probability of transmission. In other words, we
assume that on a long term basis, all nodes have equal chance
of gaining access to the common channel. This expression
can be approximated as1−

∑
0≤k≤deg(ri)

Gik(1− kp) (when
the number of interfering APs are large) which is same as
p

∑
0≤k≤deg(ri)

kGik, since
∑

0≤k≤deg(ri)
Gik = 1.

We define the effective neighbor count ofri on channel
cj as: E(ri, cj) =

∑
0≤k≤deg(ri)

kGik which can be used
to deduce the probability that a given transmission ofri

on channelcj is not successful. We assume that there are
E(ri, cj) other neighbors ofri which also transmit oncj and
that every client associated withri lies in the interference
range of all these neighboring APs. The probability that
a transmission ofri on cj will be unsuccessful will be
1 − (1 − p)E(ri,cj). Substituting the value ofE(ri, cj), it can
be verified that1 − (1 − p)E(ri,cj) is approximately same as
p

∑
0≤k≤deg(ri)

kGik when number of interfering APs is large.
This is same as the probability of unsucessful transmission
that we calculated before. Therefore, by using the concept
of effective neighbor count, the probability of a transmission
being unsuccessful still remains valid. In Section IV, we will
describe an approach that can be used by APs for calculating
E(ri, cj).

If ri has an effective neighbor count ofE(ri, cj) on channel
cj , then the throughput available tori on cj would be
T (A, ri, cj) = p(1 − p)E(ri,cj) wherep = 1

1+E(ri,cj)
since

this value of p minimzes the number of collisions among
neighbors.

III. PROBLEM FORMULATION

The primary objectiveis to assign each node a subset of
channels from its availability set such that the non-decreasing

lexicographic sequence of the throughputs assigned to all
APs is maximized. Recall that a non-decreasing lexicographic
sequence is greater than the other sequence, if the firsti terms
of both sequences are equal andi + 1’th term of the former
is greater than the corresponding term of the latter for some
i ≥ 0.

Recall thatA represents the channel assignment for all the
nodes. If the solution space of assignments is represented by
A, then the primary objective can be written as:

Problem 1: max
A∈A

(Lexicographic sequence of throughputs, T (A, ri))

subject to:

T (A, ri) =
X

1≤j≤|U|

T (A, ri, cj)

T (A, ri, cj) =
1

1 + E(ri, cj)

„

1−
1

1 + E(ri, cj)

«E(ri,cj)

∀i : 1 ≤ i ≤ N, ∀j : 1 ≤ j ≤ |U|

E(ri, cj) =

(

P

0≤k≤deg(ri)
kGik if cj ∈ A(ri)

0 otherwise

A(ri) ⊆ W (ri) ⊆ U

A. Reduction to Split Graph Coloring

We convert our problem statement to an equivalentgraph
coloring problem. We construct the conflict graphG(V, E)
such that each node inV corresponds to an AP in the network.
An edge is drawn between two vertices ofV if the APs
corresponding to these vertices are neighbors of each other.
Each channel inU corresponds to a color in the multi-coloring
problem. A node can be colored with only those colors that
correspond to the channels in its availability set. Allocation of
a channel to a node is equivalent to coloring the corresponding
vertex in the graph with the equivalent color. However, a
color can besplit among neighboring nodes and in that case
every node gets a certainpart of the color depending on the
interference between the clients of this node and its neighbors.
The total share that a node gets over all the colors is called its
effective color count. The objective as before is to maximize
the lexicographic sequence of effective color count of each
node.Splitting of colorsleads to a new class of problems that
have not been discussed before in either graph theory literature
or networking. We call our particular problem (Problem 1)
as split coloring problem. In the following discussion, we
will use the term “effective color count” and “throughput”
interchangably.

We prove that the Split Coloring Problem is NP-Hard.
To that end, next two Lemmas characterize the relationship
between split coloring andproper vertex coloring.

Lemma 3.1:Given a graphG and itsproper coloringsuch
that every node has at least 1 color assigned to it, then it is
possible to derive the split coloring ofG in polynomial time
with the same number of colors, such that every node has at
least 1 unit of throughput assigned.

Proof: Since any proper coloring is also a split coloring,
this lemma trivially holds true.

Lemma 3.2:Consider a graphG in which all clients asso-
ciated with every node can be interfered by all neighboring
APs of their associated AP. Given a split coloring ofG such
that every node has at least 1 unit of throughput assigned to



it, then in polynomial time, it is possible to arrive at a proper
coloring of G using the same number of colors.

Proof: See Appendix.
On the basis of the Lemmas 3.1 and 3.2, we make the final

claim about the hardness of Problem 1.
Theorem 3.1:Problem 1 (or Split Coloring Problem) is NP-

Hard.
Proof: Lemma 3.1 and 3.2 shows that the problemIs

it possible to assign 1 unit of throughput to every node
using k colors by split coloring is at least as hard ask-
coloring problem. Since, the latter problem is known to be NP-
Hard, therefore the former problem must be NP-Hard as well.
Also, Problem 1 is a specific version of the former problem,
therefore Problem 1 must be NP-Hard as well.

IV. SPLIT CHANNEL ASSIGNMENTALGORITHM

As discussed in Section II, all APs send their sensing
data (viz. Channels available and effective neighbor count) to
the Channel Assignment Server (CAS). APs can deduce this
information through various means. Channels available canbe
deduced from periodic sensing of the spectrum [3]. One way
to figure out the effective neighbor count for each AP is to
use geometrical disk model for transmission and interference
range and calculate the fraction of overlaps. However, such
a model is not accurate in practice. Therefore, in order to
arrive at more realistic values, we run an initial measurement
period. Initially, using the geographical location of APs and
their approximate transmission and interference range,CAS
builds a conservative conflict graph ensuring that any two APs
that are actual neighbors of each (as per the definition given
in Section II) are also neighbors in this conservative conflict
graph.

In each time slot of the measuring period, two neighboring
AP pairs (sayri and rk) of the conservative conflict graph
transmit at the same time. All clients associated withri can
accurately conclude if they are in the interference range ofrk

on the basis of if they are able to receive clear transmission
from ri. Similarly, clients associated withrk can also make
this conclusion. This procedure needs to be repeated over each
channel for every pair of neighboring nodes. Clearly, the time
required to do this would be the same as the edge-chromatic
number of the conservative conflict graph multiplied by the
number of channels. Therefore, the length of this measurement
period will be at most|U|(1 + ∆approx) time slots where
∆approx is the degree of the conservative conflict graph. After
this measurement period is over, every client associated with ri

will know how many other APs can interfere with its reception
for every channel. This measurement can be used byri to
calculateGil ∀l and hence, effective neighbor count can be
calculated using the expression discussed in Section II. Next,
we describe our algorithmSplit for split channel assignment.

A. Algorithm Description

Phase 1 of the algorithm involves proper coloring of the
graph (Line 4-10). This ensures that the number of conflicting
assignments is minimized, which helps us in increasing the
throughput of the system. The set of colors that are assigned
to a noderi in Phase 1 are called theprincipal colors of ri

and this set is denoted byP (ri).

Thereafter, in order to ensure fairness,Split rearranges
the colors in Phase 2 by splitting colors across neighbors.
Again, splitting is done conservatively starting with at most
1 conflicting assignment and going up to1 + ∆ conflicting
assignments (Line 12-20). However, color is assigned to a
node only if it does not reduce the lexicographic sequence
of throughputs (Line 16).

Due to the different availability set of nodes, it is possible
that the color assignment at this point is still unfair due tobad
choice of color sequence in Line 4 or Line 13. Therefore, in
order to correct that, in Phase 3, algorithmSplit tries to even
out the throughputs by exploring the pair of neighboring nodes
in which the principal color of the node with lower throughput
is shared with the other node that has higher throughput (Line
22-23). Clearly, by removing this principal color from that
neighbor’s assignment set, the node with lower throughput will
experience an increase in its throughput.

Note that time complexity of all the three phases of the
algorithm is polynomial and is upper bounded byO(|U|N∆)
since in every phase either colors are only added to the avail-
ability set of nodes or only removed. The message complexity
is O(N). Here∆ is the maximum degree of a node inG.

Algorithm 1: Algorithm Split

1 Input: GraphG(V, E) and the availability setW (ri)∀i : 1 ≤ i ≤ N
2 Output: A fair color assignment
3 //Phase 1: Assign proper colors
4 foreach color j = 1 to |U| do
5 while true do
6 S1 ← {rm : cj ∈W (rm) andcj /∈ A(rm) andcj is not

assigned to any neighbor ofrm}
7 if S1 = Φ then
8 break
9 i← argmin

m:rm∈S1

T (A, rm)

10 A(ri)← A(ri) ∪ {cj}, P (ri)← P (ri) ∪ {cj}
11 //Phase 2: Share colors to improve fairness
12 foreach max number of conflictsk = 1 to 1 + ∆ do
13 foreach color j = 1 to |U| do
14 while true do
15 S2 ← {rm : cj ∈W (rm) andcj /∈ A(rm) and

assigningcj to rm will not lead to any node sharing its
color with more thank neighbors}

16 S3 ← {rm : rm ∈ S2 and assigningcj to rm does not
make the new throughput of any neighbor ofrm less
than current throughput ofrm}

17 if S3 = Φ then
18 break
19 i← argmin

m:rm∈S3

T (A, rm)

20 A(ri)← A(ri) ∪ {cj}
21 //Phase 3: Give preference to proper color assignment
22 while there exists neighborsri and rk such that
T (A, ri) ≤ T (A, rk), cj ∈ P (ri) and cj ∈ A(rk) do

23 A(rk)← A(rk)\{cj}

B. Performance Analysis

Though our algorithm maximizes the non-decreasing lex-
icographic sequence of assigned throughput, our analysis is
restricted to only the first term of the sequence (otherwise
known as themax-min term). For that purpose, we next
compare the performance ofSplit with the exponential time
optimal algorithm,OPT . Here, theOPT is defined as the
algorithm that maximizes the lexicographic sequence of prob-



lem 1. Let ΥSplit = min
1≤i≤N

T (ASplit, ri); and ΥOPT =

min
1≤i≤N

T (AOPT , ri).

Let rk be a neighbor ofri. Let xki be the total throughput of
rk over all colors that satisfy the following two conditions: (i)
The color belongs to the availability set ofri; and (ii) Among
all nodes in the neighborhood ofri, the color was first assigned
by Split to rk. The proof for the following related lemmas
and the final theorem can be found in Appendix.

Lemma 4.1:At the end of Phase 1,T (ASplit, ri) ≥
|W (ri)|−∆

1+∆ ∀ri.
Lemma 4.2:Consider a noderi whose throughput is less

than that of all its neighbors. Then at the end of Phase 3,
T (ASplit, ri) ≥

|W (ri)|−∆
1+∆ .

Theorem 4.1:For a given graph and a set of colors,

ΥSplit ≥
ΥOPT − ∆

1 + ∆

Next, we prove that there exists no polynomial time al-
gorithm that can guarantee bounds on the first term of
the lexicographic throughput sequence that are tighter than
those ofSplit. By contradiction, we assume that there exists
a polynomial time algorithm (sayPOLY ) that guarantees
ΥPOLY ≥ ΥOP T −f(∆)

g(∆) . We will now prove that for any such
algorithm, it is required thatf(∆) = Ω(∆) andg(∆) = Ω(∆).
Before that, we show that no polynomial time algorithm can
approximate the chromatic number of a graph with an error
factor of less than∆. The proof of the following lemmas can
be found in the appendix.

Lemma 4.3:For an arbitrary graphG, if a polynomial time
algorithm approximates the chromatic number ofG (χ(G))
with an approximation of y−d

1+z(∆) ≤ χ(G) ≤ y whered and
y are constants, then the following must hold true:z(∆) =
Ω(∆).

Using the above lemma, we show a lower bound on both
the functionsviz. f(∆) andg(∆).

Lemma 4.4:f(∆) = Ω(∆)
Lemma 4.5:g(∆) = Ω(∆)
Theorem 4.2:Split provides tight approximate bounds on

the first term of the lexicographic non decreasing sequence of
assigned throughputs.

Proof: Directly follows from Theorem 4.1, Lemma 4.4
and Lemma 4.5.

We have shown thatSplit provides a tight bound on the
first term of the throughput sequence. Another important
measure of a channel allocation algorithm is the throughput
provided. The throughput of the system can be calculated
as

∑
1≤i≤N T (A, ri). In the appendix, we show thatSplit

guarantees high system throughput by showing that total
throughput assigned over the whole network is with in a
bounded factor of the throughput assigned by the exponential
time optimal algorithm,OPT . This proves that the throughput
of the network colored by algorithmSplit is high.

Theorem 4.3:The system throughput guaranteed bySplit

is at most orderwise∆ times smaller than the system through-
put given byOPT .
Localized Algorithm: We now presentlSplit which is a
localized version ofSplit. lSplit will be invoked when the
throughput of a node decreases considerably as compared to

its neighbors. AlgorithmSplit guarantees better fairness than
lSplit, however it may end up reassigning channels for all the
APs resulting in a lot of overhead. To avoid that, we runlSplit

in the locality of the node that has less throughput.lSplit helps
us to achievelocal fairnessin a reactive fashion whileSplit

is invoked proactively at regular intervals and ensures fairness
across the whole network. As before, APs communicate to
the CAS over the backbone network. Execution oflSplit

at CAS involves executing a limited hop version ofSplit

in the locality of node with low throughput. However, if
the number of hops are not sufficient enough such that the
throughput of some nodes is still considerably less than that
of their neighbors, then the number of hops are doubled
until all APs in that hop-restricted network have comparable
throughput as compared to their neighbors. This helps us in
reducing the number of APs that need to be reconfigured.
The criterion for comparing the throughputs depends on the
particular implementation. In the next section, we discussthe
results obtained through various simulations.

V. SIMULATIONS

A. Throughput Estimation Model

In Section II, we gave a formula for estimating the through-
put of an AP which was based on the effective neighbor
count of that AP. In order to verify the proposed throughput
model, we usedns-3 to simulate a network of varying size by
increasing the number of APs from 15 to 100. Every AP had
some clients associated with it, whose count varied from 30-
60 clients per AP. The rest of the simulation parameters are
shown in Table II. We ran multiple scenarios, each simulation
involving transmission of 1000 packets to every associated
client by each AP. Simulations show that our formula for
estimating the throughput is able to capture the pattern in
variation of actual throughput due to varying degree of APs
(Fig. 2). The difference in the actual throughput and the
estimated throughput is almost proportional to the actual
throughput which implies that estimated throughput is almost
linearly proportional to actual throughput. This is sufficient for
Split to work correctly as it only compares the throughput of
nodes, rather than using the absolute values.

As is clear from Fig. 2, our throughput model is very close
to reality when the degree of the AP is high as compared to
when the degree is low. We suspect that this is because the
approximation used in deriving the effective neighbor count
is true only when the clients are interfered by a large number
of neighboring APs (see Section II). Also, at low degree, the
losses due to networking overheads (headers etc.) are much
more pronounced than the losses due to collisions. The former
losses are not taken into account by our model, which explains
its bad performance when the degree of AP is small.

B. Comparison with baseline algorithms

In order to evaluate the performance of our algorithm, we
used a C++ based simulator. The various parameters were set
up as shown in Table II. Even though the size of the universal
channel setU is 80, still due to hardware differences, every
node had access to an average of 40 randomly picked channels
from the setU . Every simulation was repeated 20 times and the
mean along with its 95% confidence interval was plotted for
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Fig. 2. Plot of throughput of various APs with varying degree
TABLE II

DEFAULT SIMULATION PARAMETERS

Variable Value
Size of field 500m X 500m
Number of primary users 10
Number of APs 300
Interference range of primary users210m
Interference range of APs 70m
Size of universal channel set 80
Average size ofAi 40

every measurement. In order to better analyze the performance
of our algorithm, we also designed 4 other algorithms:

1) Proper: This algorithm only does aproper coloring of
the graph. This means that no two neighboring nodes are
assigned the same channel.

2) AssignAll: For all nodes, this algorithm assigns all the
colors in that node’s availability set to its assignment set.

3) BF (4min): This Brute-Force algorithm sequentially gen-
erates a random assignment of colors. The assignment
which generates the maximum value of minimum band-
width among all nodes is saved. The algorithm is termi-
nated after 4 minutes of execution. The probability that a
color would be assigned to a node varies from0.1− 1.0
with different executions.

4) Naive: This algorithm first does a proper coloring of the
graph. After that, it searches for node pairs in which
bandwidth of one node (sayri) is lesser than that of
other (sayrj). For such pairs, it finds a color that is not
assigned tori but assigned torj and assigns that color
to ri as well.

Parameters: In order to study the performance of our al-
gorithm, we studied different performance parameters under
diverse conditions:(1) Minimum throughput assigned over
all nodes(2) Total throughput of the system(3) Execution
time (4) Number of reconfigurations. Note that this list covers
all the requirements that we had discussed in Section I.

1) Increasing density of APs:In the first scenario, we
increased the number of APs in the field. As we can see from
Figure 3 (next page) that with increase in number of APs,
in terms of minimum throughput, our algorithm performs 2-
3 times better than the baseline algorithms. We also observe
that with increase in number of APs,Proper was not able
to assign at least 1 color to every node. This demonstrates
the advantages of shared coloring asSplit is able to ensure
better fairness compared toProper. However, Proper was
able to assign more throughput to the system compared to
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our algorithm. This is expected asProper does not assign
same color to neighboring nodes and this keeps the system
throughput high. We can also see that the system throughput
achieved bySplit starts decreasing after number of APs
increase beyond 600. This is because at that point, the number
of available colors are not sufficient enough andSplit employs
extensive channel sharing in order to increase the fairnessand
this results in decreased throughput. However, note that even
though the system throughput is low, but stillSplit is able to
perform well in terms of minimum throughput assigned over
all nodes.

A detailed analysis of lexicographic ordering (Fig. 4) of
nodes with respect to their color count verified that the
other algorithms assign colors to only a few nodes without
giving much preference to other nodes with lower color count.
We also observed thatProper allocates minimum number of
colors, followed bySplit (Fig. 3). Further, it was observed
during the simulations that all the algorithms terminate within
5 seconds whileBF (4 min) took 240 seconds to complete. It
is also remarkable that results fromAssignAllandBF (4min)
were quite close to each other in all the simulations. We
observed thatBF (4min)maximized the minimum throughput
when the probability of channel assignment was quite high
which explains its closeness withAssignAll.

2) Increasing number of channels:Here, we varied the
number of channels in the Universal Channel Set (Fig. 5). As
expected, the minimum bandwidth increases with an increase
in number of channels.Split performs better than other algo-
rithms in terms of fairness, while as beforeProper performs
better thanSplit in terms of throughput.
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3) Behavior with time: In order to study the interaction
betweenSplit andlSplit, we simulated the arrival and depar-
ture of primary users with time. While keeping the churn rate
of primary users fixed at 0.3 per second, we studied how the
two algorithms together behave (see Fig. 6). As we can see
from the figure, the miniumum throughput assigned bylSplit

decreases with time though it still stays aboveNaiveandBF (4
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min). The invocation ofSplit globally at every 300 secondsre-
storesthe system to a fair state. The advantage of the localized
algorithm is that it requires far less reconfigurations at APs
as compared to centralized algorithms. The figure shows that
the reconfigurations made by our algorithm were far less than
the reconfigurations required by other baseline algorithms. We
define the total number of reconfigurations for an algorithm as∑

1≤i≤N (|Ari(old) \ Ari(new)| + |Ari(new) \ Ari(old)|) where
Ari(old) and Ari(new) are respectively the assignment sets
of the noderri

before and after the execution of channel
assignment algorithm. The number of reconfigurations done by
Split was less than 5,000, while baseline algorithms exceeded
300,000.
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4) Sensing Inaccuracies:In practical systems, the spec-
trum sensing may not beaccurate and instant. In order to
measure the effect of real life inacuracies in sensing, we
induced a uniformly distributed random delay between the
insertion/removal of a primary user and its sensing by the
APs for all the algorithms. The delay introduced was randomly
chosen between [0,MaxDelay]. Figure 4 shows the behavior of
the system with increasing values ofMaxDelay. Assignments
for all the algorithms were observed to have a similar average
percentage of time for which APs are in conflict with Primary
user.

VI. RELATED WORK

The problem of channel assignment has been extensively
studied before in various domainsviz. cognitive radios, cel-
lular networks, multi-radio multi-channel networks, wireless
networks and graph theory.
Cognitive Radio: Various protocols have been proposed in
literature for channel assignment [11], [12]. In [13], authors
have studied channel assignment in multi-radio wireless mesh

networks. In their algorithm, every node calculates the rank of
channels available to it on the basis of interference and channel
utilization. These rankings are then forwarded to the Channel
Assignment Server that assigns channels to nodes in a breadth-
first fashion. However, none of these algorithms provide any
worst case bounds on performance.

The distributed algorithm proposed by Ganet al. [14]
involved APs bidding for channels in an auction. In [2], each
node calculates a weight for each channel that is dependent on
the usage of that channel and the number of APs operating on
that channel. Finally, the AP selects those channels that have
higher weight. Again, there are no bounds on the performance
of their algorithm.
Cellular Networks: The problem of multicoloring a graph
with fixed number of colors has been extensively studied
in cellular networks [15]. In that domain, this problem has
been heuristically solved by using acentral pool of channels
and channel borrowing[16] schemes. Unlike cognitive radio
networks, in cellular networks the same set of channels are
available at all nodes. Moreover, in that domain, the problem
has been mostly studied under the assumption that the base
stations are located in a hexagonal pattern [15].
Multi-radio multi-channel networks: Recently, a lot of
research has focused on channel assignment problem for
Multi-Radio Multi-Channel Multi-hop wireless networks. [17]
proposes a greedy algorithm that tries to satisfy a given traffic
demand for different source-destination pairs. Similarly, [18],
[19] aim at assigning the channels in a way that maximizes
the throughput of the network or satisfies a required flow.
Clearly, all these approaches would not work in our problem
scenario where the requirement is to assign channels to the
neighboring nodes while ensuringfairness. Chandraet al.
[20] proposed using variable channel width for fair channel
allocation. However, if the number of available channels is
small, then it becomes imperative to assign the same channelto
neighboring nodes which cannot be handled by their approach.
Similarly, [21], [22] also do not allow splitting of channels
among neighbors.
Wireless Networks: In wireless networks, a related problem
of assigning overlapping 802.11 channels while minimizing
the interference has been studied. For example, [23], [24]
present greedy algorithms for overlapping channel assignments
for an AP-like setting. However, the existing work in overlap-
ping channel assignment for wireless LANs is distinct from
our work in various ways. Firstly, in wireless LANs, only one



channel is assigned to one access point. Also, it is not trivial
to extend their system model to multi-channel assignment
scenario. Second, most of the previous works do not present
any bounds on the proposed algorithms [10], [23], [24].
Graph theory: In the domain of graph theory, the problem
of multiple channel allocationhas been termed as problem of
multi-coloring [16] where the objective is to assign multiple
colors to all the nodes while ensuring that no two neighbors
get the same color.Partial coloring has been studied before in
graph theory where the requirement is to color only a subset
of nodes.Fractional coloring[25] allows assignment of only a
fraction of a color to a node. However, two neighbors can still
not be assigned the same color. In the problem ofList coloring
[25], a node can be colored only from a list of colors applicable
to that node. List coloring also does not allow same color to
be assigned to neighbors.Defective Coloring[26] allows the
same color to be assigned to a maximum ofd neighboring
nodes all of which get a color count of 1 from that color. On
the other hand, upon sharing, split coloring assigns fractional
color count to each neighbor. Thus, defective coloring doesnot
exhibit the concept ofsplitting (or sharing) the color among
neighbors which is the essential idea behind split coloring.
Link Scheduling in Wireless Networks: Link scheduling
has been widely studied as part of the literature in wireless
networks. However, the link scheduling problem involves
finding the schedule of minimum duration while assigning a
fixed number of time slots to each link. On the other hand, the
channel allocation problem involves maximizing the numberof
channels assigned to each node (from a fixed set of channels)
[27].

VII. C ONCLUSION & FUTURE DIRECTIONS

Channel assignment in Cognitive Radio Networks under
the sharing model leads to a new class of problems. We
showed that the problem of fair channel assignment under
this class is NP-Hard. We presented a heuristic algorithm for
solving this problem. We also proposed a simple method for
estimating the expected throughput of APs under the channel
sharing model. The proposed algorithm has provable bounds
in terms of both fairness and throughput. In order to reduce the
number of reconfigurations in the network, we also proposed
its localized version. Combining the centralized algorithm
and its localized version, our complete solution is able to
achieve high fairness, and high network throughput with few
channel reconfigurations. Using simulations, we showed that
sharing of color indeed helps in increasing the fairness of the
system. Simulations also showed that the proposed throughput
estimation model is able to capture the pattern in variation
of throughput of APs with varying degree. Currently, we are
implementing our algorithms on real hardware. We plan to do
a detailed analysis of its performance in practical deployments.
We would also like to see how the frequency of invocation of
the centralized algorithm affects the overall quality of channel
assignment.
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APPENDIX

Proof of Lemma 3.2:We show the polynomial time reduction
that transforms the split coloring to a proper coloring. The
reduction satisfies the following invariants at all times:



1) If a noderi is assigned only one color, then no neighbor
of ri is assigned that color.

2) If a color cj is assigned to onlyri and to none of the
neighbors ofri, thencj is the only color assigned tori.

3) The total aggregate throughput of all nodes is at leastN .

Observe that initially every node has throughput of at least1
unit. Therefore, initially if a node is assigned only one color,
then the color must not be assigned to any of its neighbors
as that will make its throughput less than 1. Hence, the first
and third invariants must be true initially. Also, the second
invariant can be trivially satisified initially by removingextra
colors from the assignment set of nodes which have been
exclusively assigned some color. This operation will stillkeep
first and third invariants as true.

Algorithm 2 reduces the split coloring to proper coloring. It
picks the node (sayri) with minimum degree that is sharing
some colors with its neighbors (line 4-6). The shared color is
then removed from the assignment set of its neighbors (Line
7). This decreases the available throughput of its neighbors
but at the same time it increases the throughput ofri. Note
that since all clients associated with an AP (sayri) can hear
interference from all neighbors ofri, therefore ifri is sharing
a color withx neighbors, then the effective throughput ofri

over this color would be at most11+x
.

Algorithm 2: Algorithm for reducing split coloring to
proper coloring

1 Input: GraphG(V, E) and its split coloring
2 Output: Proper coloring ofG
3 while there exists at least one color assigned to two neighborsdo
4 Select a colorcj that is still assigned to two neighboring nodes
5 Construct subgraphGj that has only those nodes ofG that are

assignedcj and at least one other color. Only those edges fromG
are included which are between these nodes.

6 Select a node (sayri) that has minimum degree inGj (say
deg(ri)).

7 A(rk)← A(rk)\{cj}∀rk ∈ N(ri), A(ri)← {cj}

We show that invariants are maintained after every iteration
of the while loop. Clearly, the first and second invariants
are maintained (Line 7). We now show that the third variant
is also maintained. Observe that as a color is deleted from
the assignment set of neighbors ofri, the throughput ofri

increases by at least1 − 1
deg(ri)+1 . This is because initially

ri was sharingcj with deg(ri) other neighbors and laterri is
not sharing that color with any neighbor. Also, this operation
decreases the throughput of each of its neighbors by at most

1
deg(ri)+1 . Again, this is because they were sharingcj with at
leastdeg(ri) neighbors. Therefore, the total loss in throughput
over all the neighbors ofri is at most deg(ri)

deg(ri)+1 . Clearly, the
decrease in throughput of the system is not more than than the
increase. Therefore, the new throughput is at least as much as
the throughput of the system before this rearrangement.

We repeat this procedure while there exists no color which
is assigned to two neighboring nodes. We now show that
when algorithm 2 terminates, then all nodes have exactly one
color assigned to them. By contradiction, assume that when
it terminates, there arex nodes with no color left in their
assignment set. Then, all otherN−x nodes must have exactly

one color assigned to them since there are no nodes left in the
system that have more than one color assigned (due to invariant
2). This implies that system throughput at that moment must
beN−x. Recall that the system throughput at the termination
of the algorithm must be at leastN as per the third invariant.
Therefore,x = 0. Hence, when the procedure stops, allN

nodes of the system will be assigned exactly one color that
would form the desired proper coloring of the graph.

Proof of Lemma 4.1: First, we claim that during the ex-
ecution of Phase 1, the following invariant is always true:
xki ≤ (1 + T (ASplit, ri)). We prove this by contradiction.
Clearly, the invariant is initially true. Assume that the invariant
was first violated whenSplit assignedcj to a neighboring AP
of ri (say rk). Beforerk was assigned colorcj , its available
throughput was at leastxki−1 and was therefore, greater than
the throughput ofri at that moment. Also, from the definition
of xki, we know thatrk is the first neighbor ofri that was
assignedcj . Therefore, in that case,cj would not have been
assigned tork since its neighborri had lesser throughput (Line
10). Hence, the invariant must hold at all the times.

Next, we claim that at the end of Phase 1, the following
is true:T (ASplit, ri) +

∑
k∈N(ri)

xki ≥ |W (ri)|. This is true
because every color inW (ri) must have been assigned to
eitherri or a neighbor ofri (Line 5-7). Therefore,

T (ASplit, ri) + ∆xki ≥ T (ASplit, ri) +
X

k∈N(ri)

xki

T (ASplit, ri) + ∆xki ≥ |W (ri)|

Also, xki ≤ (1 + T (ASplit, ri)). Substituting that in the
above result, we get:

T (ASplit, ri) + ∆(1 + T (ASplit, ri)) ≥ |W (ri)|

T (ASplit, ri) ≥
|W (ri)| −∆

1 + ∆

Proof of Lemma 4.2: If a noderi has lesser throughput than
all its neighbors, then all its principal colors would be still
assigned to it at the end of Phase 3 (Line 22-23). Further,
it would not be sharing any of its principal colors with its
neighbors (Line 22-23). Therefore, its throughput would beat
least as much as its throughput was at the end of Phase 1.
From Lemma 4.1, we know thatT (ASplit, ri) ≥

|W (ri)|−∆
1+∆ .

Proof of Theorem 4.1: Let ri be the node that was assigned
minimum throughput bySplit. Since, ri has the minimum
throughput among all nodes inSplit, therefore, we know
from Lemma 4.2 thatT (ASplit, ri) ≥ |W (ri)|−∆

1+∆ . There-

fore, ΥSplit ≥ |W (ri)|−∆
1+∆ . Also, the size of its availability

set is |W (ri)|, therefore its maximum possible throughput
is |W (ri)|. Hence,ΥOPT ≤ T (AOPT , ri) ≤ |W (ri)| or
|W (ri)| ≥ ΥOPT . We now know thatΥSplit ≥ |W (ri)|−∆

1+∆
and|W (ri)| ≥ ΥOPT . Combining the two results, we can see
that ΥSplit ≥

ΥOP T −∆
1+∆ .

Proof of Lemma 4.3: There are two possibilities. First
possibility is that y > d + 3(1 + z(∆)). In this case, it
would be possible to conclude thatχ(G) > 3. However,
we know that a polynomial time algorithmPOLY cannot



solve 3-coloring problem. Therefore, this case is not possible.
The other case is wheny ≤ d + 3(1 + z(∆)). In this case,
χ(G) ≤ d + 3(1 + z(∆)) which impliesχ = O(z(∆)). Since,
a polynomial time algorithm can derive an upper bound on
chromatic number of a graph which is at bestO(∆) [25],
therefore, we should havez(∆) = Ω(∆).

Proof of Lemma 4.4: We will use the result from Lemma
4.3 to prove this. Let an arbitrary graphG be given as input
to POLY whose chromatic number needs to be determined.
Further, each node is assigned the same availability set. We
also set the the effective neighbor count of each node as same
as its degree. We start by assigning∆ + 1 colors in each
node’s availability set and decrementing that number by 1,
until POLY is not able to assign at least 1 unit of throughput
to every node. At that point, let the number of colors in each
node’s availability set bey. Therefore, two bounds can be
obtained on the chromatic number (χ(G)):

• POLY was able to split colorG with y + 1 colors.
Therefore, from Lemma 3.2,χ(G) ≤ y + 1.

• POLY was not able to colorG with y colors. Therefore,
the guarantee provided byPOLY implies thatOPT will
give a max-min of at mostf(∆) on G with y colors.
Clearly with y

1+f(∆) colors, theOPT will not be able
to split colorG as well. Using Lemma 3.1, we can claim
that with y

1+f(∆) colors, it is impossible to properly color
G. This implies thatχ(G) ≥ y

1+f(∆)

From the above two statements, we can conclude that
y

1+f(∆) ≤ χ(G) ≤ y. However, from Lemma 4.3, we know
that this is possible only iff(∆) = Ω(∆).

Proof of Lemma 4.5: As in Lemma 4.4, we will prove this
Lemma using the result from Lemma 4.3. The given arbitrary
graph (sayG) whose chromatic number needs to be determined
is provided as input toPOLY . Further, each node is assigned
the same availability set. We also set the the effective neighbor
count of each node as same as its degree.

We start by assigning only1 color to each node’s availability
set and incrementing that number by1, stopping as soon as
POLY is able to assign at least 1 unit of throughput to every
node. At that point, let the number of colors in the node’s
availability set bey. Clearly, withny colors,POLY will be
able to assignn units of throughput to each node. We now
start decrementing the number of colors in the availabilityset
of each node and stopping as soon asPOLY reports the first
term of sequence as exactlyn. Let ny − h(n) be the number
of colors in the availability set of each node at that time. With
ny − h(n) colors,POLY reports max-min asn. Therefore,
using the above inequality, for the same number of colors,
OPT will report max-min as at mostO(∆) + ng(∆). Also,
it can be seen thatOPT will not be able to split colorG
with ny−h(n)

O(∆)+ng(∆)+1 colors. Therefore, using Lemma 3.1, we

can claim thatχ(G) ≥ ny−h(n)
O(∆)+ng(∆)+1 . Now, there are two

possibilities:

• h(n) = ω(n). In this case,limn→+∞(ny − h(n)) < 0.

This implies that it is possible to split colorG with 0
colors and that cannot be true.

• h(n) = Θ(n). In this case, we repeat the procedure with
very large value ofn. Therefore,χ(G) ≥ ny−h(n)

O(∆)+ng(∆)+1

will reduce toχ(G) ≥ y−d
g(∆) whered is some constant.

• h(n) = o(n). We repeat the procedure with very large
value ofn. Therefore,χ(G) ≥ ny−h(n)

O(∆)+ng(∆)+1 will reduce
to χ(G) ≥ y

g(∆) .

In all the cases possible, it is possible to claim thatχ(G) ≥
y−d
g(∆) where d is some constant. Using Lemma 3.2 and our
observation, we can also deduce thatχ(G) ≤ y. Using both the
claims, we can say thaty−d

g(∆) ≤ χ(G) ≤ y. Again using Lemma
4.3, we know that this is possible only ifg(∆) = Ω(∆).

Lemma A.1:For every channelcj , the system throughput
guaranteed bySplit is orderwise at most∆ times smaller
than the system throughput given byOPT for that channel.
Proof of Lemma A.1: In Phase 1,Split assignscj to a
maximal independent set of nodes. Also, by the time the algo-
rithm terminates, it ensures that nodes that havecj assigned
form a maximal independent set with some of their neighbors
included. TheOPT algorithm may have assignedcj to a
maximum ofN nodes resulting in the system throughput of at
mostN . We know that a maximal independent set of a graph is
at most∆ times smaller than the number of nodes in the graph.
Therefore, the number of nodes that were assignedcj by Split

is at most∆ smaller than the throughput achieved byOPT on
cj . Also, by sharing the color inSplit, this set of nodes could
have reduced their throughput by at most a constant factor
(as discussed in section II). Therefore, the system throughput
guaranteed bySplit for color cj is orderwise at most∆ times
smaller than throughput guaranteed byOPT .

Proof of theorem 4.3: Directly follows by applying Lemma
A.1 over all colors and then taking the summation.


