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ABSTRACT
Given a duty cycle, we derive bounds on the achievable ca-
pacity of random wireless networks for single channel and
multiple channel cases. By modeling several state-of-the-art
MAC layer protocols, we present bounds on their through-
put capacity. In particular, we analyze four abstract models,
sender-centric synchrony (e.g. S-MAC, SCP-MAC), receiver-
centric synchrony (e.g. O-MAC), sender-centric asynchrony
(e.g. X-MAC, BoX-MACs), and receiver-centric asynchrony
(e.g. RI-MAC). This enables a numerical comparison on ca-
pacity and energy efficiency of these protocols. The results
strongly suggest that receiver-centric synchronous scheme
has the best performance.

1. INTRODUCTION
Schedulers in low-power wireless networks not only coor-
dinate packet communications to ensure reliable delivery –
which is the primary objective for wall-powered wireless net-
works – they also coordinate the sleep/wakeup of nodes to
control the energy consumption. Although a decade of pro-
ductive research are conducted in low power wireless net-
works, the throughput capacity of wireless networks in duty-
cycled fashion is not easily computed, and methods for its
estimation have not received much attention. As a result,
we do not know how far the maximum throughput of extant
protocols/schedulers at various duty cycle are from what is
achievable in theory.

With regard to non-duty-cycled wireless networks, the net-
work capacity has been established by a few researchers [8].
By extending Gupta and Kumar’s capacity result to accom-
modate the duty cycle, we analyze how throughput capacity
and energy efficiency scale as duty cycle increases, wherein
a node only wakes up its radio to communicate for a frac-
tion of time. Our capacity analysis shows that for random
wireless networks, there is a bound on the duty cycle be-
yond which the maximum throughput of the network does
not increase. In other words, there is no capacity gain in op-
erating the network at any duty cycle higher than this duty

cycle bound, including the always-on mode. Equally impor-
tantly, the capacity that is achievable in an n-node general
network at a duty cycle of ψ increases not with Θ( Wψ√

n logn
)

but with Θ(W
√

ψ
n
) till the capacity limit is reached, where

Θ( W√
n logn

) is the throughput capacity per node in random

networks with full duty cycle [8]. Analogous results hold
for duty-cycled networks with c channels and one interface,

where the achievable capacity is Θ(W
√

ψc
n

). As for the case

of 1 hop MAC traffic, the capacity that is achievable in-
creases linearly in ψ and independently of n till the capacity
bound is reached.

We also note that there is a close relationship between ca-
pacity and energy efficiency. Energy efficiency —the ratio
of the useful communication energy expended to the total
energy expended— depends on the ratio of goodput to the
overall duty cycle. Now, if a scheduler is able to deliver its
traffic load reliably and goodput is equal to the throughput
(i.e., duplicates packets are not received), then maximizing
the energy efficiency essentially reduces to maximizing the
throughput for a given duty cycle or, equivalently, minimiz-
ing the duty cycle for a given traffic load.

Outline of the report. Section 2 presents our analysis of
duty-cycled capacity for random wireless networks. Section
3 considers the achievable capacity on multi-channel and
single-interface model. Section 4 proposes a framework to
derive throughput capacity achieved by four extant MAC
protocols. Section 5 extends the result to compare energy
efficiency of the schedulers. Related work is discussed in
Section 6. We make conclusion and point out the future
work in Section 7.

2. ANALYSIS OF DUTY-CYCLED RANDOM
WIRELESS NETWORKS

In this section, we establish the throughput capacity of duty-
cycled random wireless networks in terms of duty cycle and
network density for both multi-hop and 1-hop traffic un-
der the Protocol Model [8]. We first illustrate the system
model. Second, the theory of duty-cycled capacity for multi-
hop traffic is introduced. In the proof, we show the upper
bound of throughput capacity and the feasibility of achiev-
ing the capacity limit by constructing a scheduler. At last,
two corollaries are proposed to restrict our analysis for the
case where communication is for senders and receivers that
are 1 hop apart.



Symbol Meaning Value
W maximum transmission rate 250 Kbps
q uniform probability of backoff 1/16
u beacon length relative to data length 0.4
Ebit energy for sending a bit 0.217 µW
Eradio energy consumed by radio per second 54.3 mW
n total # of nodes in network -
λ throughput capacity -
ψ radio duty cycle -
rn communication range -
∆ guard zone factor for

interference-free communication -

Table 1: Model parameters

2.1 System Model
Consider a random network where n nodes are uniformly
and independently distributed in a unit square. Each node,
Xi, i ∈ 1, ..., n has a random destination node to which it
sends data. We consider the case where the transmission
range, rn, and the traffic pattern are homogeneous for each
node. Each node has a maximum bandwidth of W bps over
a channel and wakes up on average to communicate for ψ
fraction of time. We assume only one channel is available in
the network and every node has one interface.

We adopt the Protocol Model which postulates a geometric
condition for successful transmission [8]. Suppose node Xi
transmits over the channel to a node Xj . Then this trans-
mission at rate W bps is successfully received by Xj if the
following inequality holds:

|Xk −Xj | ≥ (1 + ∆)|Xi −Xj |, (1)

for all other nodes Xk, k 6= i, j, that are concurrently trans-
mitting over the same channel. A circle of radius (1 +
∆)|Xi−Xj |, ∆ > 0, quantifies a guard zone required around
the receiver within which there is no destructive interference
from neighboring nodes transmitting on the same channel at
the same time. Table 1 summarizes the notation along with
representative values for subsequent numerical comparisons.

2.2 Capacity of the Optimal Scheduler
We have the following main result for multi-hop traffic in
duty-cycled random wireless networks. The proof contains
two portions. The upper bound on capacity is derived, fol-
lowed by a constructive lower bound on capacity that is
achievable.

Theorem 1. The throughput capacity of duty-cycled ran-
dom wireless networks in the Protocol Model is

Θ(
W

∆

√
ψ

n
)bps (2)

until it reaches network capacity of Θ( W
∆2√n logn

) when ψ ≥
32

∆2 logn
.

Two comments are in order about the result. For one, below
the limiting duty cycle, the capacity scales better than lin-
early in ψ and better than the inverse of

√
n logn. For two,

the factor
√
n reflects the average number of hops between

source and destination, and
√
ψ reflects the cumulative duty

cycle to forward the source traffic along the route.

2.2.1 Upper Bound on Throughput Capacity
Recall that rn is the common communication range of nodes
in a random network with n nodes. Since each node needs to
communicate with some other node, no node can be allowed
to be an isolated node. It has been shown by [8] that rn

should be asymptotically larger than
√

logn
nπ

. Furthermore,

disks of radius ∆
2
rn centered at every transmitter should be

disjoint. The area of each disk equals
π∆2r2n

4
, and at least 1/4

portion 1 is within the unit square. Hence, the maximum
number of concurrent transmissions feasible in the network
is no more than

1
1
4
· π∆2r2n

4

=
16

∆2r2nπ
. (3)

Let L̄ be the expected distance between two uniformly and
independently chosen points within the unit square. Then
the expected length from a node to its destination is Z =

L̄− o(1) since there is always a node within Θ(
√

logn
n

) dis-

tance from any point (Lemma 5.7 [8]). As a consequence,
each packet needs on average Z

rn
hops to reach its destina-

tion. Each node generates packets at rate λ, which indicates
that the bit rate the network needs so as to accommodate
its traffic is at least nλ Z

rn
, where 0 < Z < 1. In an op-

timal schedule, at most n/2 senders can be simultaneously
active in any given slot. Suppose each sender on average
wakes up for t slots out of T slots, the maximum number of
potential transmissions in the network is nt/2.On the other
hand, the maximum number of simultaneous transmissions
the network can support is no more than 16

∆2r2nπ
. Therefore,

the number of achievable transmissions during a period of T
is 16

∆2r2nπ
T . As long as the number of potential transmissions

does not exceed network capacity, i.e.,

nt

2
≤ 16T

∆2r2nπ
⇒ n

2
ψ ≤ 16

∆2r2nπ
⇒ ψ ≤ 32

n∆2r2nπ
≤ 32

∆2 logn
, (4)

an optimal scheduler can accommodate the traffic. Shown
in Eq. (4), rn can be substituted in inequality ψ ≤ 32

n∆2r2nπ

since rn is proven to be asymptotically larger than
√

logn
nπ

[8]. When the network capacity is reached, extra duty cycle
cannot be effectively utilized. Thus, we have

nλ
Z

rn
≤W ·min{nψ

2
,

16

∆2r2nπ
}. (5)

Consider the inequality in Eq. (5) with respect to the second
term in the min function. Since rn is asymptotically larger

than
√

logn
nπ

, based on Eq. (5) we can derive

λ ≤ 16W

nπ∆2rnZ
≤ c1W

∆2
√
n logn

. (6)

Now the first term in the min function represents through-
put before the maximum capacity shown in Eq. (6) is reached.
By plugging in the constraint r2n ≤ 32

∆2nπψ
derived from

1Previously in [8], it applies 1/4π portion instead of 1/4
without an explicit explanation. Typically, when a node is
located at the corner of the square, only 1/4 fraction of its
disk area is within the unit square, which is the smallest
exclusion area around a transmitter.



Eq. (4), we complete the proof for Theorem. 1 with:

λ ≤ Wψrn
2Z

≤ c2W

∆

√
ψ

n
. (7)

In summary, the upper bound for the throughput capacity
of duty-cycled random wireless networks is as follows.

λ ≤ min{c2W
∆

√
ψ

n
,

c1W

∆2
√
n logn

}. (8)

2.2.2 Lower Bound on Throughput Capacity
In previous subsection, we establish the upper bound on
throughput capacity in terms of both network density and
duty cycle. To prove the tightness of the bound in Theo-
rem. 1, we present a scheme that achieves throughput λ =
c1W

(1+∆)

√
ψ
n

for every node in this subsection.

Consider the constructive lower bound on throughput ca-
pacity illustrated in Section 5.3 of [8], which achieves λ =

c2W
(1+∆)2

√
n logn

bps for every node in the network to its cho-

sen destination, with probability approaching one as n→∞.
We only sketch its proof of lower bound for reasons of space.
First, the unit square is divided into small cells of such a
size that each of them holds at least one but no more than
O(logn) nodes. Second, these cells are grouped into a fi-
nite number of non-interfering sets which can take turns
in transmission without causing interference. Finally, they
show that a simple routing strategy - following a packet from
cell to cell “along” the line connecting the originating cell to
the destination cell - can fulfill the job.

It has been shown that a transmitting schedule exists such
that in every M2 = (c3(1+∆))2 time slots, each cell gets one
slot to transmit at rate W bps with transmission range rn.
Considering each cell’s role of serving routes, Lemma 5.11
of [8] states that each cell needs to transmit at a rate less
than λc4

√
n logn, with probability approaching one, which

leads to the following inequality of capacity

λc4
√
n logn ≤ W

(c3(1 + ∆))2
. (9)

The consumption of duty cycle in this schedule can be de-
termined accordingly. Every cell needs to wake up at a duty
cycle of 1/M2, i.e., 1/(c3(1 + ∆))2 where c3 ≥ 1 to ensure
non-interfering transmission. Since for any K > 1, with
probability going to one, there are at least one but no more
than Ke logn nodes in a cell and only one node is allowed
to transmit in every cell each time, the duty cycle for each
node to transmit is

ψ =
1

M2Ke logn
=

1

c23(1 + ∆)2Ke logn
. (10)

By reorganizing Eq. (9) and filling in ψ, the throughput
capacity can be presented in terms of duty cycle and network
density as follows.

λc4
√
n ≤ W

c3(1 + ∆)
· 1

c3(1 + ∆)
√

logn
(11)

λc4
√
n ≤ c5W

(1 + ∆)

√
ψ, (12)

λ ≤ c1W

(1 + ∆)

√
ψ

n
, where ψ <

32

∆2 logn
.(13)

Note that achievability of the second term in min of Eq. (8)
is already shown in [8]. Thus the derivation above completes
the achievability part of Theorem 1.

2.3 Capacity of 1-Hop Traffic
Since we are interested in MAC performance, we restrict
our analysis for the case of 1-hop traffic scenario and derive
capacity of 1-hop traffic for both general and clique network
in two corollaries.

For 1-hop traffic, Z/rn has a constant value of 1, which leads
to the following corollary on the throughput of 1-hop traffic
in general networks:

Corollary 1. The throughput capacity of a duty-cycled
random wireless network with 1-hop traffic is

λ = Θ(Wψ) (14)

until it reaches its network capacity of Θ( W
∆2 logn

) when ψ ≥
32

∆2 logn
.

Proof. We adjust the capacity inequality Eq. (5) by substi-
tuting Z/rn by 1 as follows.

nλ · 1 ≤W ·min{nψ
2
,

16

∆2r2nπ
}. (15)

Hence,

λ ≤W ·min{ψ
2
,

16

∆2 logn
}. (16)

Note that the same condition on duty cycle suffices in this
case, i.e., ψ ≤ 32

∆2 logn
.

For the special case of clique networks, the maximum num-
ber of simultaneous transmissions reduces from 16

∆2r2nπ
to 1,

which leads to our next corollary:

Corollary 2. The throughput capacity of a duty-cycled
clique network with 1-hop traffic is

λ = Θ(Wψ) (17)

until it reaches its network capacity of Θ(W
n

) when ψ ≥ 2
n
.

Proof. We degenerate Eq. (5) further by replacing 16
∆2r2nπ

with 1:

nλ · 1 ≤ W ·min{nψ
2
, 1}, (18)

λ ≤ W ·min{ψ
2
,
1

n
}. (19)

Notably, below the limiting duty cycle, nodes in 1-hop traffic
networks achieve a throughput that is independent of n and
linear with duty cycle.

3. ANALYSIS OF DUTY-CYCLED NETWORKS
WITH MULTIPLE CHANNELS

In this section, we explore the duty-cycled capacity of a net-
work with multiple channels. We use the term “channel” to



refer to a part of frequency spectrum with some specified
bandwidth. There are c channels in total, and we assume
that every node is equipped with m interfaces, where m = 1.
Each node is allowed to switch its interface from one chan-
nel to another within short period of time. The c-channel-
1-interface assumption is made in accordance with current
technology of wireless sensor platforms.

According to Gupta and Kumar [8], the capacity per node
with c channel and m = c interfaces per node scales as

Θ(Wc
√

1
n logn

). Here, the aggregate data rate possible by

using all c channels is Wc. Previous research on multi-
channel capacity [4] shows that the capacity of multi-channel
networks exhibits different bounds that are dependent on
the ratio between c and m. When the number of interfaces
per node is smaller than the number of channels, there is
a degradation in the network capacity in many scenarios.
However, one exception is a random network with up to
O(logn) channels, wherein the capacity per node remains
at the Gupta and Kumar bound, independent of the num-
ber of interfaces available at each node. In the model, the
number of available channels, c, is a constant value, where
c ≥ 1.

Our results are derived under the assumption that there is no
delay in switching an interface from one channel to another.
We have the following main result for duty-cycled random
wireless networks using multiple channels.

Theorem 2. The throughput capacity of duty-cycled ran-
dom wireless networks with c channels and 1 interface in the
Protocol Model is

Θ(
W

∆

√
ψc

n
)bps (20)

until it reaches network capacity of Θ( Wc
∆2√n logn

) when ψ ≥
32c

∆2 logn
.

The above result implies that the capacity of multi-channel
random networks increases square root of c fold before reach-
ing the limit of duty cycle. The limit of duty cycle increases
a factor of c as well.

3.0.1 Upper Bound on Throughput Capacity
Given the number of c available channels, the maximum
number of concurrent transmissions in the network increases
c fold, which equals 16c

∆2r2nπ
. Accordingly, Eq. (4) can be

modified as follows.

nt

2
≤ 16Tc

∆2r2nπ
⇒ n

2
ψ ≤ 16c

∆2r2nπ
⇒ ψ ≤ 32c

n∆2r2nπ
≤ 32c

∆2 logn
. (21)

The network capacity is divided into two regions as follows.

nλ
Z

rn
≤W ·min{nψ

2
,

16c

∆2r2nπ
}. (22)

Similarly to previous steps in Eq. (6) and (7), we may obtain
the following upper bound of the throughput capacity, where
a1 and a2 denote constants (insteaf of c1 and c2) to avoid
overloading variable c.

λ ≤ min{a1W

∆

√
ψc

n
,

a2Wc

∆2
√
n logn

}. (23)

3.0.2 Lower Bound on Throughput Capacity
The lower bound is established by constructing a routing
scheme and transmission schedule and representing it through
duty cycle. When the lower bound matches the upper bound,
it implies that the bounds are tight. We adopt the construc-
tion in [4] and show that the upper bound is also achievable
via analyzing duty cycle of the schedule.

The transmission schedule is built using a two-step process.
In the first step, transmissions are scheduled in “edge-color”
slots such that at every node during any edge-color slot,
at most one transmission or reception is scheduled. In the

second step, the edge-color is divided into d k1na(n)
c

e “mini-
slot”. Each node is assigned a mini-slot for transmission or
reception without interfering with others via vertex coloring.
As a consequence, the average duty cycle of a node under
this schedule is

ψ =
1

d k1na(n)
c

e
=

c

k1na(n)
, where c = O(na(n)). (24)

The achievable rate for each flow is

λ = Ω(
Wc

k1n
√
a(n)

). (25)

By substituting
√
a(n) with a function of ψ, we may obtain

the following capacity

λ = Ω(
Wc

k1n
√

c
k1nψ

) = Ω(W

√
ψc

k1n
) (26)

= Ω(
W

(2 + ∆)

√
ψc

n
). (27)

Note that the constant k1 in [4] has the value a3(2 + ∆)2,
where a3 ≥ 1. Since in the construction we have a(n) ≥
100 logn

n
, the scheduled duty cycle ψ satisfies the following

restriction

ψ ≤ c

100k1 logn
≤ c

100∆2 logn
≤ 32c

∆2 logn
. (28)

Thus the derivation above completes the achievability part
of Theorem 2.

4. CAPACITY OF EXTANT MACS
Having derived the bounds on achievable capacity, now we
proceed to analyze the maximum throughput of extant MACs.
We first introduce the framework for computing capacity of
CSMA-based MAC protocols. Next, the capacity of four
representative MACs are analyzed separately with respect
to a given duty cycle. The results can be extended to the
many-to-many traffic model. Finally, we take the clique net-
work case and numerically compare these MAC schedulers
in terms of achievable throughput capacity.

4.1 Framework for MAC Schedulers
In contrast to an optimal scheduler, which guarantees that
only one node transmits in an interference region, the canon-
ical MAC protocols only ensure that the probability of a
successful communication for any node during a slot is τ ,
where τ ∈ [0, 1]. Hence, the expected number of successful
transmissions for n/2 senders is nτ/2. Accordingly, by sub-
stituting ψ with τ in Eq. (16) and (18), the capacity of these



MACs is

λ ≤W ·min{τ
2
, C(n)}, (29)

where

C(n) =

{
16/(∆2 logn), general network
1/n, clique network.

(30)

We now present a framework for calculating τ for CSMA-
based MAC protocols, which subsumes the representative
protocols. In CSMA, typically, when a node attempts to
transmit a packet, it first randomly selects one out of Cs
contention slots and monitors the channel until that slot
to ensure that no other transmission is occurring within its
communication range. To avoid overloading the word slot,
we henceforth refer to a contention slot as a timeslice. If
any transmission is detected before the chosen timeslice, the
sender withdraws its transmission attempt; otherwise, it im-
mediately starts the data transmission after the timeslice.
Let the probability of selecting any timeslice be q and ε̂ be
the expected number of contenders in each node’s commu-
nication range. The probability for a node to successfully
access the channel, denoted as pa, is thus

pa = q + q(1− q)ε̂−1 + q(1− 2q)ε̂−1 + ...+ q · qε̂−1,

= q

1/q−1∑
i=0

(1− iq)ε̂−1. (31)

Let the expected number of contenders in the interference
range be η̂. Of course, the transmission is guaranteed to
succeed when there is no other transmission within the in-
terference range of the receiver. However, in general the
probability of successful transmission in any given slot when
data is available is equal to pa(1 − pa)

η̂−1. Thus, the total
probability of successful transmission in any slot is

τ = pd · pa(1− pa)
η̂−1, (32)

where pd indicates the probability of transmitting data.

Now we determine the total number of potential contenders
in communication range, named ε, and the number in in-
terference range, called η, for a general network. Under the
same system model of Section 2, we denote the communi-
cation range and interference range of every node by A and
B, which are disks of radius rn and (1 + ∆)rn, respectively.
Typically, A is contained within B (for the case ∆ ≥ 1).
Consider the smallest interference area in the unit square
network shown in Fig. 1, i.e., at least 1/4 portion of B is
within the unit square, where |B| = π((∆ + 1)rn)2. In this
scenario, the receiver, Xr, is located at the corner of the
square, while its sender, Xs, sits on the edge of the square
with a distance rn to the receiver. Accordingly, the smallest
communication area is 1/2 portion of |A|, where |A| = πr2n.
Since the current model assumes that every sender has its
own receiver, at most half of nodes serve as transmitters in
communications. We have

ε =
1

2
· n

2
· |A| = πr2nn

4
, (33)

η =
1

4
· n

2
· |B| = π((∆ + 1)2r2nn

8
. (34)

For the special case of clique networks, the parameters are
simply ε = η = n/2.

Figure 1: The Smallest Interference and Communi-
cation Area

MAC Duty Cycle Constraint η̂ (= ε̂)
SCP-MAC ptψr + ψr = 2ψ ptη
O-MAC ptψr + ψr = 2ψ ptψrη

BoX-MAC ( 1
2ψr

+ 1) · ptψr + ψr = 2ψ ( pt
2

+ ptψr)η

RI-MAC ( 1
2ψr

+ 1) · ptψr + ψr = 2ψ (pt + u)ψrη

Table 2: Capacity framework parameter for proto-
cols

4.2 Analysis of MAC Schedulers
Discussed in previous subsection, Eq. (32) serves as the pa-
rameterized framework for analyzing the four representative
MAC schedulers. We assume that q follows the same prob-
ability distribution for all MAC protocols. Considering in a
clique network, the total number of contenders within a com-
munication range, denoted by η, is equal to that within the
interference range. In this model, every sender has chosen
its own receiver. The total duty cycle of any sender-receiver
pair is 2ψ, out of which a node spends ψr, 0 ≤ ψr ≤ 1, in
receiving mode to account for the time over which a node
wakes up, polls the channel, possibly receives a packet, and
goes to sleep. A corresponding sender may choose to send
data with probability pt once the receiver is known to be
awake, which leads to the equation pd = pt · ψr. We use
the representative values for the constant parameters of Ta-
ble. 1 and the key constraints subject to which we optimize
the capacity for each MAC in Table 2.

4.2.1 SCP-MAC: Synchronous Sender Centric
SCP-MAC [9] is an extension of the canonical regionally
synchronous S-MAC protocol, wherein all nodes in a region
wake up simultaneously in each frame. Since receivers poll
the channel for activity in an aligned fashion, sender pream-
bles become short wakeup tones that are sent just before
receiver polls. Such synchronized polling not only reduces
the energy cost in sending the long preambles, but also im-
proves channel utilization during the wakeup slots.

When a node spends duty cycle ψr, 0 ≤ ψr ≤ 1, in receiv-
ing mode, the corresponding sender chooses to transmit at
duty cycle ptψr, where 0 ≤ pt ≤ 1. Thus, the total 2ψ is



distributed as

pt · ψr + ψr = 2ψ, (35)

ψr =
2ψ

pt + 1
, (36)

where the constraint, 0 ≤ ψr ≤ 1, has to be satisfied. Due to
the global synchrony feature, the expected number of active
contenders when a node attempts to transmit equals the
product of the total number of senders in interference range,
η, and the probability that a sender intends to transmit.
Thus,

η̂ = ptη. (37)

Given each ψ over the range [0, 1], we may determine the
optimal τ of SCP-MAC by varying the traffic load pt in
range of [0, 1].

4.2.2 O-MAC: Synchronous Receiver Centric
O-MAC [2] is receiver-centric and locally synchronous: re-
ceivers use pseudo-random wakeup schedules to avoid wak-
ing up simultaneously and communicate the seed for their
schedule to neighboring senders. Senders with pending data
thus wakeup just before their intended receiver does. The
sharing of the seeds makes the use of probes unnecessary.

Since sender-receiver pair is synchronized, the utilization of
duty cycle follows the same equality in Eq. (35). The ex-
pected number of interferers with respect to a node, how-
ever, reduces by a fraction of ψr due to staggered wake-up
times. Thus,

η̂ = ptψrη. (38)

4.2.3 BoX-MAC: Asynchronous Sender Centric
X-MAC [1] is an extension of the canonical asynchronous
B-MAC protocol [6] that adopts the Low Power Listening
(LPL) mechanism, where receivers independently and peri-
odically poll the channel for activity using low power. Each
sender wakes up its receiver by sending it a preamble that
is at least as long as the receiver’s frame length. By em-
bedding destination information in the sender preambles,
X-MAC reduces overhearing energy loss by allowing non-
intended receivers to return to sleep earlier. Also, by in-
serting short gaps in between preambles, the sender avoids
sending a continuous preamble and initiates data transmis-
sion upon receiving an acknowledgement from the intended
receiver after some preamble. BoX-MAC [5] further refines
X-MAC by sending data packets instead of preambles re-
peatedly, thus eliminating the sender’s energy cost in send-
ing the data packet after the preamble. At the receiver,
BoX-MAC conserves energy by adopting an LPL-like chan-
nel activity detection mechanism instead of the more costly
preamble detection, which consumes an order of magnitude
more energy than the former.

The parameters for BoX-MAC are derived as follows. Since
a node spends ψr, 0 ≤ ψr ≤ 1, in receiving mode, the frame
length is calculated as 1/ψr slots. In order to guarantee a
rendezvous with the duty-cycled receiver, the sender has to
transmit back-to-back packets for at most a period of the
frame length. Hence, the expected number of slots to wait
until the receiver waking up is 1

2ψr
units. A corresponding

sender may choose to send data with probability pt when

the receiver wakes up. Thus, the total duty cycle of 2ψ is
divided into

(
1

2ψr
+ 1) · pt · ψr + ψr = 2ψ, (39)

ψr =
4ψ − pt
2(pt + 1)

, (40)

where the constraint, 0 ≤ ψr ≤ 1, has to be satisfied. When
a node is about to transmit data in a slot, the expected
number of active contenders equals the product of the total
number of senders in interference range and the probability
that they are awake. Thus,

η̂ = (
1

2ψr
+ 1) · pt · ψr · η = (

pt
2

+ ptψr)η. (41)

4.2.4 RI-MAC: Asynchronous Receiver Centric
RI-MAC [7] is receiver-centric, where the rendezvous is ini-
tiated by the receiver. Receivers periodically broadcast a
preamble to their neighbors. Receivers choose their periods
independently and their wakeups are thus likely to not over-
lap, thereby attempting to avoid contention among senders
for different receivers. Once senders have data to send they
keep their radio active in receive mode and contend for the
channel upon receiving a preamble from their intended re-
ceiver.

The rendezvous scheme is analogous to BoX-MAC as in
Eq. (39) except that senders wait quietly for the short pream-
ble from the correspondent receiver. We count the constant
length of receiver preamble for u slot, where 0 < u ≤ 1.
Accordingly, η̂ now becomes

η̂ = (pt + u)ψrη. (42)

4.3 Many-to-many Traffic Model
Now we extend the MAC analysis for many-to-many traffic
model, where every node acts as both sender and receiver.
Assume when any neighboring receiver is on, the probability
of transmission is pt, then the probability of transmitting to
one particular receiver is pt/(ε − 1), where ε is the number
of nodes in each node’s communication range. η denotes the
number of nodes in each node’s interference range. As for
the case of clique network of size n, we have the equality
ε = η = n.

Due to the similarity of analysis on different MACs, we only
explain O-MAC as an example. Let a node independently
spend duty cycle ψr in receiving mode. The duty cycle at
which a node transmits to any neighbor is pt

ε−1
ψr, thus the

total transmit duty cycle of a node equals (ε − 1) pt
ε−1

ψr.
Since every node is assigned total duty cycle of ψ, we have
the following constraint on each node:

ψr + (ε− 1) · pt
ε− 1

ψr = ψ. (43)

At any slot of time, each node may transmit to any of its ε−1
neighbors at probability pt

ε−1
ψr. Therefore, the expected

number of interferers is

η̂ = (ε− 1) · pt
ε− 1

· ψr · η = ptψrη. (44)

Recall that equality pd = pt · ψr still holds in this scenario.



MAC Duty Cycle Constraint η̂ (= ε̂)
SCP-MAC ptψr + ψr = ψ ptη
O-MAC ptψr + ψr = ψ ptψrη

BoX-MAC ( 1
2ψr

+ 1) · ptψr + ψr = ψ ( pt
2

+ ptψr)η

RI-MAC ( 1
2ψr

+ 1) · ptψr + ψr = ψ (pt + u)ψrη

Table 3: Capacity framework parameter for Uniform
Traffic

Figure 2: Comparison of throughput capacity in
clique networks

The key constraints for each MAC under many-to-many uni-
form traffic model is listed in Table 3.

4.4 Comparison of MAC Capacity
Fig. 2 shows the MATLAB simulation throughput capac-
ity results at various duty cycles for a network size ranging
from 4 to 30 nodes. We observe that of the four proto-
cols, O-MAC approximates the optimal scheduler best, al-
though the performance gap decreases at high duty cycles.
At low density, SCP-MAC outperforms RI-MAC as inter-
receiver contention —contention caused by traffic destined
to different receivers— is low and the synchrony in SCP-
MAC substantially reduces the overhead in probe detection.
As inter-receiver contention increases with density, RI-MAC
takes over in performance. At full duty cycle, all MAC pro-
tocols converge to a pure CSMA scheme except for RI-MAC
whose use of probes becomes a major constraint.

5. ENERGY EFFICIENCY OF EXTANT MACS
Provided that a MAC can schedule all source traffic within
its throughput capacity, its energy efficiency, denoted by e,
is the following:

e =
λ · t · Ebit
ψ · t · Eradio

, (45)

where Ebit is the energy cost of sending one data bit, Eradio
is the energy consumption rate for active radio, and t is the
period of time considered.

Fig. 3 shows the MATLAB simulation results on energy ef-
ficiency of different MACs with the same configurations as
in Fig. 2. The energy efficiency of all protocols is higher at
low network density. As duty cycle increases, the efficiency

Figure 3: Comparison of energy efficiency in clique
networks

of receiver-centric protocols decreases while the efficiency
of BoX-MAC increases. Among the representative MACs,
O-MAC remains the most energy efficient protocol under
all configurations, with a maximum gap of 10dB over BoX-
MAC and SCP-MAC, and a gap over RI-MAC ranging from
3dB to 8dB.

6. RELATED WORK
Gupta and Kumar [3, 8] derived the capacity of wireless
networks. Their results are applicable to single channel, or
multi-channel wireless networks where each node is equipped
a dedicated interface per channel. In contrast to their stud-
ies in wireless networks, we are more interested in capacity
in a duty-cycled network, wherein a node only wakes up its
radio to communicate for a fraction of time. To our knowl-
edge, this work is the first one that explores the impact
of duty cycle on capacity in wireless networks. Several re-
searchers have extended the results of Gupta and Kumar
to those multi-channel networks where nodes may have less
interfaces than available channels [4]. We also consider the
impact of multiple channels on the achievable capacity in
duty-cycled network.

As for low-power wireless sensor networks, duty cycled MAC
protocols have gained increasingly attention during the past
decade. The MAC schedulers not only ensure reliable com-
munication, they also coordinate the sleep/wakeup schedule
of nodes to reduce energy cost. These protocols can be cat-
egorized by the centricity and asynchrony. Sender-centric
asynchronous MACs include B-MAC [6], X-MAC [1], and
BoX-MACs [5]. In these protocols, receivers periodically
wakes up to check the channel for incoming data and senders
transmit“preamble”or back-to-back short packets till the re-
ceiver is up. As for sender-centric synchronous MACs, e.g.,
SCP-MAC [9], the channel polling mechanism of LPL has
been further refined, wherein all nodes are synchronized to
poll at the same time. Thus, senders only transmit a short
preamble slightly before the channel polling, resulting in
less overhead in preamble transmission and more efficiency.
Receiver-centric asynchronous MACs, such as RI-MAC [7],
let a receiver periodically wake up to send out beacons as
invitation for data. Whenever a sender has pending data, it
monitors the channel until the beacon arrives and transmit



the data after winning the channel contention. In contrast,
in receiver-centric synchronous protocols such as O-MAC
[2], pairwise synchronous communication enables minimal
energy waste on rendezvous between senders and receivers.
More description of each protocol can be found in section
4.2. To understand the capacity limits of MACs in different
categories, we present a framework to derive the capacity of
each representative MAC at given duty cycles.

7. CONCLUSIONS
In this paper, we have derived the upper and lower bounds
on the capacity of duty cycled wireless networks. We have
shown that in random wireless network, the throughput ca-
pacity increases with square root of ψc over n till the capac-
ity limit is reached, where ψ denotes the given duty cycle,
c is the number of available channels, and n is the num-
ber of nodes in network. As for the case of 1 hop MAC
traffic model, we have found that the achievable capacity
increases linearly in ψ and independently of n till it reaches
the capacity limit. For the purpose of understanding the ca-
pacity of extant MAC protocols, we next have analyzed four
state-of-the-art MACs given different duty cycles and net-
work densities. The results show that receiver-centric and
synchronous MAC protocol such as O-MAC approximates
the capacity limit as well as energy efficiency most com-
pared to other MAC schemes. As part of our future work,
we are interested in applying the insights obtained from this
work to design algorithms that approach the capacity and
energy efficiency limit.
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