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Abstract—Parallel 3D FFT (P3DFFT) is an important com-
ponent of many scientific computing applications ranging from
fluid dynamics, astrophysics and molecular dynamics. One of
the main limiting factors of parallel 3D FFT performance and
scalability is the time spent in All-to-all communication. The
implementation of P3DFFT uses the Message Passing Interface
(MPI) as the parallel programming model. MPI is the dominant
programming model for past couple of decades, and many
scientific applications use it. Of the many communication prim-
itives offered by MPI, collective communications, especially
MPI Alltoall, consume a lot of time for applications using
P3DFFT. Hiding the latency of MPI Alltoall is critical towards
scaling libraries such as P3DFFT. The newest revision of MPI,
MPI-3, is widely expected to provide support for non-blocking
communication to enable latency-hiding. At the same time,
popular interconnection networks, such as InfiniBand, have
provided support for non-blocking collective communication.
For example, the latest ConnectX-2 adapter by Mellanox
provides a low-level task-list offload capability. In this paper,
we design a non-blocking offloaded collective for Alltoall Per-
sonalized Exchange (MPI Alltoall) using the task-list offload by
the ConnectX-2 network adapter. Simultaneously, we re-design
the P3DFFT library and a sample application kernel to overlap
the MPI Alltoall operations with application level computation
and demonstrate the benefits of using our novel non-blocking
Alltoall algorithm. Our experimental evaluation shows that we
are able to achieve near perfect overlap of computation and
communication (99%) through the use of offload mechanism
without any adverse impact on the latency of the MPI Alltoall
operation. We are also able to see an improvement of upto
23% in the overall run-time with the modified P3DFFT kernel
when compared to the default blocking version.

I. INTRODUCTION

Across various scientific domains, application scientists

are constantly looking to push the envelope of their research

by running large scale parallel jobs on supercomputing

systems. The need to achieve high resolution results with

smaller turn around times has been driving the evolution

of supercomputing systems over the last decade. Current

generation supercomputing systems are typically comprised

of thousands of compute nodes based on modern multi-core

architectures and offer a vast array of computing resources.

Interconnection networks have also rapidly evolved to offer

low latencies and high bandwidths to meet the communi-

cation requirements of parallel applications. Together, these

systems are allowing scientists to scale their parallel appli-

cations across tens of thousands of processes.

Parallel 3-Dimensional Fast Fourier Transform (P3DFFT)

is one of the major components used by a wide array of

scientific computation applications. P3DFFT is implemented

using the Message Passing Interface (MPI) [1] parallel pro-

gramming model. While several researchers have explored

various different programming models [2], [3], MPI has

been the dominant programming model for past couple

decades and has scaled to the largest parallel machines.

The MPI Standard defines a set of collective operations

to provide abstractions for various group communication

patterns. These operations are very popular among appli-

cation developers owing to their ease of use and portability.

Current generation scientific applications spend a consider-

able amount of their communication time performing various

collective operations [4], [5]. The MPI Forum is working to-

wards a revised specification, MPI-3, that is widely expected

to enable non-blocking collective communication. A draft

non-blocking collective communication chapter has already

been formally read at recent MPI Forum meetings. The

aim of including non-blocking collective communication is

to enable latency hiding. While communication proceeds

in the background, processors are expected to work on

computation, thus providing overlap of computation and

communication.

The goal of non-blocking collective communication inter-

face is to allow application developers to utilize the comput-

ing cycles of the host processors to perform application level

tasks while the collective operation progresses in the back-

ground. One of the major challenges of attempting overlap is

that the MPI communication stack needs to be “progressed”

to proceed with a list of communication operations. The

progression is typically done by using the host processor

which traverses lists of pending communication operations.

In order to progress the MPI library, MPI Test calls can

be invoked. In [6], [7], [8], researchers have addressed

this problem of overlapping collective communication and

computation through the usage of MPI Test calls. However,

authors note that in order to achieve the best possible over-

lap, it is necessary to use the “right” number of MPI Test



calls. The application developer needs to guess the right

places and right number of calls to MPI Test to ensure

that progress is made. Of course, this is very hard to do

in context of real applications due to two major reasons:

i) the number of test calls varies according to computation

time and network speed, both factors change dramatically

for various systems, thus, making it virtually impossible to

do this in a portable fashion, and ii) the computation for the

application can be done by a third party library, therefore,

the application developer has no way of inserting MPI Test

calls (such is the case with our example of P3DFFT). In [9],

authors propose using a separate thread to progress the

collective communication in the background while the main

application thread performs compute tasks in the foreground.

However, authors conclude that such methods are most

beneficial if the progression threads could be scheduled on

idle compute cores owing to possible resource contention

between the compute and communication progress threads.

Given the significance of non-blocking collectives and the

limitations of the existing designs, there has been a recent

growth of interest in offloading collective operations to the

network interfaces. In this regard, InfiniBand hardware ven-

dors such as Mellanox and Voltaire have recently introduced

network offload solutions such as ConnectX-2 [10] and

Fabric Collective Accelerator (FCA) [11], respectively. In

this paper, we leverage the network offload features provided

by the ConnectX-2 InfiniBand network adapter to design

an efficient non-blocking algorithm for the Alltoall Person-

alized Exchange (MPI Alltoall) operation. We have also

studied the performance characteristics of the P3DFFT appli-

cation, which performs several large message MPI Alltoall

exchanges and we have re-designed the application to take

advantage of our proposed non-blocking MPI Alltoall algo-

rithm to achieve communication/computation overlap. Our

experimental evaluation shows that we are able to achieve

near perfect overlap of computation and communication

(99%) through the use of offload mechanism without any

adverse impact on the latency of the MPI Alltoall operation.

In short, we have addressed the following broad chal-

lenges in our work:

• In [12], [13], authors have proposed algorithms to

optimize blocking collective operations. However, as

applications are scaled out, it is necessary to hide

the costs of collective operations. In this context, re-

searchers have proposed a few interesting ideas to

overlap computation with collective operations. But,

is it possible to achieve better overlap by offloading

collective operations to the network interface?

• The ConnectX-2 network interface provides network

offload features and in [14], [15], [16], researchers have

studied the potential benefits of such designs. However,

these studies do not deal with data-moving collective

operations. Can we design an efficient non-blocking

algorithm that leverages the network offload feature

for a dense operation like the Alltoall Personalized

Exchange?

• A non-blocking interface should allow applications to

perform multiple concurrent collective operations in an

overlapped manner with compute tasks. Is it possible

to design such an interface for non-blocking collectives

with network offload designs?

• Finally, P3DFFT kernels rely heavily on MPI Alltoall

operations. How can we re-design a parallel 3-D FFT

kernel to leverage our proposed non-blocking Alltoall

operation? What is the impact of this re-design on

performance and scalability of the P3DFFT kernel?

The rest of the paper is organized as follows. In Section II,

we give a brief overview of InfiniBand, MPI, and other

technologies used in this paper. Section III presents the

motivation for our work. Section IV explains the design

methodology we followed for implementing hardware of-

floaded Alltoall operations. In Section V, we describe our

modifications to P3DFFT to leverage non-blocking Alltoall

operations. Our experimental results and analysis are de-

scribed in Section VI. Finally we summarize our conclusions

and future work directions in Section VII.

II. BACKGROUND AND RELATEDWORK

In this section, we discuss the relevant background and

related work for our work.

A. InfiniBand and ConnectX-2 Network Interface

InfiniBand has emerged as the popular I/O interconnect

standard and almost 41% of the Top500 Supercomputing

systems [17] rely on InfiniBand to address the communi-

cation requirements of the current generation applications.

Current generation InfiniBand network cards and switches

can deliver 32 Gbps end-to-end bandwidth (Quad-Data-Rate

or QDR) and about 1-1.5 micro-second latency. InfiniBand

is also the primary interconnection network on top machines

such as Nebulae in China with 120,640 cores, ranking

second on the list. The ConnectX-2 [10] network interface is

the latest adapter introduced by Mellanox [18]. It offers all

the standard InfiniBand features. In addition, it offers a new

low-level task-list based offloading feature called CORE-

Direct. Using this new feature, upper-level software can

form arbitrary lists of send, recv and wait operations and

post them to a work-request queue of the network card.

The network card is then responsible for carrying out the

tasks, freeing the processor effort in periodically checking

on the progress of these tasks. Using this task list, collective

operations may be designed by upper-level software.

B. Message Passing Interface

The Message Passing Interface (MPI) [1] is one of the

popular programming models used for designing parallel

applications. The MPI Standard defines various abstractions

such as communicator objects, Cartesian topologies along

with various communication primitives such as point-to-

point, collective and one-sided operations. In our work,



we use the MVAPICH2 [19] software stack, which is a

high performance MPI implementation over InfiniBand and

RDMA networks.

Point-to-Point Communication Protocols: Most MPI

libraries use the eager protocol for short messages and

the rendezvous protocol for medium and large messages.

However, for networks that offer RDMA features, any

network exchange requires the data buffers to be registered

with the network interface. In order to amortize the costs

associated with registering buffers, the MPI libraries use

a few optimizations such as creating a set of buffers and

registering them with the network interface during the

initialization and maintaining a cache for the dynamically

registered user-buffers. When a process is performing

an eager send(), it copies the data into one of these

pre-registered buffers and posts an ibv post send operation.

At this point, the MPI Send() operation can return

safely because the data has been buffered internally.

Similarly, with the eager-recv() operations, the network

interface places an incoming message into one of these

pre-registered buffers and the host processor copies the

newly arrived data into the user buffers. However, with

the traditional rendezvous protocol, the processes first

participate in a ready-to-send/clear-to-send hand-shake

phase. Following this hand-shake, the MPI library needs

to perform the necessary tag matching operations before

initiating the RDMA-Put or the RDMA-Get operations. The

specific protocols used in the MVAPICH2 library and their

overlap characteristics were described in detail in [20], [21].

Collective Operations in MPI: The collective operations

defined in the MPI specification can be conveniently and

portably used by application developers to implement vari-

ous communication patterns such as One-to-All, All-to-One,

All-to-All and synchronization operations. Traditionally, MPI

implementations relied purely on point-to-point operations to

implement various collective algorithms. The current MPI-

2.2 Standard defines collective operations to be blocking

operations. However, the MPI-3 Standard [1] will include

specifications regarding the usage and implementation of a

non-blocking interface for collective operations.

The Alltoall Personalized Exchange opera-

tion(MPI Alltoall) is the most dense collective operation

defined in the MPI Standard. Every process that participates

in this operation sends and receives a distinct message

from every other process in the group. Since this operation

is heavily used in the Fast Fourier Transform(FFT)

kernels, several researchers have proposed algorithms

to optimize its performance [22]. MVAPICH2 uses the

hypercube algorithm proposed by Brucks et. al [23] for

small messages and the pair-wise exchange algorithm for

larger messages. The pair-wise exchange algorithm’s cost

function grows linearly with respect to the number of

processes in the group [24]. Due to the volume of data

being exchanged, the performance is also strongly affected

by network contention.

C. P3DFFT and its applications

Many applications in areas including Direct Numerical

Simulations of Turbulence, astrophysics, and material sci-

ence rely on highly scalable 3D FFTs [25], [26], [27], [28],

[29], [30], [31]. In [32], authors indicate that scaling FFT on

systems with core-counts exceeding 10
4 is challenging. In

[29], researchers note that the MPI communication overhead

is more than 40% on 128 compute cores. In [31], scientists

have reported experimental results associated with running

3-D turbulence models on a BlueGene System across 16K

compute cores. Any improvements in the 3DFFT kernels can

be directly translated into benefits to these end applications.

The Parallel Three-Dimensional Fast Fourier Transforms

(P3DFFT) library from the San Diego Supercomputer Center

(SDSC) is an open source library for carrying out 3D

FFTs at large scale [33]. The portable library is written in

Fortran 90 with MPI-based parallelization. It leverages the

fast serial FFT implementations of either IBM’s ESSL or

FFTW. P3DFFT uses a 2D, or pencil, decomposition. This

overcomes an important limitation to scalability inherent in

FFT libraries by increasing the degree of parallelism to up

to N2 and has shown good scalability on 10’s of thousands

of cores when integrated into a Direct Numerical Simulation

(DNS) turbulence application [34]. In this paper we use one

of the sample programs provided with the P3DFFT library

distribution, test sine, to evaluate the impact of our non-

blocking Alltoall with a variant of P3DFFT restructured

for latency hiding. The test sine kernel performs a forward

transform followed by a backward transform on a set of 3D

sine waves and verifies the results.

III. MOTIVATION

With the advent of multi-core compute servers, current

generation MPI implementations such as MPICH2 [35],

Open-MPI [36] and MVAPICH2 [19], utilize aggressive

mechanisms such as multi-core aware [12], [37], [38] and

NUMA-aware [39] to optimize the performance of collective

operations.

Since collective operations involve a group of processes,

the communication cost models [40] suggest that the time

required to complete a collective operation is a linear or

a logarithmic function of the number of participating pro-

cesses. In reality, the amount of time required to complete a

collective operation could be even higher owing to various

factors. As applications are scaled out to larger number of

processes, the time required to complete various collective

operations will continue to increase. Since these operations

are blocking in nature, the performance of the collective

operations poses a serious challenge to the scalability of

applications. It is hence necessary to design an efficient non-

blocking interface for collectives to overlap application-level



computation during the execution of collective operations in

order to hide the latency associated them.

A. Current State-of-the-art with Non-Blocking Collectives:

LibNBC

In Section I, we briefly discussed the concepts that have

been proposed by researchers to overlap application level

computation with collective communication. In this section,

we describe them in greater depth and differentiate these

ideas with our network offload designs.

1) Using Periodic MPI Test calls for Progress: The

libNBC library allows users to initiate a non-blocking All-

toall operation by calling “NBC Ialltoall” and checking for

its completion at a later time by calling “NBC Wait”. In

order to progress the communication in between, we need

to call “NBC Test” while performing the compute tasks. If

applications are designed in this manner, it is necessary to

use the right number of these calls and the right amount

of computation to achieve good overlap. We first measure

the base latency of the NBC Ialltoall/NBC Wait operations

without attempting to overlap any computation across 64

processes with a payload size of 8MB. We then run a

computation loop between the NBC Ialltoall and NBC Wait

calls that runs for the same duration as the measured base

latency. (We describe our benchmarks and experimental

setup in Sections VI-A and VI-B.) In Table I, we vary the

frequency with which we call the NBC Test operations and

calculate the overlap % that is achievable. We can see that

we get the best overlap for this particular case when we

poke the MPI library 1000 times while the host processor is

doing compute tasks. This leads us to the following observa-

tion:Across various applications, collectives operations and

payload sizes, to achieve the best overlap, it is necessary to

determine the right amount of computation to perform and

the right frequency of NBC Test calls to use. This is not

a trivial task and tuning the application to achieve the best

overlap places a higher burden on the application scientists.

2) Using a Separate Thread for Progress: LibNBC’s

threaded progression mode spawns a new thread that pro-

gresses the collective schedule in the background while

the application performs computation in the foreground.

However, utilizing multiple threads leads to resource sharing

between the two threads and host processor’s cycles should

be divided up between these two threads in some manner.

In [9], authors note that such designs are most efficient

when the progression threads are scheduled on idle cores

on the compute nodes. However, in most current generation

supercomputing systems, running parallel jobs in a manner

that utilizes all the cores across all the nodes leads to good

resource utilization and better overall system throughput.

Also, utilizing a real time thread to achieve overlap can

sometimes be tricky and places a higher burden on the MPI

library developers. We were unable to use libNBC’s real-

time thread progression mode for experiments. For the rest

of our paper, we restrict ourselves to using the basic libNBC

library with Test() calls to achieve communication progress.

(A description of our experimental setup can be found in

Section VI-A.)

B. How will Network Offload help Non-Blocking Collec-

tives?

These observations lead us to the following conclusions.

In order to provide the best possible overlap between col-

lective communication and application level computation, it

is necessary to:

• Minimize the involvement of the host processors’ in-

volvement in progressing the collective communication

schedules, so that most of the CPU cycles can be

utilized towards application level computation.

• Lower the burden on application scientists to tune their

applications to use the right amount of computation

and the frequency of MPI Test() calls across various

systems.

• Reduce the burden on MPI library developers by min-

imizing the usage of threaded progression techniques.

In [15], researchers have demonstrated the early designs

that leverage the network offload features offered by the

ConnectX-2 network interface. The ConnectX-2 interface

allows software stacks to create a task-list with various

send()/recv() and wait() operations to mimic a collective

operation. Once a process creates a task-list and posts it

to the network interface, the rest of the communication

can be progressed by the network interface with very little

intervention from the host processor, which can be used

to perform application-level tasks. Researchers have already

explored the challenges involved in offloading some of the

MPI communication operations such as MPI Barrier in [14].

In [16], authors demonstrate the design of collective com-

munication primitives and their usage to offload collective

communication to the network interface and also demon-

strate the % of CPU availability during offload operations.

However, neither of these two papers have demonstrated

the utility of the network offload interface with data mov-

ing collectives. In this paper, we propose a non-blocking

algorithm that leverages the ConnectX-2 network offload

interface for the Alltoall Personalized Exchange operation,

which is the most dense collective operation.

Table I
PERCENTAGE OF OVERLAP FOR 8MB MESSAGE SIZE WITH 64

PROCESSES

Number of Test Calls Percentage Overlap

2 8.73

10 21.16

100 36.13

1,000 97.24

100,000 78.95



C. How will Non-Blocking Alltoall Algorithms help FFT

Kernels?
The P3DFFT kernel relies on all-to-all exchange in order

to transpose the data between different pencil orientations.

As already mentioned, all-to-all exchange can be a very

expensive operation, stressing the interconnect bisection

bandwidth. The baseline version uses blocking all-to-alls,

and since in 3D FFT algorithm the volume of data ex-

changed is large (N3 elements), the transpose becomes a

major bottleneck for performance of the whole kernel. In

many of our tests the communication phase takes 50% or

more of the total execution time. Apart from using more

advanced networks and better implementations of (block-

ing) MPI Alltoall algorithms, a fruitful strategy appears to

hide latency associated with the exchange by overlapping

communication and computation. Since the MPI standard

currently does not have nonblocking collectives we turn

to NBC library as well as our own implementations of

MPI Alltoall using the offload feature and MPI-2 Puts. Our

hope is that with a suitable software mechanism and a

sophisticated network it will be possible to achieve a high

degree of overlap and thus hide most of the communication

latency.

IV. DESIGNING NON-BLOCKING ALGORITHMS WITH

COLLECTIVE OFFLOAD
In Section II-B, we discussed the point-to-point protocols

used in MPI libraries for small and large messages. In

this section, we discuss the point-to-point protocols that we

use with our network offload designs to minimize the host

processor intervention. We also describe our non-blocking

Alltoall Personalized Exchange Algorithm that leverages the

ConnectX-2 network offload feature.

Figure 1. Design of Network Offloaded Non-Blocking AlltoAll Operations

A. Point-to-point Communication Protocols for Overlap

with Offload
In our proposed designs, we use a dedicated InfiniBand

queue-pair for all offload communication. For small mes-

sages, since the copy costs are lower than the registration

overheads, we use a protocol similar to the existing eager

protocol. For small message MPI Recv() operations, we post

an ibv post recv operation on this dedicated queue-pair. On

arrival of a new message on this queue-pair, the network

interface places the data into one of the pre-registered

buffers. When the application executes the corresponding

MPI Wait() operation, this data is copied into the user-

buffers. For small message MPI Send operations, we create

a task-list entry that corresponds to the send request and

enqueue it in a task-list. Once all such send() and wait()

(if any) entries are created, the process posts the task-list

to the network interface and returns. The network interface

will progress each of these operations automatically. When

the control enters the MPI library at a later point of time,

it can check for completion of various operations and mark

the corresponding requests as complete.

For larger messages, as indicated in Section II-B, the

traditional rendezvous protocol requires the host processor’s

intervention, because the tag-matching cannot be offloaded

to the network interface, currently. The degree of overlap

achievable diminishes if the host processor is required to

periodically enter the MPI library to perform various ren-

dezvous protocol related operations. Owing to this reason,

we use the following simpler protocol for larger messages.

The processes first register the user buffers with the network

interface and then post the ibv post recv operations (if any).

Once all the tasks corresponding to the recv() operations

have been posted, each process populates the task-list with

the send() tasks and the necessary wait() tasks. Once the

task-list has been created to mimic the collective algorithm,

it can be posted to the network interface. Beyond this step,

the host processor is free to return from the collective

call and continue with application-level tasks. We need to

perform an MPI Wait() at a later point of time to ensure

that the collective operation has completed and the buffers

can be re-used again.

The other major challenge concerning the design of an

efficient non-blocking interface collectives deals with un-

expected messages and their buffering policies. Since pro-

cess skews affect most applications [41], it is very likely

that a particular process is yet to initiate a collective call,

when most of the other processes are already performing

the operation. Pre-allocating and registering memory buffers

to address this problem is expensive and it is not obvious

how many such buffers need to be allocated. In this paper,

we rely on the Receiver Not Ready(RNR) feature offered

by the InfiniBand hardware. The InfiniBand network inter-

face internally performs a degree of flow control between

communicating processes to determine whether a particular

process has already posted its ibv post recv operation and

if it is ready to receive a message. If a process is not

ready yet, the network interface corresponding to the origin

process continuously probes that of the peer process by

sending small control packets until the receiver has posted

its corresponding ibv post recv operation. In our proposed

designs, we leverage this feature to design non-blocking



collective algorithms with minimal memory overheads.

B. Designing Non-Blocking Alltoall Personalized Exchange

Algorithm
For a collective operation like MPI Alltoall, it is neces-

sary to control the number of concurrent exchanges done

by each process. Given the overall volume of data being

exchanged, if we were to perform all the send()/recv()

operations at the same time, it will easily choke the network.

For larger messages, most MPI libraries use the pair-wise

exchange algorithm. If P processes are participating in

the MPI Alltoall operation, each process runs through P
iterations performing send()/recv() operations with a distinct

peer in each step.

In Figure IV, we describe our network offload imple-

mentation of the pair-wise exchange algorithm. Each pro-

cess registers the user-buffers and posts all the necessary

ibv post recv operations, while queuing up the send() and

the wait() tasks in the task-list.

In our algorithm, we also define the term

“communication-window” to indicate the number of

send() operations that are performed in a given batch of the

operation. The task-list is populated as a series of windows,

with each window comprising of a fixed number of send()

operations and the same number of wait() operations. The

wait() operation ensures that the network interface waits

until a relevant completion event is picked up from the

InfiniBand completion queue. Hence, within each window,

by inserting the same number of wait() operations as send()

operations, we ensure that the traffic from one batch does

not affect the traffic in the next batch. In Figure IV, we

demonstrate how a task-list with a communication-window

of size 1 is created. We discuss the implications of varying

the size of the communication-window in our proposed

network offloaded Alltoall algorithm in Section VI-C.

A non-blocking interface for collective operations should

also allow application developers to initiate multiple non-

blocking operations and should ideally guarantee the

progress of these operations, while the host processor is

busy with the compute tasks. In our designs, since the

network interface progresses the collective operations inter-

nally, we also explored the possibility of initiating multiple

non-blocking MPI Ialltoall operations and its impact on

performance and overlap. Our modified P3DFFT kernel

leverages this feature to overlap two different MPI Ialltoall

operations with compute tasks, at the same time. We have

also designed a simple micro-benchmark to evaluate the

performance of our network offload designs by varying the

number of concurrent non-blocking operations. More details

about this benchmark can be found in Section VI-B.

V. REDESIGNING P3DFFT TO ACHIEVE

COMMUNICATION/COMPUTATION OVERLAP
The Cooley-Tukey algorithm for FFT used for 1D FFTs

is very efficient computationally, O(NlogN). However its

butterfly pattern of memory accesses make it a challenge

to parallelize. To perform a 3D FFT, the 1D transform must

be applied in each of the three dimensions. Two primary

strategies are possible in parallelizing the 3D transform:

1) Direct approach: develop a parallel 1D FFT and com-

municate as necessary to carry out FFT on data that

is distributed

2) Transpose approach: Rearrange data prior to each 1D

FFT such the the data for the FFT is available locally

and a serial 1D FFT can be used

While both methods require expensive communication

operations, the commonly used transpose approach affords

the opportunity to combine many smaller messages as a

larger buffer in a single all-to-all exchange. In order to scale

this approach to a large number of processors, a 2D domain

decomposition (pencils) is used in P3DFFT as shown in

Figure 2(b) and is carried out via the steps outlined in

Figure 2(a).

If the original data array is distributed as pencils along the

X dimension (X-pencils), i.e. all data in the X dimension is

local, with the Y and Z dimensions split among processors

in rows and columns of the 2D processor grid respectively,

then in the first of the transposes the Y dimension is gathered

to become local while the X dimension is split among

the row processors. This involves an all-to-all exchange

in rows, which is implemented in the baseline version as

MPI Alltoall over Cartesian sub-communicator ROW. The

second transpose similarly brings together locally all data for

the Z dimension and splits the Y dimension within columns,

which involves an all-to-all over communicator COL.

Each of the two transposes exchanges a total of N3/P
elements. In applications of 3DFFT this implies a rather

substantial message sizes, and therefore performance is

bandwidth-bound. The row transpose typically takes much

less time than the column one since the tasks in ROW

communicator fall in the same node (or on a few adjacent

nodes), so the network is not used or used little for this data

exchange.

The test sine kernel is a simple driver for the P3DFFT

library (http://code.google.com/p/p3dfft). The baseline ver-

sion simply calls a forward and backward transform repeated

over a number of iterations as outlined in Figure 3.

/* B initialized to 3D sine */
do for n iterations
/* Forward transform */
call p3dfft ftran r2c (B,A)
/* normalize by size of grid */
A = A/(nx · ny · nz)
/* Backward transform */
call p3dfft btran c2r (A,B)

end do
/* Compare resulting B with expected result */

Figure 3. Algorithm for the main loop in test sine FFT kernel.

In many applications of 3D FFT it is necessary to

transform several independent arrays (variables) at a time.



1D FFT in x
transpose x and y
1D FFT in y
transpose y an z
1D FFT in z

(a) Algorithm sequence for the forward transform in the default
version of P3DFFT

(b) Transpose and 1D FFT operations for the 2D domain decomposition

Figure 2. Design of Forward Transform in 3DFFT and 2D Decomposition

When designing a version enhanced with overlap of com-

munication and computation we chose to avoid splitting

the transposes into smaller chunks. Instead we keep the

bulk transposes in place by overlapping communication and

computation stages for different variables. Thus the arrays

A and B in the above loop now will get an extra dimension

representing the number of variables, which is also passed to

the forward and backward FFT routines. The forward FFT

routine is restructured as shown in Figure 4. The backward

routine is similarly restructured.

call trans xy(beg(1,1),buf(1,1),1)
call init exchange col(buf(1,1),1)
prev = 1
curr = 2
do j=2,nv
call trans xy(beg(1,j),buf(1,curr),curr)
call init exchange col(buf(1,curr),curr)
call complete exchange col(end(1,j-1),prev)
prev = 3 - prev
curr = 3 - curr

enddo
call complete exchange col(end(1,nv),prev)

Figure 4. Algorithm for the forward transform in the redesigned multi-
variable, pipelined, overlapped version

Here the loop index j runs over the variables that need to

be transformed. Arrays beg and end are the original and final

arrays for FFT transform. The first index in this example

runs over the entire XYZ volume, while the second index

is the variable count. An intermediate work array buf’s first

index likewise represents the data volume and the second

index represents one of the two communication windows

over which an exchange is occurring.

We start with trans xy for variable 1 (V1) which performs

the first three stages of the 3D FFT algorithm, namely

transform in X, row transpose, and transform in Y. Then we

initiate (post) an all-to-all exchange in the COL communica-

tor for this variable and let the nonblocking communication

proceed. Assuming it does not interfere with the CPUs, the

latter can work on XY transform of the second variable. This

is the overlap of computation for XY transform of V2 with

network communication for V1. After posting the exchange

for V2 we are then ready to complete the exchange for the

first variable with a call to complete exchange col, which

is essentially a Wait call followed by a transform of the

resulting array (now in shape of Z-pencils) in Z dimension,

thus completing the algorithm for V1. Meanwhile the non-

blocking exchange for variable V2 is ongoing behind the

scenes, thus achieving an overlap of FFT in Z for V1 with

Column transpose for V2. The cycle continues for the rest of

the variables, always keeping at least one exchange current

in the background with the help of two communication

windows (indices prev and curr). This design is only one

of many possible (and work on this continues), it should be

kept in mind that in practice the column transpose dominates

the row transpose since the latter occurs among contiguously

numbered tasks which are typically placed on cores of the

same node. Assuming the size of ROW communicator is

not too large, the row transpose occurs entirely within the

nodes. This decision is consistent with the current trend of

increasing cores per node on large system, therefore we

chose not to overlap the row transpose with computation.

However it is overlapped with the column transpose as part

of trans xy routine.

To summarize, we have developed a version of 3D

FFT kernel which includes overlap of communication with

computation without sacrificing the appealing large sizes

in messages. This version allows us to study latency hid-

ing with various non-blocking collective communication

protocols. For this paper we consider three non-blocking

replacements for the MPI Alltoall in the Column transpose:

i) NBC iAlltoall, ii) MPI2 one-sided calls (put with fence

synchronization), and iii) our network offloaded Alltoall

algorithm.

VI. EXPERIMENTAL RESULTS
We detail the results of our experimental evaluation in

this section. All tests were run on a quiet system without

any background traffic.



A. Experimental Setup

Each node of our test-bed has eight Intel Xeon cores

running at 2.40 Ghz with 8192 KB L2 cache. The cores are

organized as two sockets with four cores per socket. Each

node also has 12 GB of memory and Gen2 PCI-Express bus.

They are equipped with MT26428 QDR ConnectX HCAs

with PCI-Ex interfaces. We used a 36-port Mellanox QDR

switch to connect all the nodes. Each node is connected to

the switch using one QDR link. The HCA as well as the

switches use the latest firmware. The operating system used

is Red Hat Enterprise Linux Server release 5.3 (Tikanga),

with the 2.6.18-128.7.1.el5 kernel version. OFED version

1.5.1 is used on all machines, and the OpenSM version is

3.1.6.

B. Benchmark Suite

In this paper, we use modified versions of the OSU Micro-

Benchmarks [42]. We use the osu alltoall benchmark to

measure the latency of the blocking MPI Alltoall operations

for various message sizes. We extend this benchmark to

measure the overlap with non-blocking versions of Alltoall

operations as shown in Figure 5. For various message sizes,

we first measure the base-latency required to perform the

non-blocking operation without inserting any computation.

Then, we initiate the non-blocking Alltoall operation and

run a compute task to span the duration of the base-

latency. For the libNBC case, we need to rely on making

NBC Test calls from within the compute loop at periodic

intervals to progress the communication in the background.

However, with our network offload design, since the network

progresses the collective operation in the background, it is

not necessary to perform any Test() operations. Once the

compute loop completes, we measure the time spent within

the MPI Wait() operation and we measure the total time

required to perform the communication and computation

operations in an overlapped manner. We then determine,

the amount of time the host processor spent performing the

compute tasks and the overlap %, as shown in Figure 5.

C. Performance of Offload Alltoall with Different Commu-

nication Window Sizes

In Figures 6 (a) and (b), we study the performance

characteristics of the network offloaded Alltoall opera-

tion by varying the number of concurrent send operations

(communication-window), for 32 and 64 processes. As we

can see from Figure 6 (a), the length of the offload window

does not make a significant impact with smaller number

of processes. However, as the number of participants in an

Alltoall operation increases, we can see that the length of

the offload window has a clear impact on the communication

latency. The size of the window essentially controls the num-

ber of network of outstanding communication operations for

each process. Having a window that is too small would

lead to under-utilization of the network bandwidth and a

higher communication latency. A window that is too large

start timer(base-latency);
Ialltoall()
Wait()
end timer(base-latency);
/* calculate base-latency */
start timer(overlap-latency)
Ialltoall()
while(timer <= base-latency) {
/* compute and update timer */
if(timer == time slice) {
/* If Test calls are required */
start timer(test-overhead)
Test();
end timer(test-overhead)
/* update overheads due to Test() */

}
}
start timer(wait-overhead)
Wait()
end timer(wait-overhead)
end timer(overlap latency)
/* update overheads due to Wait() */
overheads = wait overhead + test overhead
compute time = overlap latency - overheads
overlap ratio = compute time / overlap latency

Figure 5. Overlap Benchmark

will lead to heavy network contention and also results in

poor communication performance. As Figure 6 (b) depicts,

we get the best performance with a window of size six. For

all further experiments, we use this optimized window size

of six.

D. Communication Performance Comparison: Latency

In Figures 7 (a) and (b), we compare the basic la-

tency of our proposed network offloaded Alltoall algorithm

with libNBC’s NBC Ialltoall operation and the existing

MPI Alltoall algorithm used in the MVAPICH2 library,

for 32 and 64 processes. Since the MPI Alltoall operation

is a blocking call, with both libNBC and our proposed

design, we initiate the Alltoall operation and immediately

enter the wait() call, without attempting to overlap any

compute tasks. As we can see, the offload scheme offers

performance comparable to the default alltoall scheme. The

libNBC scheme on the other hand, performs worse than both

the default and the offload schemes. This could be attributed

to a different communication schedule that is used by the

libNBC library.

E. Computation/Communication Overlap

In Figure 8, we compare the amount of communi-

cation/computation overlap achievable through our pro-

posed network offloaded Alltoall algorithm and libNBC’s

NBC Ialltoall operation. As indicated in Section III-A2,

we were unable to use libNBC’s real-time thread option

for our work. Hence, for all overlap comparison studies,

we rely on progressing the communication through calling

the NBC Test() function. Since the amount of overlap

achievable through the NBC Test() option depends directly

on the frequency with which we call this function, for every
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message size, we experimented by varying the number of

NBC Test calls from 2 to 10,000. For brevity, we choose

to demonstrate the overlap (%) for 2, 1,000 and 10,000

NBC Test calls for each message size. Figure 8 shows

the percentage of overlap obtained with libNBC and our

proposed offloaded versions of Alltoall for 32 processes.

With libNBC, we observe that we get the best overlap

when we invoke the NBC Test function about 1000 times

to progress the collective communication. If the number of

Test() calls are too low, very little progress is made during

the compute phase and most of the communication will be

performed in the Wait() operation. On the other hand, if the

number of Test() calls are too high, the overheads associated

with calling the Test() function increases and limits the

amount of time the host processor can spend on performing

compute tasks. However, with the network offload approach,

since the network interface deals with progressing the entire

collective communication with no intervention from the host

processor, we expect the entire communication time to be

overlapped with compute tasks. In Figure 8, we can see that

the overlap percentage is about 99% for all message sizes

with 32 processes. However, we would like to note that for

larger system sizes, since the size of the task-list grows, the

performance of the offload engine in the current generation

ConnectX-2 begins to drop and we observed about 90%

communication/computation overlap with 64 processes. This

could be a limitation of the current firmware of the network

adapter, as it is still under active development. We are

in touch with the vendor about this issue and an updated

firmware might be available in the next few months. We

will present the updated results with the new firmware in

the final version of the paper.

F. Impact of Overlapping Computation and Communication

on Latency

In Figures 9(a) and (b), we study the the impact of over-

lapping computation and communication on the aggregate

latency of the alltoall benchmark for 32 and 64 processes,

respectively. As we can see, with the offloaded scheme,

overlapping computation and communication has little or

no impact on the aggregate latency, because we are able

to achieve high overlap. With libNBC, even though we are

using the right number of Test() calls to get the best overlap

possible, since the base latency of performing the Alltoall

operation is poorer, we see larger completion times.
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G. Performance with Multiple Concurrent Alltoall Opera-

tions

In Section IV-B, we indicated that a non-blocking in-

terface for collectives should preferably allow application

developers to initiate multiple concurrent collectives and

overlap them with compute tasks. We discussed that our

proposed network offload designs allow us to initiate more

than one Alltoall operations and the network interface pro-

gresses each of these on its own. In Figures VI-G and

10(b), we compare the aggregate latency (communication +

computation) and overlap of our proposed network offload

designs with libNBC, with 2 concurrent Alltoall operations

across 32 processes. We can observe that even in this

case, our network offload approach performs better for all

message sizes. Even with 2 concurrent Alltoall operations,

we see better aggregate latency and better overlap ratios,

when compared to the libNBC. We believe that this is a

strong contribution to the community because having the

flexibility to overlap multiple different collective operations

at the same time with compute tasks, while still delivering

good communication performance and better overlap can

significantly impact the run-times of parallel applications.

H. P3DFFT Kernel Performance Comparison

To evaluate how our network offload Alltoall operation

can be utilized to improve the performance of applications

which require many 3D FFT operations we carried out a

small study with the P3DFFT Sine kernel. As described in

Section V we replaced the two most expensive Alltoall oper-

ations in the P3DFFT Sine kernel (namely the column wise

transposes which occur in both the forward and backward

transforms) with non-blocking alternatives, for various 3D

FFT problem sizes. In Table II, we compare the application

run-times with the base blocking version, one-sided version,

the re-designed P3DFFT kernel with overlapped collective

communication with libNBC and our proposed network

offloaded MPI Alltoall. The Offload Alltoall is consistently

the best performing, outperforming both other non-blocking

approaches and reducing overall runtime from 7.3%-23.5%

when compared with blocking Alltoall as shown in Table II.

We are not very sure at this point of time as to why the

performance difference drops as the data-set size increases.

We are looking into this problem. Also, LibNBC does not

fair well in this comparison, that is because we have not

incorporated NBC test calls into the P3DFFT library. The

computation work that is overlapped with the all to all is

carried out by highly tuned FFT libraries. The computation

loop must be restructured to make several individual calls to

the FFT library in order to accommodate the NBC test calls,

a design we plan to evaluate for system in which offload can

not be implemented.

VII. CONCLUSION
In this paper, we design a non-blocking offloaded collec-

tive for Alltoall Personalized Exchange (MPI Alltoall) using

the task-list offload by the ConnectX-2 network adapter.

Simultaneously, we re-design the P3DFFT library and a sam-

ple application kernel to overlap the MPI Alltoall operations

with application level computation and demonstrate the ben-

efits of using our novel non-blocking Alltoall algorithm. Our

experimental evaluation shows that we are able to achieve
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Table II
P3DFFT SINE KERNEL RUN TIME

Data-Set Size Offload (s) libNBC (s) One-Sided (RMA) (s) Default (s) Percentage Improvement (%)

512 1.56 2.08 2.01 2.04 23.5

600 2.94 3.78 3.66 3.49 15.7

712 5.03 6.54 6.29 5.68 11.44

800 7.12 9.20 8.80 7.68 7.29

near perfect overlap of computation and communication

(99%) through the use of offload mechanism without any

adverse impact on the latency of the MPI Alltoall operation.

We are also able to see an improvement of upto 23% in the

overall run-time with the modified P3DFFT kernel when

compared to the default blocking version.

The P3DFFT library is widely used by many scientific

applications. We plan to contribute an efficient implementa-

tion of P3DFFT appropriate for modern InfiniBand clusters

connected with ConnectX-2 network adapters so that these

application users may leveraging the non-blocking Alltoall

collective developed in this work. In the future, we plan

to continue working in this direction. With the P3DFFT

kernel, we plan to overlap the intra-node communication

phases with computation operations in a manner similar

to our proposed designs. We aim to develop a suite of

collective operations that are offloaded efficiently using

CORE-Direct. We also plan to evaluate the impact of non-

blocking collectives on end applications, such as those that

use P3DFFT, on larger clusters connected via ConnectX-2

as such systems become available.
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