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Abstract. In fMRI analysis, linear models are commonly used because of their explanatory power, statistical sim-
plicity and computational efficiency. However, these models make an assumption of a constant hemodynamic re-
sponse throughout the experiment. Many studies show relatively large variations and non-linearities in the brain
hemodynamics, questioning the validity of inferences made with such models. In this paper we present a method
which relaxes this assumption, without sacrificing the other advantages of linear models. This method provides
estimates of not only the overall activation magnitude and delay, but also the variation in them with respect to ex-
perimental conditions. We also validate the statistical properties of our estimator with a simulation study, and show
its application on a real fMRI study.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a very powerful tool for studying brain activity by identifying
functionally specialized regions and the functional connectivity of the brain. MRI scanners are used to acquire spatio-
temporal data, with a time-series at every voxel, which are then used mainly to create maps of activation magnitude [1].
There is also a growing recognition of the need to study the temporal characteristics of the activation, like the delay in
the hemodynamic response (HR) to a neurological stimulus, since it provides a more precise and specific mapping of
brain function [2, 3].
Though the extent to which the properties of neural activation can be correctly inferred from the measured signal is
unknown, it is believed that: 1) a stronger activation leads to an increased BOLD response; 2) a prolonged activation
is accompanied by a prolonged response; and 3) a time difference in the activation onset (e.g. between a sensory and
an efferent area) is reflected by a temporal shift in the responses of these areas [?].
There are many technical impediments in the analysis of fMRI because cortical signal intensity changes are small
(¡5%) and there are signal intensity fluctuations due cardiac and respiratory events. The repetition rate of the stimulus
is another factor affecting the fMRI time curve as it affects the shape of the hemodynamic response function (HRF)
and the duration of the return to baseline. However, under certain conditions, the fMRI response has been found to be
approximately linear, indicating that blood oxygenation is linearly coupled to neural activity [?].
Most analysis methods [1,4] are based on a linear time-invariant model of brain response formed by the convolution of
the stimulus function with an approximate HRF. The parameters of activation are solved for using linear least squares
in a General Linear Model (GLM) framework. These models vary in their complexity: early models assumed constant
preset values for the response lag and dispersion whereas current models determine these parameters from the data.
The response latency at a voxel has been estimated using a first-order Taylor series expansion of the HRF [5] in the
GLM. An alternative approach [6] to estimate the activation amplitude and delay uses an orthogonal basis derived
from a spectrum of time-shifted HRFs. Estimating the parameters of activation like amplitude, latency, dispersion,
etc. through non-linear regression has been variously proposed [7,8], wherein the estimated HRF is a non-linear func-
tion of these parameters. The drawback of such methods is that they require computationally expensive non-linear
minimization steps at each voxel. Other linear methods measure the activation onset latency by examining their cross-
correlation function with a reference time-series [9]. Such methods do not isolate the component of the signal due to
the stimulus of interest, and hence it is unclear how much the latency estimate is affected by confounding factors.
The drawback of all these methods is that they assume a constant (with respect to experimental conditions) hemo-
dynamic response function at each voxel. However, repeated studies have shown a relatively large variation in the
observed hemodynamic response, across subjects, across brain sites within the same subject, and even at the same



brain site of the same subject across time [10]. Non-linearities in the transfer from a stimulus to the hemodynamic
response have been demonstrated [11], questioning the validity of a time-invariant HRF. Also, the current methods
only measure timing differences across voxels, not within the same voxel as experimental conditions change. How-
ever, comparison of the response delay makes sense only at the same position in the brain or else it may merely reflect
differences in cerebral microvasculature and not of neural recruitment levels [6].
To address these issues, we propose an analysis method that relaxes the assumption of an invariant HRF, without
sacrificing the computational efficiency, statistical simplicity and explanatory power of linear models. The delay and
magnitude of the hemodynamic response at a particular cortical site is allowed to vary over the duration of the exper-
iment, capturing changes due to changing experimental conditions and subject physiology. In addition, we suggest a
low-bias estimator for latency and provide an analytical formulation for its variance, needed for deriving confidence
intervals.
The layout of this paper is as follows: In section 2 we present our GLM based method for estimating the activation
latency and magnitude at each voxel, without assuming an invariant HRF. Then in section 3 we present a quantitative
validation of the statistical properties of our estimator through a simulation study. The application of our method on
analyzing a real data-set is shown in section 4. We conclude the paper with a summary of the current method and
describe our plans for future work in section 5.

2 Method

Let si(t), i = 1...q, be the stimulus function representing the onsets and durations of the neurological stimuli cor-
responding to a task of type i. In conventional analysis of fMRI data, the following two assumptions are made: a)
the hemodynamic response is linear; b) the hemodynamic response function is invariant, leading to the following
model [12] for the observed signal y(t) at each voxel:

Y (t) =
q

∑
i=1

[
γ(1)i x1(t)+ γ(2)i ẋ1(t)

]
+ ε(t). (1)

Here, xi(t) = si(t) ⋆ h(t), i = 1 . . .q is the expected BOLD response (with no lag) to si(t) obtained by convolving it
with an typical hemodynamic response function h(t) (For example. see [1]). By including the first-order Taylor series
expansion of xi(t + τ)≈ x(t)+ τ ẋ(t), the model is able to explain a certain amount of delay in the observed response.
The coefficient of regressor xi is γ(1)i and that of ẋi is γ(2)i . The noise term ε(t) is assumed to be normal, colored, and
is typically modeled as an AR(1) process.
In matrix notation, this is Y=Xγ+ε , where X is the N×2q design matrix X= [x1ẋ1 . . .xqẋq], with xi =(xi(1) . . .xi(N))′.
Also, γ =(γ(1)1 ,γ(2)1 , . . .γ(1)q ,γ(2)q )′ is the coefficient vector, and ε =(ε(1) . . .ε(N))′ is the noise distributed as N (0,σ2

ε Σε).
The Gauss-Markov estimate for this system is γ̂ = (X′Σ−1

ε X)†X′Σ−1
ε Y, and its variance is Var[γ̂] = σ2

ε (X
′Σ−1

ε X)†,
where † is the pseudo-inverse operation. It can be readily observed that since xi(t) is orthogonal to ẋi(t), the co-
variance between γ̂(1)i and γ̂(2)i is roughly zero indicating that they are almost uncorrelated Gaussian variables, with
variance given by the corresponding diagonal elements of Var[γ̂ ].

For stimulus si, the magnitude of the response βi =

√
(γ(1)i )2 +(γ(2)i )2 is estimated by β̂i =

√
(γ̂(1)i )2 +(γ̂(2)i )2 (See

[13]). The estimate β̂i has a non-central χ distribution with 2 degrees of freedom and non-centrality

√(
T (1)

i

)2
+
(

T (2)
i

)2
,

where T (k)
i = γ̂(k)i /

√
Var[γ̂(k)i ] is the t–score for γ̂(k)i with k = 1,2.

The delay of the response τi is related to the ratio of γ(2)i to γ(1)i , as [5]:

τi ≈
2α1

1+ exp(α2ρi)
−α1, where ρi =

γ(2)i

γ(1)i

. (2)

The non-linear transformation of the logistic function was proposed in order to correct for the error due to the neglected
higher order terms of the Taylor expansion, and the values its of α1, α2 are determined empirically. The unit of τi is



in terms of T R, the sampling period. It turns out that the estimate of ρi suggested by [5] ρ̂i = γ̂(2)i /γ̂(1)i is Cauchy
distributed and therefore is biased. It also becomes numerically unstable when γ̂(1)i is small.
We provide a solution for this through the following approximation. Since γ̂(1)i and γ̂(2)i are almost independent,
E[ρ̂i] ≈ E[γ̂(2)i ]E[1/γ̂(1)i ]. Taking a first order Taylor series expansion of 1/γ̂(1)i about γ(1)i , and using the fact that it
is unbiased, we get:

E[ρ̂i] = ρi

(
1+

Var[γ̂(1)i ]

(γ̂(1)i )2

)
= ρ̂i

(
1+
(

T (1)
i

)−2
)
. (3)

Therefore, we propose the following corrected estimate for ρi as:

ρ̂corr
i = ρ̂i

(
1+
(

T (1)
i

)−2
)−1

, giving τ̂corr
i =

2α1

1+ exp(α2 ˆρcorr
i )

−α1. (4)

This correction not only un-biases the estimate of the ρi but also conditions it numerically when the t–score of γ̂(1)i is
low.
To derive an expression for the variance of τ̂i := τ(γ̂(1)i , γ̂(2)i ), we take a first order Taylor expansion around the true
value γ(1)i and γ(2)i , and use the fact that their estimates are unbiased to get:

Var[τ̂i]≈ Var

[
τ(γ(1)i ,γ(2)i )+

(
∂τ

∂γ(1)i

∂τ
∂γ(2)i

)(
(γ̂(1)i − γ(1)i )

(γ̂(2)i − γ(2)i )

)]
≈

2

∑
k=1

Var[γ̂(k)i ]

(
∂τ

∂γ(k)i

)2

. (5)

Unfortunately, the model of eqn. 1 can derive only an estimate of average response magnitude βi and delay τi at a
given voxel for each stimulus condition si, and it fails to characterize the variability of the hemodynamic response
within that voxel.
To account for this variability, we partition each stimulus function si(t), into a set of pi stimulus functions si, j(t),
j = 1...pi, such an si, j(t) represents the stimuli presented when experimental conditions (and subject physiology)
could be safely assumed to be constant, thereby justifying the assumption of a constant hemodynamic response. Now,
using the partitioned stimulus functions in a GLM we get:

Y (t) =
q

∑
i=1

pi

∑
j=1

[
γ(1)i, j xi, j(t)+ γ(2)i, j ẋi, j(t)

]
+ ε(t). (6)

In matrix notation, Y =Xaγa+ε , where Xa is now an N×2p design matrix (p =∑q
i=1 pi) containing the partitioned re-

gressors, and γa is a vector of the regression coefficients. The original stimulus function si(t) is a (weighted) sum of the
partitioned stimulus functions si, j(t), and therefore we can express X = XaC, where Ck,l gives the weight of the kth re-
gressor of Xa toward the lth regressor of X. It is easy to verify that γ̂ =Dγ̂a, where D=C†

(
X′

aΣ−1
ε Xa

)† (CC†)′ X′
aΣ−1

ε Xa.
It is, however, hard to made inferences from the model of eqn. 6 due the inflated variance of γ̂a, caused by increased
model degrees of freedom (given by the trace of PXa =Xa

(
Xa

′Σ−1
ε Xa

)†Xa
′Σ−1

ε ), and due to an increase in estimate of
the noise variance σ2

ε , caused by reduced residual degrees of freedom. Therefore, to find a tradeoff between the flexi-
bility of the model and its statistical power, we regularize it using the prior belief that the estimates of the coefficients
{(γ(1)i, j , γ(2)i, j )}N

j=1 are normally distributed around the mean response (γ(1)i , γ(2)i ) for the stimulus si, with variance

σ2
γ Σγ . Here Σγ is a diagonal matrix representing the relative scales of the variation in γ(1)i, j with respect to that of γ(2)i, j .

The maximum a posteriori estimate for γa results in the following ridge-regression formulation:

γ̂a(λ ) = min
γ

[Y−Xaγ]′ Σ−1
ε [Y−Xaγ]+λγ ′Qγ, (7)

where Q = [I−DD†]′Σ−1
γ [I−DD†]. Here, λ represents the ratio σ2

ε /σ2
γ . A value of λ = 0 indicates a flat prior on γa,

and the solution corresponds to the OLS estimate γ̂a of eqn. 6.



The diagonal values of Σγ are estimated by first computing the OLS values of γ̂a, and then setting the relative scale of
γ̂(1)i, j to 1 and that of γ̂(2)i, j as the ratio of the empirical variance of γ̂(2)i, j to that of γ̂(1)i, j .

The minimizer to eqn. 7 is γ̂a(λ ) =
(
Xa

′Σ−1
ε Xa +λQ

)†Xa
′Σ−1

ε Y. The model degrees of freedom (i.e. trace of PXa(λ )=
Xa
(
Xa

′Σ−1
ε Xa +λQ)†Xa

′Σ−1
ε ) is a decreasing function of λ . Through a re-arrangement of the terms, it can be seen

that γ̂a(λ ) = T(λ )γ̂a, where T(λ ) = (I + λ (Xa
′Σ−1

ε Xa)
† Q)†. The mean squared error of the estimate γ̂a(λ ) can be

partitioned as MSE(λ ) = σ2
ε trace{T(λ ) (Xa

′Σ−1
ε Xa)

† T(λ )′} + γ ′a[T(λ )− I]′[T(λ )− I]γa, where the first term is
the variance and the second is the square bias of the estimator. The optimal value λ ∗ of λ is chosen as that which
minimizes MSE(λ ), which in the case of linear LS regression is well-approximated by the Cp statistic [14]:

Cp(λ ) = Y′ [I−PXa(λ )]Y+2
trace{I−PXa(λ )}

N
Y′[I−PXa(0)]Y

trace{I−PXa(0)}
. (8)

3 Model Validation

In this section, we present a quantitative validation of the statistical properties of our estimator through a simula-
tion study. The parameters of our experiments are the SNR = 20log10 h/σε , and the allowed variation in response
magnitude and delay characterized by σγ . Here, h is the RMS power

√
∑t h2(t)/T of the HRF used. The stimulus

function s1(t) (generated by a Poisson process) was partitioned into s1, j(t), j = 1...p1, and the measurement time-
series y(t) was generated as ∑p1

j=1 s1, j ⋆h1, j(t)+ ε(t) where h1, j(t) is the canonical HRF [12] sampled with a period of
T R = 2–secs, typical of most real fMRI acquisitions. Each individual HRF h1, j(t) was delayed by τ1, j (in T R units)
and amplitude β1, j (arbitrary units AU). The β1, j and τ1, j were obtained as functions of γ(1)1, j and γ(2)1, j sampled from

N
(
(γ(1)i, j γ(2)i, j ),σ2

γ Σγ

)
. The noise ε(t) was generated by an AR(1) process with the AR coefficient=0.3 and variance

σ2
ε .

In fig. 1 we show the percentage MSE, variance and squared-bias of the estimates for β̂i, j(λ ∗) and τ̂corr
i, j (λ ∗).4 We also
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Fig. 1. The percentage variance, squared-bias, and MSE for the estimates of β̂i, j in fig. (a) and τ̂corr
i, j in fig. (b) plotted with respect

to SNR. The legend in fig. (c) shows the color coding for the squared-bias and variance components for different values of σγ . Note
that MSE = Var + Bias2. For all the estimates, we observe a reduction of bias and variance with respect to increasing SNR and
smaller σγ . Also, the bias in β̂i, j is relatively large compared to its variance. This is due to the fact that β̂i, j, is a non-central chi
variable and therefore inherently biased. However, in absolute terms the bias and the overall MSE is fairly low. Though the MSE for
τ̂corr

i, j is fairly high, given the low temporal resolution and SNR of fMRI, it is acceptable, and it drops quickly as the SNR improves.

observed that the bias of our corrected estimator for τ was about 70% less than that of the original estimator of [5],
and the empirical variance of τ̂corr was (1±0.2) times the analytical variance from eqn. 5.

4 MSE%(β̂ ) = 100×Eβ

[
Eβ̂ |β [(β̂ −β )2]

]
/
(
Eβ [β ]

)2; Var%(β̂ ) = 100 × Eβ

[
Eβ̂ |β [(β̂ −E[β̂ ])2]

]
/
(
Eβ [β ]

)2; and Bias2
%(β̂ ) =

100×Eβ

[
(Eβ̂ |β [β̂ −β ])2

]
/
(
Eβ [β ]

)2.



4 Results

We present some results of our method applied to an fMRI study designed to assess the neural substrates involved in
visuo-spatial memory maintenance and manipulation. Each trial started with the display of a 250–ms fixation cross,
followed by three nameable objects for 2000–ms each, interleaved with 250–ms fixation crosses. After the last object,
the instruction “forward” or “backward” was presented for 1000–ms. Participants were instructed to mentally rehearse
or reorder the names of the three objects for a 6,000-ms period. One of the three objects was re-displayed as a probe,
and the subjects were required to indicate with a button press whether the probe object was the first, second, or third
object in the forward or backward sequence, during another 6000–ms window.
Acquisition was done on a Siemens 3T Tim Trio MRI scanner with a quadrature head coil using a BOLD sensitized
3D-EPI gradient-echo pulse sequence with the following specifications: echo time 30ms, flip angle 30◦, volume scan
time 2.22s, and voxel size 3× 3× 3.75–mm. A typical study lasted around 11 minutes, with about 30 trials. Routine
pre-processing (motion and slice-timing correction, spatial normalization to a standard brain space, co-registration of
functional and structural scans, and spatial smoothing with an 8–mm Gaussian filter) was done in SPM5 [1].
To test for a change in brain activity with respect to experiment time (t = 1...T ) and recall direction (r = 1 for “for-
ward”, r = 2 for “backward”), the stimuli were first partitioned into T ×1–min intervals, then further partitioned based
on recall direction, thus resulting in T ×2 regressors. The activation magnitude (βt,r) and delay coefficients (τt,r) were
computed using the model of eqn. 7. First, those voxels exhibiting significant (α = 0.05, FDR corrected) mean activity
β were identified. The t-scores of these voxels, for one subject, are shown in fig. 2(a). In fig. 2(b) the average delay in
the response at these voxels is shown. The pattern of activation magnitudes and latencies (mainly in the dorso-lateral
pre-frontal cortex, intra-parietal sulcus, visual and auditory regions) correspond with the expected brain recruitment
for this task [15]. The coefficients were then separately tested for an effect due to the interaction of time and recall
direction, by a linear regression against t × r. The correlation coefficient of the regression for βt,r is shown in fig. 2(c),
and for τt,r in fig. 2(d). A positive correlation of βt,r with t × r points to increased neural activity at that region as ex-
periment time increases and when the subject has to do a recall in the backward direction. A positive correlation of τt,r
with t × r implies increased sluggishness in the response. Such maps indicate changing hemodynamics which could
be due to attention, fatigue, task complexity, or adaptation (learning) effects, and help in making more informative
inferences from the data.

(a) Average response magnitude (t–scores) (b) Average response delay (T Rs)

(c) Effect of βt,r ∼ t × r (corr. coeff.) (d) Effect of τt,r ∼ t × r (corr. coeff.)

Fig. 2. Fig. (a) shows the t-scores for mean activation magnitude β t,r (Left and right hemispheres). Fig. (b) shows the average delay
β t,r (in TR units). The correlation coefficient of the regression line of the magnitude coefficients βt,r vs. t × r is shown in fig. (c)
and delay coefficients τt,r in fig. (d). Color saturation indicates the depth within the cortical surface.



5 Discussion

In this paper, we have proposed an extension to standard models for fMRI analysis that relaxes the assumption of an
invariant hemodynamic response function, while preserving the many advantages of a GLM framework. This not only
provides a better model for the data, but also allows us to make more powerful inferences about the effect of different
experimental conditions on brain activity. We also developed a low-bias activation latency estimator and derived an
analytical approximation of its variance, allowing for statistical tests of significance. We demonstrated the statistical
validity of our estimator through simulations, and showed its application on a real fMRI study.
Currently, we are developing methods that can deal with more variation in the hemodynamics through non-parametric
representations of the HRF, and that will capture latency effects with higher precision. We are also looking at ways to
characterize the variation of all the aspects of the hemodynamic response.
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