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Abstract

Revealing the spatio-temporal representational space in which different mental states are encoded
[14] is an important step towards decoding the cognitive state of the subject from fMRI data in
order to study human thought processes. Multi-variate classifiers are commonly used for brain
state decoding, however are restricted to simple experimental paradigms with a fixed number
of alternatives, and are limited in their representation of the temporal dimension of the task.
Moreover, they learn a mapping from the data to experimental conditions, and therefore, do not
explain the intrinsic patterns in the data.

In this paper, we present a purely data-driven approach to building a spatio-temporal representa-
tion of mental processes using a state-space formalism, without reference to experimental con-
ditions. We propose an intuitive definition of functional similarity based on the distribution of
activity on the functional networks of the brain, and from this derive a low-dimensional linear
feature-space for the data. Efficient algorithms for estimating the parameters of the model, and
a method for model-size selection are also proposed. We applied this method to a study on de-
velopmental dyscalculia and compared the models of healthy vs. affected subjects. The method
provided quantitative support for hypotheses not available through regular analysis methods.

1. Introduction

In addition to functional localization and integration, the problem of determining whether the
data encode some information about the cognitive state of the subject, and if so, how is this infor-
mation represented has become an important research agenda in functional neuroimaging. This
is especially relevant for neurological and psychiatric disorders like dementia, schizophrenia,
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autism, multiple sclerosis, etc.[5], or common learning disabilities like dyslexia or dyscalculia[18],
where group-level inference of spatial activity maps has been inconclusive due the high variation
observed between subjects.

A popular approach in this direction has been the use of Multivariate Pattern Recognition (MVPR),
which in contrast to the conventional forward methods such as general linear models, learns the
reverse relationship from the distributed pattern of activation in an individual brain to the experi-
mental conditions experienced during the scans. Typically linear classifiers, such as correlation-
based classifiers [13], single-layer perceptrons[30], linear discriminant analysis [14], linear sup-
port vector machines (SVMs)[27] and Gaussian Naive Bayes[26] have been used due to sim-
plicity of interpretation without significant loss of accuracy[17]. Such MVPR methods have
been applied mainly to the study of visual (e.g.[13, 17, 30]) processing, but also auditory [24]
perception, motor tasks[19], word recogition[27], and to emotional affects such as fear and
deception[38]. This is part of a broader trend of machine learning in the analysis of neuro-
scientific recordings with applications in clinical psychology and cognitive neuroscience[29],
brain-machine interfaces[10], real-time biofeedback[19], etc.

The main advantage of the multi-variate approach is its sensitivity to the distributed nature of
cognitive processes by integrating information from groups of voxels that individually are weakly
activated, but jointly may be highly structured with respect to the task. Also, it obviates the
need for spatial smoothing, otherwise required to boost SNR, thereby preserving the information
present in fine-grained spatial variations.

However, despite the obvious explanatory and predictive power of MVPR, there are still many
open challenges. Firstly, to the best of our knowledge, such methods have only been used in
experiments where subjects were presented with fixed number of alternatives not typical of nat-
ural perception. Generalization to complex paradigms, and further on, to real world situations
poses a significant methodological challenge, given the non-linear nature of brain processing[14].
Also, such methods do not typically account for the temporal variations in mental processes.
They make the assumption that all fMRI scans with the same label (i.e. experimental condition)
have the same properties, although spatio-temporal information has been incorporated for block-
design experiments by considering all the fMRI scans in one block as the feature vector[26]. As
we shall show, preserving the temporal dimension of the task provides additional insight into
the differences between healthy and affected populations. Moreover, as these methods learn a
mapping from fMRI data to labels describing stimulus or subject behavior, their ability to explain
the cognitive state of the subject is limited to behavioral correlates, not the unobservable (covert)
cognitive states that might be present in the data[14].

In an attempt to address some of these issues, this paper presents a method to to determine the
intrinsic spatio-temporal patterns in the data without reference to the experimental conditions,
during a complex cognitive experimental paradigm. Here, mental processes are represented by
a Hidden Markov Model (HMM) [4],which captures the concept of the functional brain tran-
sitioning through a cognitive state-space over time as it performs a task (c.f. Section 2). The
first-order Markov assumption provides a trade-off between computational tractablity and the
directed nature of thought, which requires tracking its recent history. The similarity of the (hid-
den) cognitive state at two different time-points is measured by comparing the patterns in their
(unobserved) neural activation, from which the (observed) BOLD signal is generated via the
hemodynamic response. The similarity between two activation patterns is defined by the differ-
ences in their distributions on the functional connectivity map of the brain, which gives rise to a
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low-dimensional linear embedding for the fMRI data (c.f. Section 3). The effects of the hemo-
dynamics on the observed data are modeled by a convolutive hemodynamic response function
(HRF) [12], and then removed through marginalization. The proposed model violates the con-
ditions necessary for the standard HMM algorithms, and new algorithms for efficient estimation
are provided (c.f. Section 4). The correct model size is determined in an automated fashion by
selecting the number of states that best describe the task being performed by the subject. The
model is then applied to a study of developmental dyscalculia (DC)[28] to understand the effects
of experimental parameters on the spatio-temporal patterns of mental processes for dyscalculics
(DCs) vs. controls (c.f.Section 5). The Supplementary Material contains complete proofs, details
about the algorithms and discussion of the results.

HMMs have been previously used in fMRI for determining the activation state of individual vox-
els [9, 15]. Activity detection has also been done with Hidden Markov Multiple Event Sequence
Models [11], that pre-process the data into a series of spikes at each voxel to infer neural events.
A multi-variate ARMA formalism was used in a Dynamical Components Analysis[39] to extract
spatial components and their time-courses from fMRI data, given the experimental stimuli. A
Hidden Process Model[16] was used to decompose the fMRI data into a set of spatio-temporal
processes and their instantiations, selected from a set of pre-specified configurations of process
instances. Dynamic Bayesian Networks[41] have been used to study the time-varying functional
integration of a small number of pre-specified regions in the brain, from the interdependency
structure of their average time-series.

In contrast to these, in the current work we have built a spatio-temporal representation of the
global and instantaneous cognitive state of a subject in an unsupervised fashion solely from the
fMRI data. Since this method does not rely on knowledge of the experimental conditions, it can
be used for arbitrarily complex paradigms. From this representation, we can draw inferences
about task-related effects on the models of individual subjects and groups and compare the mod-
els of healthy vs. diseased populations, in terms of complexity, predictability and similarity. This
gives us an insight into the information contained in the data, and presumably into brain function,
not available through spatial activation-map based analysis methods.

2. State-space Model

The state-space model with K hidden states is parameterized by θ = {α, π, ω,Σϵ} as shown
in Fig. 1. Here, yt ∈ RN , t = 1 . . . T is the observed fMRI data, with the corresponding ex-
perimental conditions given by st. The underlying mental process is represented as a (hidden)
state sequence Xt ∈ [1 . . .K], for t = 1 . . . T . The state marginal distribution is given by
α = (α1 . . . αK), where Pr[Xt = k] = αk. The transition probabilities Pr[Xt+1 = k2|Xt =
k1] = πk1,k2 are given by theK×K stochastic matrix π. The emission model has a two-level hi-
erarchy to account for the fact that yt is the hemodynamic response to the (unobserved) neural ac-
tivation pattern zt corresponding to state Xt. The hemodynamic effect is modeled by the (voxel-
wise) convolution yt =

∑L
τ=0 hτzt−τ+ϵt of the neural activity zt with a hemodynamic response

function (HRF) h. Here, ϵt ∼ N (0,Σϵ) is a time-stationary noise term. The HRF is a FIR filter
of length L given by the difference of two Gamma functions[12], with non-linear parameters
γ controlling its delay, dispersion, and ratio of onset-to-undershoot, with prior density p(γ) =
N (µγ , σγ).
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Figure 1: The Markov chain representation of the State-space
model.

The activity patterns zt are transformed
into an orthogonal feature-space Ψ, de-
scribed in Section 3, and when Xt =
k, is normally distributed in this fea-
ture space, i.e. p(Ψ[zt]|Xt = k) ∼
N (µk,Σk). Let ω = {ω1 . . . ωK},
where ωk = {µk,Σk}, denote the emis-
sion parameters of the model. Since the
HRF convolution is commutative with
respect to Ψ, the convolutive model is
applicable to the feature-space transfor-
mation Ψ[yt], and therefore zt and yt

will stand in for Ψ[zt] and Ψ[yt], when-
ever it is clear from the context.

Also, the following short-hand notation is used through out the paper: yt1...t2 ≡ {yt1 . . .yt2},
y ≡ {y1 . . .yT }, and similarly for z and X . Also, define pθ(·) = p(·|θ,h,K).

Expanding out the linear dependence of y onX through z and h, the following probability model
is obtained:

pθ(yt|X) =

∫
zt−L...t

pθ(yt|zt−L...t)
L∏

τ=0

pθ(zt−τ |Xt−τ )dzt−L...t = N (µt−L...t,Σt−L...t) ,

(1)

where µt−L...t =
∑L

τ=0 µXt−τhτ , and Σt−L...t = Σϵ +
∑L

τ=0 ΣXt−τh
2
τ . Thus, the convolution

introduces a dependency between states Xt−L . . . Xt, when conditioned on observation yt, vi-
olating the first-order Markov property required for the classical forward-backward recursions.
We present efficient algorithms for estimation of this model in Section 4.

3. Feature Space

The cognitive state at two time points t1 and t2 are considered to be similar if their underlying
activation patterns are similarly distributed on the functional circuits of the brain. Starting with
this axiomatic definition, in this section, we derive a linear embedding which provides a good
approximation of similarity. This embedding is a generalization of the linear approximation for
the Earth Mover’s Distance defined on ℓ2 metrics[37], to arbitrary distance metrics.

Functional networks are routinely defined by the “temporal correlations between spatially remote
neurophysiological events”. We have developed an algorithm of computing the functional con-
nectivity that is consistent, sparse and computationally efficient, although any alternative method
could also be used (See [22] for a review of this topic). First, the raw fMRI data are spatially
smoothed to increase spatial coherence of the connectivity structure, and then spatially proximal
voxels are clustered using an agglomerative hierarchical clustering, which reduces dimensional-
ity while utilizing the spatial coherence in the data to increase SNR. Next, regularized covari-
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ances between the clusters are estimated using adaptive soft shrinkage. Regularized estimates of
voxel-wise correlations are then recomputed from the cluster-wise correlations. If i, j are two
cortical voxels, then the functional connectivity map Fi,j :→ [−1, 1] for all 1 ≤ i, j ≤ N , ob-
tained by this procedure is consistent and extremely sparse. This method is described in detail in
Supplementary Material, Section B.

The difference TD{zt1 , zt2} between two activation patterns zt1 and zt2 is quantified by the
transportation distance[37], i.e. the minimal “transport” of activity q : x2 → R over the func-
tional circuits to convert zt1 into zt2 , where x is the voxel-grid of the fMRI volume. Specifically,
TD{zt1 , zt2} = minq

∑
i,j∈x qi,jdi,j , subject to the constraints: qi,j ≥ 0,

∑
i qi,j ≤ [zt1 ]i,∑

j qi,j ≤ [zt2 ]j , and
∑

i,j qi,j = min
{∑

i[zt1 ]i,
∑

j [zt2 ]j

}
. The cost of the transport of qi,j

from voxel i to j will depend on the functional distance d : x2 → R+ between the voxels (i.e.
measure of functional “disconnectivity”) complementary to F, described next. This definition
captures the intuitive notion that two activity patterns are functionally more similar if the dif-
ferences between them are mainly between voxels that are functionally related to each other,
indicating the activation of a shared functional network.

The distance metric d arises from the distortion minimizing embedding[6] of the graph whose
adjacency matrix is given by F, as f∗ = arg inff∈RN

{
(
∑

i

∑
j(fi − fj)

2Fi,j)/(
∑

i f
2
i Di,i)

}
,

subject to f ⊥ 1. Here, f∗ will take similar values at voxels that have high functional connectivity
and the functional distance between them is di,j = |fi−fj |. It can be shown that f∗ is the solution
to the generalized eigenvalue problem (D − F)f = λDf subject to f ′D1 = 0, where D is the
diagonal degree matrix (Di,i =

∑
j ̸=i Fi,j and Di,j = 0,∀i ̸= j). If u1 is the eigenvector

of the normalized graph Laplacian L = D− 1
2 (D− F)D− 1

2 corresponding to second smallest
eigenvalue λ1 > 0, then f∗ = D− 1

2u1.

Through a recursive partitioning of the voxel-grid based on its embedding f∗, we construct an
orthogonal basis Ψ = {ψ(l,m) ∈ RN } where l = 0 . . . 2m − 1, m = 0 . . . log2N − 1, as
follows. The first basis vector ψ(0,0) = D− 1

2u1, where u1 is the eigenvector of L(0,0) = L
corresponding to the second smallest eigenvalue. The voxel-grid is then partitioned into two
disjoint sub-grids based on the sign of ψ(0,0). The residual functional connectivity of the voxels
F̂ = F − λ1ψ(0,0)ψ

′(0,0) is recomputed. The next two basis vectors ψ(1,1) and ψ(2,1) are the
second smallest eigenvectors of the L(1,1) and L(2,1), the graph Laplacians of the F̂ restricted
to each sub-grid, respectively. The process may be repeated until only one voxel is left in the
partition. However, for numerical stability reasons, the recursive partitioning is terminated when
the spectral radius of L(l,m) drops below a certain tolerance, which also reduces the dimension
of the feature-space to ≈ 10−3N . The algorithm and the derivation of the residual connectivity
are explained further in Supplementary Material, Sections C.1, C.2.

The coordinates of zt in the feature-space are {2−mz̃
(l,m)
t }, m = 0 . . . log2N−1, l = 0 . . . 2m−

1, where z̃
(l,m)
t = ⟨zt, ψ(l,m)⟩ and the distance metric TD{zt1 , zt2} is replaced by an approxi-

mately equivalent metric ∆(zt1 , zt2) =
∑

l,m |2−m
(
z̃
(l,m)
t1 − z̃

(l,m)
t2

)2
|.

To examine the equivalence of this linear embedding with respect to TD{zt1 , zt2}, consider the
dual formulation TD{zt1 , zt2} = supg

∑N
i=1 gi · Si subject to gi − gj ≤ di,j and

∑
i gi = 0.

This cost function is an inner product between g ∈ RN and the difference vector S = zt1 − zt2 ,
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and since inner products are preserved under orthogonal transformations, we have ⟨g, S⟩ =
⟨Ψ[g],Ψ[S]⟩. Letting the coefficients of S in the basis Ψ be S̃l,m = ⟨ψ(l,m), S⟩, the following
theorem holds (c.f. Supplementary Material, Section C.3):
Theorem 1. Let S̃l,m be coefficients of S = zt1 − zt2 . Then, there exist constants M0,0 > 0 and
M̂0,0 > 0, such that

M̂0,0

log2 N−1∑
m=0

2m−1∑
l=0

2−m|S̃l,m| ≤ TD{zt1 , zt2} ≤ M0,0

log2 N−1∑
m=0

2m−1∑
l=0

2−m|S̃l,m| (2)

and the tightness of this bound is:

sup
||z||2=1

∑
m,l

Ml,m|z̃l,m| −
∑
m,l

M̂l,m|z̃l,m|

 ≈ (M0,0 − M̂0,0)√
2

Therefore, based on the form of these upper and lower-bounds, TD{zt1 , zt2} is approximated
by ∆(zt1 , zt2), up to a multiplicative constant. The decay of the coefficients as 2−m implies that
the effect of reduced dimensionality of Ψ on the approximation error is small. Please refer to
Supplementary Material, Section C.4 for further discussion on this approximation.

4. Model Estimation and Selection

The maximum likelihood (ML) estimate θML = argmaxθ ln p(y|θ,h,K) is obtained using the
Expectation Maximization (EM) algorithm[4] which involves iterating the following two steps
until convergence:

E-step: Q(θ, θn) =
∑
X

p(X|y, θn,h,K) ln p(y, X, θ|h,K), M-step: θn+1 = argmax
θ
Q(θ, θn).

(3)

Because of the inclusion of the FIR filter for the HRF, which violates the first-order Markov prop-
erty of the state-sequence X when conditioned on an observation yt, the EM update equations
take the following form (c.f. Supplementary Material, Section D.1):

αn+1
k =

pθ(n)(X1 = k|y)∑K
k′=1 pθ(n)(X1 = k′|y)

, πn+1
k1,k2

=

∑T
t=2 pθ(n)(Xt = k1, Xt+1 = k2|y)∑K

k′=1

∑T
t=2 pθ(n)(Xt = k1, Xt+1 = k′|y)

µn+1
k =

∑
k0...kL

H−
k,k0...kL

µn+1
k0...kL

and Σn+1
k =

∑
k0...kL

G−
k,k0...kL

Σn+1
k0...kL

, (4)
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where

H =


hL + . . .h0 0 . . . 0
hL + . . .h1 h0 . . . 0

...
... . . .

...
0 0 . . . hL−1 + h0

0 0 . . . hL + h0

 G =


h2
L + . . .h2

0 0 . . . 0
h2
L + . . .h2

1 h2
0 . . . 0

...
... . . .

...
0 0 . . . h2

L−1 + h2
0

0 0 . . . h2
L + h2

0



µn+1
k0...kL

=

∑T
t=1 pθ(n)(Xt−L...t = k0 . . . kL|y)yt∑T
t=1 pθ(n)(Xt−L...t = k0 . . . kL|y)

,

Σn+1
k0...kL

=

∑T
t=1 pθ(n)(Xt−L...t = k0 . . . kL|y) · (yt − µn+1

k0...kL
)(yt − µn+1

k0...kL
)′∑T

t=1 pθ(n)(Xt−L...t = k0 . . . kL|y)
.

and H−
k,k0...kL

is the (k, k0 . . . kL) element of the pseudo-inverse of H, given by H− = (H′H)−H′.
Even though H is an (L+1)K×K matrix, it is extremely sparse with each column k of H having
only 2L+1 non-zero entries corresponding to those µn+1

k0...kL
where any k0 . . . kL = k. Therefore,

H′H is computed inO(2L+1K2) time, and is inverted using the SVD pseudo-inverse. Similarly
for G.

Using the relationship pθ(n)(X|y) = pθ(n)(y, X)/pθ(n)(y) and the fact that pθ(n)(y) is canceled
out by the numerators and denominators of eqn. 4, the conditional densities are replaced by their
joint densities pθ(n)(y, Xt), pθ(n)(y, Xt,t+1) and pθ(n)(y, Xt−L...t). These are calculated as (c.f.
Supplementary Material, Section D.2):

pθ(y, Xt) =
∑

Xt+1−L...t−1

a(Xt+1−L...t)b(Xt+1−L...t)

pθ(y, Xt,t+1) =
∑

Xt+1−L...t−1

a(Xt+1−L...t) · pθ(yt+1|Xt+1−L...t+1)pθ(Xt+1|Xt) · b(Xt+2−L...t)

pθ(y, Xt,t+L) = a(Xt,t−1+L) · pθ(yt+L, Xt,t+L) · pθ(Xt,t+L) · b(Xt+1...t+L). (5)

where a and b are the forward-backward recursion terms:

a(Xt+1−L...t) = pθ(y1...t, Xt+1−L...t) =
∑
Xt−L

pθ(n)(yt|Xt−L...t)pθ(n)(Xt|Xt−1) · a(Xt−L...t−1)

b(Xt+1−L...t) = pθ(yt+1...T |Xt+1−L...t) =
∑
Xt+1

pθ(n)(yt+1|Xt+1−L...t+1)b(Xt+2−L...t+1).

(6)

The summations (i.e. expectations) over the densities of state-sequences L long of the form∑
Xt−L...t

pθ(n)(y, Xt−L...t)[. . .] in eqns. 4 and 5 are replaced with Monte Carlo estimates,
by Gibbs sampling from the distribution pθ(n)(y, Xt−L...t) with stochastic forward-backward
recursions[34].

The same EM procedure can estimate θML given multiple fMRI data-sets corresponding to a
group of subjects, with slight modifications to the update equations. The dependence of θML on a
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specific HRF filter h is removed by marginalizing out h under a Laplace approximation to obtain
a Bayesian estimate θ∗ =

∫
h
θML(h)p(h)dh, independent of h. It is computed through Monte

Carlo integration by first sampling the parameter γ from N (µγ , σγ), constructing h(γ), finding
θML(h) and then averaging over all samples (c.f. Supplementary Material, Section D.3).

Given a set of parameters θ and observations y, the most probable sequence of states X∗ =
argmax ln pθ(y, X) is estimated by backtracking (c.f. Supplementary Material, Section D.4)
through the following recursive system: maxX ln pθ(y, X) = maxXt−L...T ηT , where ηt =
maxXt−1 [ln pθ(yt, Xt−L...t) + ln pθ(Xt|Xt−1) + ηt−1], and η1 = ln pθ(y1|X1) + ln pθ(X1).
The initial maximization over Xt−L...T is done using Iterated Conditional Modes(ICM)[4], with
random restarts.

While it is possible to use information theoretic[20] or MCMC based Bayesian [34] alternatives
for model size selection, each criterion will select a different best model, not necessarily related
to the experimental task. Instead, we adopt a model-size selection strategy where the experi-
mental conditions st are used to select K that results in a maximally predictive model, since we
are interested in understanding task related effects, although this step introduces a dependence
of the experimental conditions on the model. Let X∗,K denote the optimal state-sequence for
an fMRI session y produced by the model with K states and optimal parameters θ∗. And, let
st denote the corresponding experimental conditions recorded during the session. The optimal
K∗ is then selected as K∗ = argminR

{
X∗,K , fX(s)

}
where R is the error-rate (i.e. risk)

between the optimal state-sequence X∗,K and the state sequence predicted by the experimen-
tal conditions fX(s). This prediction is done using a multinomial logisitic regression (MLR)
classifier [4], where fX(ŝ) is a vector of probabilities (Pr[X̂ = 1], . . .Pr[X̂ = K]) that the
state X̂ corresponding to experimental conditions ŝ takes value k for k = 1 . . .K. The error-
rate is the average probability of an incorrect prediction over the session R

{
X∗,K , fX(s)

}
=

1/T
∑T

t=1

[
1− Pr[X̂ = X∗,K

t ]
]

and is computed using cross-validation.

Therefore, the model trained on a data-set y consists of the tuple (θ∗,K∗, fX), viz. the optimal
model parameters, the optimal number of states, and the prediction function.

5. Results

5.1. Data-set

The method was applied on a study for developmental dyscalculia (DC) [28] consisting of 36
control and 13 DC subjects, who underwent fMRI while judging the incorrectness of multi-
plication results. In each trial of the selfpaced, irregular paradigm, two single-digit numbers
(e.g. 4 × 5) were displayed visually for 2.5s. After an interval of 0.3s an incorrect solution
(e.g. 27,23,12) was displayed for 0.8s. Subjects had up to 4s to decide, with a button press, if the
answer was (a) close (within ±25% of the correct answer), (b) too small (< 25%) or (c) too big.
The next trial started after a rest of 1s, and each trial lasted 4–8.6s.

The data were acquired with a GE 3T MRI scanner with a quadrature head coil, using a BOLD
sensitized 3D PRESTO pulse sequence with a volume scan time of 2.64s and resolution of 3.75×
3.75 × 3.75mm3. All subjects were scanned in two sessions, with an interval of approximately
30mins between sessions. In each session≈120 multiplication problems were presented and 276
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scans acquired. The data were pre-preprocessed to remove imaging artifacts, motion corrected,
de-noised, and normalized to an atlas space. All further processing was done in the grey matter.
Note that no spatial smoothing was applied. The algorithms were implemented in MATLABr

with Star-Pr on an 2.6Hz Opteron cluster with 16 processors and 32GB RAM. Please refer to
Supplementary Material, Section E.1 for further details.

5.2. Analysis and Discussion

One aim of the study was to understand the effect of the product size and problem difficulty on
the brain response of the two groups, as a trial proceeded and identify if and how the two groups
differed.

For each t = 1 . . . T , the experimental conditions are described by the vector st = (Ph,Len,LogPs,LogDiff,Ans),
where Ph is the phase within the current trial in 1.2s increments with respect to its start, Len is
the length (0–8.6s) of the trial, LogPs quantifies the product size for the presented problem,
LogDiff quantifies the expected difficulty in judging the right answer, and Ans is binary variable
indicating if the subject’s response was correct.

The following set of models (θ∗,K∗, fX) were trained: (a) CTRL SELF: one model per control
subject, (b) DYSC SELF: one model per DC subject, (c) CTRL GRP: one model per group of
12 out of 36 controls, (d) DYSC GRP: one model per group of 12 out of 13 DCs. To characterize
and compare the models, the following statistics were used: (I) ENT: Entropy of the MLR prob-
abilities fX(ŝ). It quantifies how well the brain state can be predicted for a specific experimental
condition ŝ and varies between 0 and log2K

∗, with higher value indicating worse predictability.
(II) ERR: Empirical Error Rate of fX(ŝ) for the state sequence X generated from previously
unseen data y by a model. It quantifies how well the data from one subject conforms to another
model. (III) MI: Mutual Information between the state sequences generated for one fMRI ses-
sion y by two different models. It quantifies the similarity of the two models, where higher MI
indicates better similarity, with a maximum of log2K

∗. These statistics are defined in detail in
Supplementary Material, Section E.2.

The Ph-wise effect of high vs. low LogPs and high vs. low LogDiff on ENT, ERR and MI
for the group-level analysis are shown in Fig. 2. The average (±1 std.dev.) optimal K∗ for
the CTRL SELF models is 22.8±3.21, for DYSC SELF is 23.5±5.22, while for CTRL GRP
23.2±3.63 is and DYSC GRP is 22.1±5.78. It is interesting to note that the variation in model-
sizes for the DCs is larger even though their group size is much smaller than the controls.

From these results we observe a greater heterogeneity within the fMRI data of the DC group
as compared to the control group, almost on par with the differences between DC vs. control.
Also, within individuals for both populations, increase in product size (LogPs) increases the
predictability and accuracy of the model, while reducing the correspondence between models.
This effect early on in the trial is attributable to a stronger effect of product recall from the rote
tables located in the lower left parietal lobe, and strong number size effects in the occipital visual
areas. The later effect of LogPs is consistent with strong activation of the working verbal (mute-
rehearsal) and visual memories[32]. The effect of problem difficulty (LogDiff) on individuals is
similar, and is noticed only after the incorrect result is displayed (Ph >2.8s), as expected. Also,
at the group level for controls, both effects are preserved, indicating spatio-temporal patterns
that are shared across their data, while for DCs the effect of LogPs reverses, which indicates
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Figure 2: The effect on ENT, ERR, and MI with respect to experiment phase Ph, LogPs and LogDiff . The top row
corresponds to the models CTRL SELF and DYSC SELF, while the bottom row to CTRL GRP and DYSC GRP. The
ENT panel shows the effect of Ph (in 1.2s increments indicated by the vertical grid), high minus low LogPs and
high minus low LogDiff on the models (θ∗,K∗, fX) trained on the controls and dyscalculics, either individually or
as groups. The ERR panels show the effects on the error rate of predicting a control’s data with a CTRL SELF or
CTRL GRP (black), a DC subject’s data with a DYSC SELF or DYSC GRP (red), and a DC subject’s data with a
CTRL SELF or CTRL GRP (green). The MI panel shows the effects on the MI between two CTRL SELF models
(black), two DYSC SELF models (black) and between an CTRL SELF and DYSC SELF model (green). Similarly for
CTRL GRP and DYSC GRP. The background color-coding shows the 2.5s, 0.3s, 0.8s and 0–4s divisions of each trial.

that while at the individual level this parameter creates stronger, more identifiable patterns, at
the group level the patterns share fewer similarities. The preservation at the group-level of the
LogDiff effect in DCs supports the hypothesis that the difficulty effect is probably attention and
conflict resolution related, rather than number related, and therefore is not affected by dyscalculic
deficiencies. The later trends in the MI panel, while confirming the above conclusions, also
provides evidence towards the theory that the DCs might be replaying the multiplication problem
in their minds after they have finished the task [28]. Please refer to Supplementary Material,
Section E.3 for a more detailed interpretation.

Every state k = 1 . . .K is associated with emission parameters ωk = {µk,Σk}, where µk is the
mean vector given in the coordinates of the (reduced dimensional) feature space Ψ , and therefore
the mean spatial map for state k can be reconstructed (only approximately, due to dimensionality
reduction). However, exact interpretation of this map in terms of spatial distribution of neural
activity is difficult for two reasons. One, since multiple states may occur during a specific exper-
imental condition st, with probabilities given by fX(st), there is no single activation map for a
given condition (and vice-versa). But more importantly, the probability that the observed pattern
belongs to state k depends not only on µk but also on Σk, and therefore, interpretation requires
taking Σk, which is a full covariance matrix, into account. Although, we plan to address these
questions in future work, spatial maps corresponding to 0s≤ Ph ≤2.4s and 2.4s< Ph ≤4.8s
constructed with a heuristic method are discussed in Supplementary Material, Section E.4. The
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patterns in these maps exhibit strong similarity with the foci known to be activated during this
task [28]. This indicates that the model is indeed learning the characteristic distribution of activ-
ity (i.e. a template) for a particular mental task.

6. Conclusion

In this paper we presented an unsupervised approach towards decoding and representing the
information about mental processes in fMRI data, using a hidden Markov model. The hemo-
dynamic coupling between neural activity and the BOLD response was accounted for by an
additional hidden layer. An intuitive definition of the similarity of two activation patterns with
respect to the functional connectivity map of the brain was proposed, and a linear feature-space
was derived. Efficient estimation algorithms, based on forward-backward recursions and Monte-
Carlo sampling, were shown. The effect of the variability in hemodynamics was eliminated
through marginalization under a Laplace approximation. Model selection was then performed
using a maximally predictive criteria. We applied the method to a group-wise study for devel-
opmental dyscalculia, and demonstrated task-related differences between healthy controls and
dyscalculics, which were systematically organized in time.

This abstract representation of mental processes built up from fMRI data, by capturing and
summarizing spatio-temporal patterns, can help reveal differences between the populations and
confirm hypotheses not easily deducible from spatial maps of activity. Moreover, it provides
a summary of complex tasks and of the information content in the data that could serve as a
starting-point for investigations with regular methods.

We are currently working on addressing the interpretation of the spatial maps acquired from
this method. We are also exploring the application of this method to default-state and non task-
related fMRI studies. In future work, we also plan to develop a spatially-varying and adaptive
hemodynamic response model, along with incorporating Bayesian priors on the model.

Appendix A. Notation

The following table lists the notation used in the main text and Supplementary Material.
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Symbol Definition

T Total number of time-points acquired in an fMRI session
N Total number of (cortical) voxels in an fMRI volume
x The voxel-grid of the volumetric fMRI data with N voxels
xi ∈ R3 Spatial location (in mm) for voxel i ∈ x
st Vector giving the prevailing experimental conditions at time t
Xt ∈ [1 . . .K] The (hidden) brain state at 1 ≤ t ≤ T
X Defined as (X1 . . . XT )
Xt1...t2 Defined as (Xt1 . . . Xt2)
α The multinomial probability vector for the states
π The transition probability matrix
zt ∈ RN Underlying activity pattern at 1 ≤ t ≤ T
z Defined as (z1 . . . zT )
zt1...t2 Defined as (zt1 . . . zt2)
ωk The emission parameters (µk,Σk) for state k
yt ∈ RN fMRI scan at 1 ≤ t ≤ T
y Defined as (y1 . . .yT )
yt1...t2 Defined as (yt1 . . .yt2)
ϵ ∼ N (0,Σϵ) Time-stationary noise in Yt
h The linear convolutive hemodynamic response filter of length L
γ ∼ N (µγ , σγ) The parameters of HRF h
θ Defined as (α, π, ω)
pθ(·) Defined as p(·|θ,h,K)
C : RN×N Matrix of covariances between the voxels
F : [−1, 1]N×N Functional connectivity (i.e. correlation) map
d : R+N×N The distance metric induced by F
D : RN×N The diagonal degree matrix of F
L The normalized graph Laplacian of F
Ψ = {ψ(l,m) ∈ RN} Orthogonal basis functions of the feature space
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Appendix B. Functional Connectivity

Let yt be the fMRI scan at time t with N voxels, where [yt]i is the time-series data of voxel
i = 1 . . . N .

The functional connectivity map F : [−1, 1]N×N measures the temporal correlation between two
voxels. Because the dimensionN is much larger than the number of observations T , the standard
covariance estimator is badly conditioned, and its eigen-system is inconsistent[3]. Therefore,
regularization is required to impose sensible structure on the estimated covariance matrix while
being computationally efficient.

To obtain robust estimates of functional connectivity, we use the following procedure: First, the
images are smoothed with a Gaussian kernel (FWHM=8mm) to increase spatial coherence of the
time-series data.

Next, a hierarchical clustering algorithm is used to cluster closeby voxels with similar time
courses (c.f. Algorithm 1) which produces a set of Ñ spatially contiguous clusters. This pro-
cedure has a two-fold benefit of reducing the dimensionality of the estimation problem while
simultaneously increasing the SNR of the data through averaging. Typically, we perform ag-
glomeration until Ñ is 0.25×N . The clusters, after Gaussian smoothing, are 1.5× larger for a
given in-cluster variance than without smoothing.

For voxel i, create one cluster ci of size ni = 1. Each ci is associated with a time-course
[yt]i.
repeat

Find two clusters ci and cj that are spatially adjacent to each other and merge them into a
new cluster ck = (ci, cj), if and only if Var{ck} is minimum over all i, j.
Remove clusters ci and cj from the set of clusters, and add ck

until Number of clusters reaches the specified value.

Algorithm 1: Hierarchical Clustering

The time-series for the new cluster ck is defined as [yt]k = 1/nk
∑

ci∈ck
[yt]i, and for a new

cluster ck = (ci, cj) can be efficiently updated according to [yt]k = (ni[yt]i + nj [yt]j)/(ni +

nj). The variance of a cluster ck is Var{ck} = (1/nkT )
∑

ci∈ck

∑T
t=1([yt]i − [yt]k)

2, and can
be efficiently updated through the variance separation theorem:

Var{ck} =
niVar{ci}+ njVar{cj}

ni + nj
−
∑T

t=1([yt]i − [yt]k)
2

T (ni + nj)
.

For a voxel i belonging to cluster ck, the expected (smoothed) time series, given the cluster
average is:

E{[yt]i|[yt]k} = yi + σi,kσ
−1
k,k([yt]k − yk), and Var{[y]i|[y]k} = σi,i − σ2

i,kσ
−1
k,k, (B.1)

where yi = 1/T
∑

t[yt]i and σi,k = 1/T
∑

t[yt]i[yt]k − yiyk. The correlation coefficient
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between the voxel time-series and the cluster average is:

ρi,k =
σi,k√
σi,iσk,k

(B.2)

After hierarchical clustering, the covariance C̃i,j between two clusters ci and cj is C̃i,j =
1
T

∑T
t=1[yt]i[yt]j−yiyj .The regularized estimate of the covariance is computed using an adap-

tive soft shrinkage estimator[31] sλ(C̃i,j) = sgn(C̃i,j)(|C̃i,j | − λ|C̃i,j |−1)+.This estimator has
the property that the shrinkage is continuous with respect to C̃i,j , but the amount of shrinkage
decreases as C̃i,j increases resulting in less bias than the standard soft shrinkage estimator. The
threshold parameter λ is selected by minimizing the risk function R(λ) = E||sλ(C̃)− C̃||2. Un-
der certain regularity assumptions about the data, a closed form estimate of the optimal threshold
is obtained as[21]:

λ ≈
∑

i ̸=j Var{C̃i,j}∑
i ̸=j C̃2

i,j

, where V̂ar{C̃i,j} =
T

(T − 1)3

T∑
t=1

(
[yt]i[yt]j −

T∑
t=1

[yt]i[yt]j

)2

.

(B.3)

This estimator is “sparsistent”[31], that is, in addition to being consistent, it estimates true zeros
as zeros and non-zero elements as non-zero with the correct sign, with probability tending to 1.

Regularized estimates of the correlation between two voxels i and j belonging to clusters ck and
ck′ respectively are obtained by substituting eqns. B.1 and B.2 to get:

Fi,j =
Cov {E{[yt]i|[yt]k}E{[yt]j |[yt]k′}}√

Var{[y]i|[y]k}Var{[y]j |[y]k′}
= sλ(C̃i,j).

ρi,kρj,k′√(
1− σk,kρ2i,k

)(
1− σk′,k′ρ2j,k′

) .
(B.4)

The results of this procedure on the distribution of the functional connectivity estimates are
shown in Fig. B.3. Without any regularization, most of the mass of the distribution is in con-
centrated in small non-zero correlations, while the strong correlations are only a fraction of the
total. The smoothing procedure shifts the whole distribution towards the right, by strengthening
all correlations, while the hierarchical clustering procedure boosts strong correlations without
affecting weak correlations. Finally, the shrinkage step sparsifies the correlation matrix, with
most correlations set to zero. It is also easy to see that F is symmetric and positive definite.
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Figure B.3: The normalized histogram of the cross-correlation coefficients (voxel-wise) for the original data (Fig. a),
after smoothing (Fig. b), after hierarchical clustering (Fig. c), after shrinkage (Fig. d).
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Appendix C. The Linear Feature Space

This section describes the construction of the feature-space (c.f. Section Appendix C.1), along
with proofs for the orthogonalization (c.f. Section Appendix C.2) and for the equivalence with
the functional similarity metric (c.f. Section Appendix C.3), and concludes with a discussion
on the quality of the approximation (c.f. Section Appendix C.4).

Let x denote the voxel-grid of the volumetric fMRI data, and therefore |x| = N . If we define
the diagonal degree matrix D ∈ RN×N as Di,i =

∑
j Fi,j , ∀i ̸= j, then the normalized graph

Laplacian isL = D− 1
2 (D− F)D− 1

2 . Let u1 be the eigenvector ofL corresponding to its second
smallest eigenvalue λ1.

Appendix C.1. Construction of Orthogonal Basis Functions

Define x(0,0) ← x, F(0,0) ← F, D(0,0) ← D, and L(0,0) ← L
ψ(0,0)(i)← D− 1

2u1 and λ(0,0) ← λ1
Set m← 0
repeat

for l← 0 to 2m − 1 do
{ Here we partition the grid x(l,m) into x(2l,m+1) and x(2l+1,m+1) based on the sign of
ψ(l,m) }
F̂← F(l,m) − λ(l,m)ψ(l,m)ψ

′(l,m)

for i← 1 to N do
for j ← 1 to N do

if ψ(l,m)(i) > 0 AND ψ(l,m)(j) > 0 then
F
(2l,m+1)
i,j ← F̂i,j and add i, j to x(2l,m+1)

else if ψ(l,m)(i) ≤ 0 AND ψ(l,m)(j) ≤ 0 then
F
(2l+1,m+1)
i,j ← F̂i,j and add i, j to x(2l+1,m+1)

else
F
(2l,m+1)
i,j ← 0 and F

(2l+1,m+1)
i,j ← 0

end if
end for

end for
Compute the diagonal degree matrices D(2l,m+1), D(2l+1,m+1) and the normalized
graph Laplacians L(2l,m+1), L(2l+1,m+1) from F(2l,m+1),F(2l+1,m+1) respectively
Calculate ψ(2l,m+1), ψ(2l+1,m+1) from the eigenvectors of L(2l+1,m+1), L(2l,m+1)

corresponding to their second smallest eigenvalues λ(2l,m+1) and λ(2l+1,m+1),
respectively

end for
m← m+ 1

until |x(l,m)| = 1, ∀l
Algorithm 2: Construction of Orthogonal Basis Functions
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Appendix C.2. Orthogonalization of F

Since F is a symmetric positive definite kernel, we can consider the functional connectivity
Fi,j = ⟨Yi,Yj⟩ in some representation Yi and Yj at the voxels i, j[33]. In the definition of
Section Appendix B, the regularized correlation coefficient defines this inner-product. If y =

(Y1 . . .YN ), then F = y′y. Consider the SVD of y = VΛ
1
2U′ =

∑N
n=0 λ

1
2
nvnu

′
n. Eliminating

the contribution of v1, the left singular vector corresponding to the second eigenvector u1, from
the functional connectivity, yields ŷ = y − v1v

′
1y = y − λ

1
2
1 v1u

′
1, and therefore,

F̂ = ŷ′ŷ = y′y − λ1u1u
′
1. (C.1)

Appendix C.3. Proofs for the Linear Approximation

This section contains proofs showing that an orthogonal tranformation Φ = {ϕ(1) . . . ϕ(N)}
where

∑
i ϕ

(l)
i = 0 yields a lower and upper bound to the transportation problem, and that the

basis Ψ constructed in Section Appendix C.1 is a tight bound. Define S = zt1 − zt2 to be the
difference between the two activity patterns zt1 and zt2 to be compared. In the discussion that
follows, it is assumed without loss of generality1, that

∑
i[zi]t1 =

∑
i[zi]t2 i.e.

∑
i Si = 0. The

transportation distance is then:

TD{zt1 , zt2} = min
q∈RN×N

∑
i,j∈x

qi,jdi,j , (C.2)

subject to the constraints:
qi,j ≥ 0∑

i

qi,j −
∑
j

qj,i = Si

(C.3)

The dual formulation of the transportation problem is:

TD{zt1 , zt2} = max
g∈RN

∑
i∈x

giSi, (C.4)

subject to the constraints:
gi − gj ≤ di,j∑

i

gi = 0.

Now, if we define the coefficients of a vector υ : x → R in the basis Φ be υ̃l = ⟨ϕ(l), υ⟩, the
following theorem holds:

1 This condition can be easily satisfied by adding to the optimization problem of eqn. C.2 a dummy node i′ called the
dump, where Si′ = −

∑
i Si and di,i′ = 0, ∀i ∈ x.
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Theorem 2. Consider the optimization problem of eqn. C.4. Let S̃l be coefficients S in the basis
Φ. Then, there exist constants Ml > 0 and Ml ≥ M̂l > 0, such that

N∑
l=0

M̂l|S̃l| ≤ max
g

∑
i∈x

giSi ≤
N∑
l=0

Ml|S̃l| (C.5)

To prove this theorem, the next two lemmas are required. The first lemma will help establish the
upper bound property, while the second lemma will be needed to prove the lower bound.
Lemma 1. If

∑
i υi = 0 and |υi − υj | ≤ di,j , then there exist constants Ml, l = 1 . . . N , such

that |υ̃l| ≤Ml

Proof.

|υ̃l| =

∣∣∣∣∣∑
i∈x

υiϕ
(l)
i

∣∣∣∣∣
=

∣∣∣∣∣∑
i

(υi − υi0)ϕ
(l)
i + υi0

∑
i

ϕ
(l)
i

∣∣∣∣∣ ,
≤
∑
i

|υi − υi0 | · |ϕ
(l)
i |

(
Since,

∑
i

ϕ
(l)
i = 0

)
≤
∑
i

di,i0 |ϕ
(l)
i |

≤ sup
i,j∈x

di,j
∑
i

|ϕ(l)i |+ c (C.6)

=Ml (C.7)

If we consider the basis vector ψ(l,m) as defined in Section Appendix C.1 the upper bound is:

∑
i∈x

di,i0 |ψ
(l,m)
i | =

∑
i∈x(l,m)

di,i0 |ψ
(l,m)
i | ≤ sup

i,j∈x(l,m)

di,j

[
sup
l,m

∑
i

|ψ(l,m)
i |

]

and, for every level of decomposition m, it can be shown that supi,j∈x(l,m) di,j decays like 2−m.
Therefore, the upper bound on coefficients of the function υ decays according to |υ̃(l,m)| ≤
2−mM0,0, in the basis Ψ.
Lemma 2. There exist positive constants M̂l, 0 < M̂l ≤Ml, l = 1 . . . N , such that the set of
vectors {υ ∈ RN}, where |υ̃l| ≤ M̂l must satisfy the property |υi − υj | ≤ di,j .

Proof. If any function satisfies |υi − υj | ≤ di,j then υ + c will also satisfy this property, for any
constant c. Therefore, we shall prove the lemma for the subset of vectors that have the property∑

i υi = 0. Now, if ∀i′ ∈ x, |υ′i| ≤ infi,j di,j then it must be that |υi−υj | ≤ di,j . Also, because
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Φ is an orthogonal basis, it is true that if |υ̃l| ≤ M̂l, then

sup
υ

sup
i∈x
|υi| = sup

υ
sup
i∈x

∣∣∣∣∣
N∑
l=0

υ̃lϕ
(l)
i

∣∣∣∣∣
≤ sup

υ
sup
i

[
N∑
l=0

M̂l|ϕ(l)i |

]

= sup
i

[
N∑
l=0

M̂l|ϕ(l)i |

]

There exist many combinations of {M̂l, l = 1 . . . N} such that supυ supi∈C |υi| ≤ infi,j di,j .
For example, by setting:

M̂l =
infi,j di,j

N

1∑
i |ψ

(l)
i |

this property is ensured.

For the basis Ψ, first observe that, by construction,
∑

i ψ
(l,m)
i = 0,

∑
i |ψ

(l,m)
i |2 = 1, and

therefore,
∑2m−1

l=0

∑
i |ψ

(l,m)
i |2 = 2m. Also, note that for an N dimensional vector υ, ||υ||1 ≤√

N ||υ||2. Therefore, this bound becomes:

M̂l,m =
infi,j di,j

N

1∑
i |ψ

(l,m)
i |

≈ 2−mM̂0,0

Using these two lemmas, Theorem 2 is now proved as follows:

Proof. (Theorem 2). Since Φ is an orthogonal transformation,
∑

i∈x gisi =
∑N

l=0 g̃lz̃l,. The
upper-bound then follows from Lemma 1.

For the lower bound, assume that g∗ is the optimal solution such that
∑

i∈x g
∗
i si <

∑N
l=0 M̂l|z̃l|.

However, as per Lemma 2, the function g+ =
∑N

l=0 sgn(z̃l)M̂lϕl is also a feasible solution with
cost

∑N
l=0 M̂l|z̃l|. Therefore, g∗ cannot be the optimal solution, resulting in a contradiction.

Appendix C.4. Quality of the Approximation

The quality of the approximation is evaluated by the tightness of the bound:

sup
||z||2=1

[
N∑
l=0

Ml|z̃l| −
N∑
l=0

M̂l|z̃l|

]
=

1

2

√√√√ N∑
l=0

(Ml − M̂l)2, (C.8)

obtained through the method of Lagrange multipliers. For the basis Ψ, eqn. C.8 is approximately
equal to (M0,0 − M̂0,0)/

√
2.
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As is shown by the proofs in Appendix C.3, this approximation is valid for other orthogonal
bases Φ defined on x with respect to the distance metric induced by F (if

∑
i ϕ

(l)
i = 0), and their

tightness can be (numerically) evaluated. The approximation Ψ defined in Section Appendix C.1
was compared with respect to the following other basis for the functional connectivity maps F
over all the subjects in our data-set. The minimum and maximum values of the bound-tightness
metric, relative to the average value for Ψ, are listed:

i The delta-basis {δi, i = 1 . . . N}, i.e. the original voxel-wise data itself: 8.43 – 11.58

ii The PCA-like basis consisting of the eigenvectors of F: 3.21–4.66

iii The Laplacian eigenmap[2] basis containing the eigenvectors of the normalized graph Lapla-
cian of F : 1.79–2.30 .

iv The basis set containing indicator functions on recursive normalized cuts [36] of the graph
defined by F: 2.02–2.95)

v The diffusion wavelet[7] basis induced by F: 0.89–1.13.

vi An orthogonal basis derived from the spatial ICA decomposition[25] of the fMRI data: 3.51–
5.87.

One reason for the comparatively tight bound of Ψ is the fast decay of the coefficients in this ba-
sis, thereby making their contribution to the error negligible. The relatively similar values of [iii]
and [iv] are because they are obtained from a similar set of operations on F, and the basis vectors
share a lot of properties in common, such as coefficient decay. Although the diffusion wavelet
basis is tighter approximation to the distance metric TD, its marginally better performance is
offset by its much greater computational complexity. The high variance of the ICA derived basis
could be because it is not directly related to F and also because the coefficients in this basis are
not sparse.

It was also observed that the projection of the fMRI data y on to the feature-space results in
a spatial de-correlation of the coefficients roughly as Correl{[ỹl1,m1 ]), [ỹl2,m2 ]} ∝ |2m1 l1 −
2m2 l2|−β , with β ≈ 2.3, which may be explained by the fact that Ψ corresponds to Karhunen-
Loéve type decomposition of the spatial correlation in the fMRI data.
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Appendix D. Model Estimation

This section is organized as follows: in Section Appendix D.1, the derivation of the EM al-
gorithm for the proposed model is given, and then Section Appendix D.2 explains the forward-
backward recursions needed in the M-step of the EM algorithm. Next, the procedure to marginal-
ize out the HRF filter from the estimates of the parameters is given in Section Appendix D.3.
Finally, the estimation of the optimal state-sequence X∗ given model parameters θ and observa-
tions y is described in Section Appendix D.4.

Appendix D.1. Expectation Maximization

The maximum likelihood (ML) estimate θML = argmaxθ ln p(y|θ,h,K) can be obtained using
the Expectation Maximization (EM) algorithm [8] by decomposing the log-probability into a
free-energy and a KL-divergence term as:

ln p(y|θ,h,K) =
∑
X

q(X) ln
p(y, X, θ|K)

q(X)
+ KL(q||p(X|y, θ,h,K)), (D.1)

which yields the following two-step iterative algorithm:

E-step Q(θ, θn) =
∑
X

p(X|y, θn) ln p(y, X|θ), (D.2)

M-step θn+1 = argmax
θ
Q(θ, θn). (D.3)

The complete log-likelihood term is:

ln p(y, X|θ) = ln p(Y |X,ω,Σϵ) + ln p(X|α, π) (D.4)

where ln p(X|α, π) = lnαX1 +
T∑

t=2

lnπXt,Xt+1 .

Since the relationship between the observations y and hidden states X is mediated through the
underlying activation patterns z and the hemodynamic response function h, an FIR filter of length
L, as per the equation yt =

∑L
τ=0 zt−τhτ , we see that:

pθ(yt|X) =

∫
zt−L...t

pθ(yt|zt−L...t)
L∏

τ=0

pθ(zt−τ |Xt−τ )dzt−L...t = N (µt−L...t,Σt−L...t) ,

(D.5)

where µt−L...t =
∑L

τ=0 µXt−τhτ and Σt−L...t = Σϵ +
∑L

τ=0 ΣXt−τh
2
τ .

If we consider one particular assignment ofXt−L...t = {k0 . . . kL} and let µk0...kL
=
∑L

τ=0 µkτhL−τ ,
then any element µ(i)

k0...kL
of µk0...kL

of µk0...kL
is a linear combination of the corresponding el-
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ements of µ1 . . . µK , as:
µ
(i)
1...1

µ
(i)
1...2
...

µ
(i)
K...K−1

µ
(i)
K...K

 =


hL + . . .h0 0 . . . 0 0
hL + . . .h1 h0 . . . 0 0

...
... . . .

...
...

0 0 . . . hL hL−1 + h0

0 0 . . . 0 hL + h0




µ
(i)
1

µ
(i)
2
...

µ
(i)
K−1

µ
(i)
K

 .

In matrix notation,

µ⃗
(i)
k0...kL

= Hµ⃗
(i)
k and, µ⃗

(i)
k = H−µ⃗

(i)
k0...kL

, (D.6)

where H− is the pseudo-inverse of H.

Similarly, each element Σ(i1,i2)
k0...kL

of Σk0...kL is related to the corresponding elements of Σ1 . . .ΣK

as:


Σ

(i1,i2)
1...1

Σ
(i1,i2)
1...2

...
Σ

(i1,i2)
K...K−1

Σ
(i1,i2)
K...K

 =


h2
L + . . .h2

0 0 . . . 0 0
h2
L + . . .h2

1 h2
0 . . . 0 0

...
... . . .

...
...

0 0 . . . h2
L h2

L−1 + h2
0

0 0 . . . 0 h2
L + h2

0





Σ
(i1,i2)
1

Σ
(i1,i2)
2

...
Σ

(i1,i2)
K−1

Σ
(i1,i2)
K

Σ
(i1,i2)
ϵ


.

In matrix notation,

Σ⃗
(i1,i2)
k0...kL

= GΣ⃗k
(i1,i2)

and, Σ⃗k
(i1,i2)

= G−Σ⃗
(i1,i2)
k0...kL

. (D.7)

Furthermore,

ln p(y|X,ω,Σϵ) =

T∑
t=1

ln p(yt|Xt−L...t, ω,Σϵ)

= −1

2

[
T∑

t=1

ln |Σt−L...t|+ (yt − µt−L...t)
′Σ−1

t−L...t(yt − µt−L...t)

]
+ c.

(D.8)

Therefore, by substituting the results of eqns. D.4 and D.8 in eqn. D.2, and interchanging the
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order of the summations, the expected complete log-likelihood becomes:

Q(θ, θn) =
∑
X

p(X|y, θn) [ln p(Y |X,ω,Σϵ) + ln p(X|α, π)]

= p(X1|y, θn) lnαX1 +

T∑
t=2

p(Xt−1,t|y, θn) lnπXt−1,Xt

+

T∑
t=1

∑
Xt−L...t

p(Xt−L...t|y, θn) ln p(yt|Xt−L...t, ω,Σϵ). (D.9)

The M-step for α, π, constrained to
∑K

k=1 αk = 1,
∑K

k′=1 πk,k′ = 1, results in:

αn+1
k =

p(X1 = k|y, θn)∑K
k′=1 p(X1 = k′|y, θn)

πn+1
k1,k2

=

∑T
t=2 p(Xt = k1, Xt+1 = k2|y, θn)∑K

k′=1

∑T
t=2 p(Xt = k1, Xt+1 = k′|y, θn)

. (D.10)

To determine the M-step update µn+1
k , from eqns. D.8,D.9, first observe that:

T∑
t=1

∑
Xt−L...t

p(Xt−L...t|y, θn) ln p(yt|Xt−L...t, ω,Σϵ)

∝
T∑

t=1

∑
Xt−L...t

p(Xt−L...t|y, θn)
[
ln |Σt−L...t|+ (yt − µt−L...t)

′[Σt−L...t]
−1(yt − µt−L...t)

]
.

(D.11)

Maximizing eqn. D.11 with respect to one specific instantiation of states Xt−L...t = k0 . . . kL
gives:

µn+1
k0...kL

=

∑T
t=1 p(Xt−L...t = k0 . . . kL|y, θn)yt∑T
t=1 p(Xt−L...t = k0 . . . kL|y, θn)

, (D.12)

and from eqn. D.6, we get µn+1
k =

∑
k0...kL

H−
k,k0...kL

µn+1
k0...kL

.

Similarly, maximizing eqn. D.11 with respect to a specific Σk0...kL
, gives

Σn+1
k0...kL

=

∑T
t=1 p(Xt−L...t = k0 . . . kL|y, θn) · (yt − µn+1

k0...kL
)(yt − µn+1

k0...kL
)′∑T

t=1 p(Xt−L...t = k0 . . . kL|y, θn)
, (D.13)

where as before Σn+1
k =

∑
k0...kL

G−
k,k0...kL

Σn+1
k0...kL

. A similar relationship applies for Σϵ.
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Appendix D.2. Forward Backward Recursions

This section explains the forward-backward recursions to compute the probabilities of the form
pθ(n)(y, Xt),pθ(n)(y, Xt−1, Xt) and pθ(n)(y, Xt−L...t), needed in the M-step of the EM algo-
rithm.

From the conditional independence structure implied by the model, we observe that:

pθ(y, Xt) =
∑

Xt+1−L...t−1

pθ(y, Xt+1−L...t)

=
∑

Xt+1−L...t−1

pθ(y1...t, Xt+1−L...t)pθ(yt+1...T |Xt+1−L...t) (D.14)

pθ(y, Xt,t+1) =
∑

Xt+1−L...t−1

pθ(y, Xt+1−L...t−1, Xt,t+1)

=
∑

Xt+1−L...t−1

pθ(y1...t, Xt+1−L...t) · pθ(yt+1|Xt+1−L...t+1)

· pθ(Xt+1|pθ(Xt) · pθ(yt+2...T |Xt+2−L...t+1), (D.15)

and

pθ(y, Xt...t+L) =pθ(y1...t+L, Xt...t+L) · pθ(yt+1+L...T |Xt...t+L)

=pθ(y1...t−1+L, Xt...t−1+L) · pθ(yt+L, Xt...t+L) · pθ(Xt...t+L)

· pθ(yt+1+L...T |Xt+1...t+L), (D.16)

where L is the length of the FIR filter h.

The forward recursion through this Markov chain is:

a(X1) = pθ(y1, X1)

= pθ(y1|X1)pθ(X1), (D.17)
a(X1...2) = pθ(y1...2, X1...2)

= pθ(y2|X1...2)pθ(y1|X1)pθ(X2|X1)pθ(X1)

= pθ(y2|X1...2)pθ(X2|X1) · a(X1). (D.18)

Similarly, continuing up to,

a(X1...L) = pθ(y1...L, X1...L)

= pθ(yL|X1...L)pθ(XL|XL−1) · a(X1...L−1).
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Now, after we have at least L observations y

a(X2...L+1) = pθ(y1...L+1, X2...L+1)

=
∑
X1

pθ(X1...L+1,y1...L+1)

= pθ(yL+1|X1...L+1)pθ(XL+1|XL) · a(X1...L).

And similarly,

a(X3...L+2) = pθ(X3...L+2,y1...L+2)

=
∑
X2

pθ(X2...L+2,y1...L+2)

=
∑
X2

pθ(yL+2|X2...L+2)pθ(XL+2|XL+1) · a(X2...L+1),

upto,

a(Xt+1−L...t) =
∑

X(t−L)

pθ(Xt−L...t,y1...t)

=
∑

X(t−L)

pθ(yt|Xt−L...t)pθ(Xt|Xt−1) · a(Xt−L...t−1). (D.19)

The backward recursion for this chain is as follows:

b(XT−L...T−1) = pθ(yT |XT−L...T−1)

=
∑
XT

pθ(yT |XT−L...T ),

b(XT−1−L...T−2) = pθ(yT−1...T |XT−1−L...T−2)

=
∑
XT−1

pθ(yT−1|XT−1−L...T−1)pθ(yT |XT−L...T−1)

=
∑
XT−1

pθ(yT−1|XT−1−L...T−1)b(XT−L...T−1),

and similarly,

b(Xt+1−L...t) = pθ(yt+1...T |Xt+1−L...t)

=
∑
Xt+1

pθ(yt+1|Xt+1−L...t+1)b(Xt+2−L...t+1). (D.20)

25



Therefore, substituting in eqns. D.14 to D.16, the conditional probabilities become:

pθ(y, Xt) =
∑

Xt+1−L...t−1

a(Xt+1−L...t)b(Xt+1−L...t),

pθ(y, Xt,t+1) =
∑

Xt+1−L...t−1

a(Xt+1−L...t) · pθ(yt+1|Xt+1−L...t+1)pθ(Xt+1|Xt) · b(Xt+2−L...t),

pθ(y, Xt,t+L) = a(Xt,t−1+L) · pθ(yt+L, Xt,t+L) · pθ(Xt,t+L) · b(Xt+1...t+L). (D.21)

Appendix D.3. Marginalizing the HRF Filter h

The EM procedure so far determined θML conditioned on a specific HRF filter h. This de-
pendence is removed by marginalizing out h under a Laplace approximation of the posterior
distribution of θ as follows:

Under uninformative priors, the posterior density p(θ|y,h,K) ∝ p(y|θ,h,K) and θMAP = θML.
Then using a Laplace approximation around θML the posterior density is given by:

p(θ|Y,h,K) ≈ | 1
2π
∇2|1/2 exp

{
−1

2
(θ − θML)

′∇2(θ − θML)

}
, (D.22)

where −∇2 is the Hessian matrix of ln p(y|θ,h,K).

Then, the conditional expectation θ∗ independent of h is given by:

θ∗ =E[θ|y,K] = Eh [E[θ|hy,K]]

=

∫
h

[∫
θ

θp(θ|y,h,K)dθ

]
p(h)dh

=

∫
h

θML(h)p(h)dh, (D.23)

and is computed through Monte Carlo integration by first sampling the parameter γ fromN (µγ , σγ),
constructing h(γ), finding θML(h) and then averaging over all samples.

Appendix D.4. State-Sequence Estimation

In this section, we explain the procedure to find the most probable set of statesX∗ = argmax ln pθ(y, X)
given a set of model parameters θ and observations y.
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Note the following recursive relationship:

max
X

ln pθ(y, X) =max
X

[ln pθ(yT |XT−L...T ) + ln pθ(y1...T−1, X1...T−1)]

= max
XT−L...T

[
ln pθ(yT |XT−L...T ) + max

X1...T−1−L

ln pθ(y1...T−1, X1...T−1)

]
= max

XT−L...T

[
ln pθ(YT |XT−L...T ) + max

X(T−1−L)
[ln pθ(YT−1|XT−1−L...T−1)+

max
X1...T−2−L

ln pθ(y1...T−2, X1...T−2)

]]
...

Therefore, if we define:

η1 = ln pθ(y1, X1) = ln pθ(y1|X1) + ln pθ(X1),

η2 =max
X1

ln pθ(y1,2, X1,2) = max
X1

[ln pθ(y2|X1,2) + ln pθ(X2|X1) + η1] ,

...
ηt =max

Xt−1

[ln pθ(yt, Xt−L...t) + ln pθ(Xt|Xt−1) + ηt−1] ,

ηt+1 =max
Xt

[ln pθ(yt+1, Xt+1−L...t+1) + ln pθ(Xt+1|Xt) + ηt] ,

then it can be verified that maxX ln pθ(y, X) = maxXt−L...T
ηT .

Let φt(Xt...t+L) keep track of the state of Xt−1 which is a maximum configuration for ηt,
given Xt...t+L. Then, the optimal configuration of states X∗ for a particular θ are obtained by
backtracking as follows:

X∗
t−L...T = arg max

Xt−L...T

ηT ,

X∗
t−L−1 = φT−1(X

∗
t−L...T ),

...
X∗

1 = φL(X
∗
2...L). (D.24)
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Appendix E. Data-set, Analysis and Results

Appendix E.1. Subjects and Paradigm

Thirty-six control subjects and thirteen high-performing (fullscale IQ>95) individuals with pure
dyscalculia (DC) [35] participated (controls: 23 female, one female and one male lefthanded,
one male ambidextrous, age 21-34 yrs, mean age 25.6 yrs ± 3.0 yrs; DC: 5 female, 1 male left-
handed, age 22-23yrs). All subjects were free of neurological and psychiatric illnesses, dyslexia,
and attention-deficit disorder. All controls denied a history of any calculation difficulties. The
layout in Fig. E.4 illustrates the self-paced, irregular paradigm used in these experiments. Sub-
jects were exposed visually to simple multiplication problems with single digit operands, e.g.,
4 × 5 , and had to decide if the incorrect solution subsequently offered was, e.g., close for
23 , too small for 12 , or too big for 27 from the correct result of 20. All solutions were
within ±50% of the correct answer. Only one solution was presented at the time. The close
answer had to be applied for solutions that were within ±25% of the correct result, while the
two remaining exceeded this threshold. Subjects answered by pressing a button with the in-
dex finger of the dominant hand for too small, the middle finger for close, and the ring finger
for too big. Identical operand pairs were excluded. The simplest operand pair was 3 × 4,
while the most demanding pair was 8 × 9. The order of small vs. large operands was ap-
proximately counterbalanced. Presentation times were the following: multiplication problem
2.5s, equal sign (=) 0.3s, solution 0.8s, judgment period up to 4s, and rest condition with fix-
ation point of 1 s until the beginning of a new cycle. Subjects were encouraged to respond as
quickly as possible. Stimulus onset asynchrony (SOA) ranged from around 4s to 8.6 s. All sub-
jects were exposed to two different sets of multiplication problems, with an interval of approxi-
mately 30min between sessions 1 and 2 during which time they solved other nonnumerical tasks.

Figure E.4: The five phases of each trial and
their associated timings of the paradigm to study
arithmetical abilities.

Data were acquired on a General Electric 3-Tesla MRI
scanner (vh3) with a quadrature head coil. After local-
izer scans, a first anatomical, axial-oblique 3D-SPGR
volume was acquired. Slab coordinates and matrix
size corresponded to those applied during the subse-
quent fMRI runs using a 3D PRESTO BOLD pulse
sequence[40] with phase navigator correction and the
following specifications: echo time 40ms, repetition
time 26.4ms, echo train length 17, flip angle 17◦ , vol-
ume scan time 2.64s, number of scans 280, session scan
time 12:19 min, 3D matrix size 51 × 64 × 32, and
isotropic voxel size 3.75mm. At the end of the study,
a sagittal 3DSPGR scan was acquired with a slice thickness of 1.2mm and in-plane resolution of
0.94mm. The first four fMRI scans were discarded leaving 276 scans for analysis. Raw data were
reconstructed off-line. The structural scans were bias–field corrected, normalized to an MNI atlas
space and segmentation into grey and white matter, while the fMRI scans were motion corrected
using linear registration and co-registered with the structural scan in SPM8[12]. Further motion
correction was performed using Motion Corrected Independent Component Analysis [23]. The
fMRI data were then de-noised using a wavelet–based Wiener filter[1] and high-pass filtered to
remove artifacts such as breathing, pulsatile effects, and scanner drift. The mean volume of the
time-series was then subtracted and white matter masked out.
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Appendix E.2. Analysis Parameters

If Rc = a × b is the correct product for the multiplication problem a × b and Rd is the dis-
played incorrect result, then the product size score LogPs = log(Rc). The score LogDiff is
log(|(1.25Rc) − (Rc + |Rc − Rd|)|/|1.25Rc|), which measures the closeness of the incorrect
result to the ±25% mark and represents the difficulty subjects would have in judging the correct
answer as close vs. too big or too small.

The entropy for the MLR probabilities fX(ŝ) = (Pr[X̂ = 1], . . .Pr[X̂ = K]) corresponding to
a given experimental condition ŝ is defined as:

ENT(ŝ) = −
K∑

k=1

Pr[X̂ = k] ln Pr[X̂ = k]. (E.1)

It measures the predictability of the state of Xt when the prevailing experimental conditions st
is equal to ŝ, the given condition of interest.

The error rate ERR(ŝ) for new data y, (i.e. data distinct from what the model was trained on) is
measured from its optimal state sequence X∗

t by:

ERR(ŝ) =
∑T

t=1(1− Pr[X̂ = X∗
t ]) · δ(st = ŝ)∑T

t=1 δ(st = ŝ)
. (E.2)

It quantifies how well the new data conforms to the given model, for a given experimental con-
dition ŝ.

Let X(1) and X(2) be the optimal state sequences for an fMRI session y obtained from two
different models (θ∗,K∗, fX)(1) and (θ∗,K∗, fX)(2). The mutual information MI(ŝ) between
the two models with respect to the fMRI session y for condition ŝ is:

MI(ŝ) = H(1)(ŝ) +H(2)(ŝ)−H(1),(2)(ŝ) (E.3)

where H(1)(ŝ) is the empirical entropy of the states of X(1) measured for only those t when
st = ŝ as

Pr
(1)
k =

∑T
t=1 Pr[X̂

(1) = X
(1)
t ]δ(X

(1)
t = k)δ(st = ŝ)∑T

t=1 δ(X
(1)
t = k)δ(st = ŝ)

H(1)(ŝ) =
K∑

k=1

Pr
(1)
k ln Pr

(1)
k

Here Pr
(1)
k is the empirical probability of state k for condition ŝ for the data y, given model

1. Similarly for H(2)(ŝ). The empirical joint entropy H(1),(2)(ŝ) between X(1) and X(2) for
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condition ŝ is equivalently defined as:

Pr
(1),(2)
k1,k2

=

∑T
t=1 Pr[X̂

(1) = X
(1)
t ]δ(X

(1)
t = k1)Pr[X̂

(2) = X
(2)
t ]δ(X

(2)
t = k2)δ(st = ŝ)∑T

t=1 δ(X
(1)
t = k1)δ(X

(1)
t = k2)δ(st = ŝ)

H(1),(2)(ŝ) =
∑
k1

∑
k2

Pr
(1),(2)
k1,k2

ln Pr
(1),(2)
k1,k2

.

The Mutual Information between two models is defined in this way, because in general the cor-
respondence between the state labels of two different models is unknown. By comparing the
state-sequences of the same data generated by the two models, this correspondence can be deter-
mined.

Appendix E.3. Results

The Ph-wise effect of LogPs and LogDiff on ENT, ERR and MI are shown in Fig. E.5. The
LogPs effects correspond to the difference in values of these statistics for st corresponding to
LogPs > 2.5 minus those for LogPs ≤ 2.5. Similarly, and LogDiff > 3.0 minus LogDiff ≤ 3.0.
All other variables of the experimental condition st have been averaged out. These values are

Figure E.5: The effect on ENT, ERR, and MI with respect to experiment phase Ph, LogPs and LogDiff . The top
row corresponds to the models CTRL SELF and DYSC SELF, while the bottom row to CTRL GRP and DYSC GRP.
The ENT panel shows the effect of Ph (in 1.2s increments indicated by the vertical grid), high minus low LogPs and
high minus low LogDiff on the models (θ∗,K∗, fX) trained on the controls and dyscalculics, either individually or
as groups. The ERR panels show the effects on the error rate of predicting a control’s data with a CTRL SELF or
CTRL GRP (black), a DC subject’s data with a DYSC SELF or DYSC GRP (red), and a DC subject’s data with a
CTRL SELF or CTRL GRP (green). The MI panel shows the effects on the MI between two CTRL SELF models
(black), two DYSC SELF models (black) and between an CTRL SELF and DYSC SELF model (green). Similarly for
CTRL GRP and DYSC GRP. The background color-coding shows the 2.5s, 0.3s, 0.8s and 0–4s divisions of each trial,
corresponding to Fig. E.4.
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also summarized in Table E.1.

Table E.1: Statistic averages and ±1 std-dev for the data-set.Row 1 shows the optimal K∗, while row 2 shows the
ENT for all the CTRL SELF, DYSC SELF, CTRL GRP, and DYSC GRP models trained. In row 3, the ERR for the
following cases is given: (i) control and (ii) DC data vs. CTRL SELF, (iii) DC data vs. DYSC SELF, (iv) control and
(v) DC data vs. CTRL GRP and (vi) DC data vs. DYSC GRP. Row 3 shows the MI between (i) two CTRL SELF
models, (ii) two DYSC SELF models,(iii) two CTRL GRP models, (iv) two DYSC GRP models, while in row 4, the MI
of CTRL SELF vs. DYSC SELF and CTRL GRP vs. DYSC GRP is given.

From these results, we make the following salient observations:

• For the CTRL SELF and DYSC SELF models, ENT increases as the task progresses,
indicating more unpredictability for the computation phases of the task as compared to
the visual presentation phase, during which the visual areas are strongly and commonly
recruited. LogPs has an overall negative effect on ENT, indicating higher predictability
for problems with larger product sizes. The early effect could be due to a stronger product
lookup in the rote tables stored in the left angular gyrus of the lower parietal lobe, and
a strong number size response in the visual areas, which would also explain the strong
effect in controls as compared to the DCs. Later onset of the effect (Ph > 3s) is strong
in controls, consistent with stronger activation of the working verbal (mute-rehearsal) and
visual memories[32], but negligible in the DCs, who presumably do not have an intuitive
appreciation of product size, and respond similarly to all product sizes. The LogDiff effect
is noticeable after 2.4s, which is expected since it depends on the onset of the incorrect
result Rd displayed at 2.8s. The high ENT for Ph > 4.8s and the divergence of effects are
because this phase very often corresponds to the post-button-press rest interval before the
next trial begins, during which the brain-state is less predictable.

• For the CTRL GRP models, while the baseline ENT is higher and the LogPs and LogDiff
effects are smaller (most likely due to variations in the activation patterns amongst the
subjects), the overall trends are the same as CTRL SELF. This indicates that controls are
well explained by their CTRL GRP model. However, the picture changes dramatically for
the DCs. Not only is the baseline ENT (for Ph > 1.2s) much higher, the direction of the
LogPs effect changes. This indicates a failure of DYSC GRP model to predict the brain-
state of the DCs, which is compounded with higher product size. In contrast, LogDiff has a
negative effect for both controls and DCs, and confirms the hypothesis that LogDiff mainly
affects attention and conflict resolution, and is probably not a number-related effect, and
therefore is not affected by dyscalculic deficiencies.

• ERR presents a picture similar to that for ENT. For CTRL SELF, ERR increases with Ph,
while LogPs and LogDiff show negative effects. This indicates that the model for one
control is fairly accurate for the data from another control, and gets better with LogPs
and LogDiff . Again, the LogDiff effects starts after Ph > 2.4s. On the other hand,
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DYSC SELF models are not as accurate for the data from other DCs, and get worse with
LogPs, while LogDiff has a negative effect on ERR, which is again probably because
LogDiff is not number-related. This is also the case for CTRL SELF models vs. DC data
(green line). This not only indicates that models built from control data do not accurately
represent the DC data, but also that the DCs themselves are not well represented by the
models from other DCs.

• The ERR panel for CTRL GRP and DYSC GRP shows the same pattern, except at higher
baseline error-rates, as expected. Here, it is noteworthy that DCs tested against DYSC GRP
show an error-rate comparable to DCs tested against CTRL GRP, indicating that at the
group level DCs are as dissimilar from each other as controls are from DCs. Again, the
high ERR towards Ph > 4.8s is due to overlap with the inter-trial rest interval, causing
greater inaccuracy in the predictions.

• The MI figures for CTRL SELF and DYSC SELF are probably the most revealing. The
CTRL SELF models share high mutual information, throughout the task, with a small
positive effect of LogPs and LogDiff , indicating better correspondence with increase in
these parameters. The MI between two DYSC SELF models and between a DYSC SELF
and a CTRL SELF is significantly lower throughout. The relatively higher MI at the start
of the task is probably due to common recruitment patterns in the visual cortices due to
the problem presentation. It drops further during mental computation phases, reaching its
lowest around Ph =2.4–3.6s, just when the incorrect result Rd is displayed. The DCs
align relatively more with each other in the next phase, as compared to with the controls,
which could be because the DCs are recapitulating the multiplication problem, after they
have finished the task [28] (with strong working memory activation located in the right
intra-parietal suclus). This observation is also corroborated by the relatively lower values
for ENT and ERR in this phase.

• The MI for CTRL GRP vs. CTRL GRP, DYSC GRP vs. DYSC GRP and CTRL GRP
vs. DYSC GRP shows a similar pattern, except for the lower baseline MI.

Appendix E.4. Spatial Maps

Spatial maps for a given experimental condition were obtained using a heuristic procedure. First,
for a given condition ŝ, the mean and covariance µŝ,Σŝ are computed as:

µŝ =
K∑

k=1

Pr[X̂ = k]µk

Σŝ =
K∑

k=1

Pr[X̂ = k]Σk (E.4)

where Pr[X̂ = k] is the probability of state k for condition ŝ, as given by fX(st).

Voxel-wise mean and variance spatial maps are then reconstructed from the feature-space Ψ, by
projecting µŝ and diag(Σŝ) on Ψ−1, and a spatial t–score map is created by dividing the mean
map by the variance map. Fig. E.6 shows the group-wise t–score maps for 0s ≤ Ph < 2.4s and
2.4s ≤ Ph < 4.8s of a multiplication trial.
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Figure E.6: Axial slices of the t–score maps for CTRL GRP (left column) and DYSC GRP (right column). The first row
corresponds to 0s ≤ Ph < 2.4s while the second row corresponds to 2.4s ≤ Ph < 4.8s. Values between ±1.5 have
been masked out for clarity.

Although these maps describe spatially distributed patterns and activation foci per se, we observe
numerous regions of high magnitude in these maps that corresponded to brain regions known to
be activated for this task[18, 28]. Specifically, in the control group, for 0s≤ Ph ≤2.4s, high
values are seen in the bilateral occipital extra-striate cortices, the left postcentral area and in the
medial frontal gyri, while for 2.4s< Ph ≤4.8s, the maps concentrate on both pallida, caudate
heads (CdH), left anterior insula (aIn), median frontal gyrus (MFG), the supplementary motor
area (SMA) and the left frontoparietal operculum. The left intraparietal sulcus (IPS) shows
involvement throughout. In subjects with DC, for 0s≤ Ph ≤2.4s both occipital extra-striate
cortices show high values, while at 0s≤ Ph ≤2.4s high values in the right aIn, both MFG,
left IPS, both aIn, the anterior rostral cingulate zone (aRCZ), and the right supramarginal gyrus
(SMG) appear.

Early on 0s ≤ Ph ≤ 2.67s, the LogPs effect in controls is concentrated posterior parietooccipital
lobe, the bilateral occipital gyri including V1, the right IPS, and at several foci in the frontal lobes.
Later on (i.e. 2.67s < Ph ≤ 5.34s), emphasis shifts to the aIn, CdH, putamina, MFG, IFG and
aRCZ. Subjects with DC, in contrast to controls, initially show high values in a few small areas
in the left IFG, the right MFG, the left precentral gyrus, and both IPS, and later on, in the right
IPS, bilaterally in the MFG, aRCZ, posterior inferior parietum, upper cerebellar lobules, CdH,
and right aIn. Smaller focii are observed in both frontal lobes.

As pointed out in the main text, there are many open issues regarding the interpretation of these
maps, including the correctness of the heuristic algorithm, the role of the cross-covariance terms
of Σk, the interpretation of strongly negative values, and the statistical significance of the values.
Nevertheless, the strong correspondence of the patterns in these maps with known foci of activa-
tion during this task, indicate that the model is learning the characteristic distribution of activity
during a particular mental phase.
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