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Abstract
Unified Parallel C (UPC) is an emerging parallel programming lan-
guage that is based on a shared memory paradigm. MPI has been
a widely ported and dominant parallel programming model for the
past couple of decades. Real life scientific applications require a
lot of investment by domain scientists. As a result, many scientists
choose MPI as a programming model as it is considered low-risk.
It is unlikely that entire applications will be re-programmed using
emerging UPC language (or PGAS paradigm) in the near future.
It is more likely that parts of these applications will be converted
to newer models. This requires that underlying implementation of
system software be able to support both UPC and MPI simultane-
ously. Unfortunately, the current state-of-the-art of UPC and MPI
interoperability leaves much to be desired both in terms of perfor-
mance and ease-of-use.

In this paper, we propose an Integrated Native Communication
Runtime (INCR) for MPI and UPC communications on InfiniBand
clusters. Our library is capable of supporting both UPC and MPI
communications simultaneously. This runtime is based on widely
used MVAPICH (MPI over InfiniBand) Aptus runtime, which is
known to scale to tens-of-thousands of cores. Our evaluation re-
veals that INCR is able to deliver equal or better performance than
existing UPC runtime - GASNet on InfiniBand verbs. We observe
that with UPC NAS benchmarks CG and MG (class B) at 128 pro-
cesses, we outperform current GASNet implementation by 36%
and 25%, respectively.

1. Introduction
Modern high-end computing (HEC) systems allow scientists and
engineers to tackle grand challenge problems in their respective
domains and make significant contributions to their fields. Exam-
ples of such problems include astro-physics, earthquake analysis,
weather prediction, nanoscience modeling, multiscale and mul-
tiphysics modeling, biological computations, computational fluid
dynamics, etc. The Message Passing Interface (MPI) is a very
widely used parallel programming model. Scientific applications
rely heavily on the performance and portability offered by it. Al-
though MPI has been widely used for the past couple of decades,
recently, there is an effort to improve programmer productivity for
parallel applications. The hypothesis is that for several classes of
applications, especially irregular applications, shared memory pro-
gramming is much easier than explicit message passing. Addition-
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ally, language based parallelism constructs provide greater flexibil-
ity of expression, analysis by software tools and optimization op-
portunities. For example, unneeded barriers in an application can be
syntactically analyzed by tools and compiled away, eliminating the
need for programmers to manually analyze dependencies and re-
moving barriers manually. Often programmers tend to insert more
barriers than strictly required for safety.

Unified Parallel C (UPC) [29] is an emerging language for par-
allel programming, that is based on extensions to ISO C99. It pro-
vides parallel iterations and remote memory access among a host
of other features. UPC is a member of the Partitioned Global Ad-
dress Space (PGAS) family of languages. Several flavors of UPC
are available, along with different implementations of UPC com-
piler and runtimes on a variety of architectures including commod-
ity clusters and leadership class machines such as the Blue Gene/P.
The Berkeley UPC implementation [23] is one of the open-source
and popular implementations that support high-performance inter-
connects such as Myrinet, InfiniBand and Quadrics through the
portable GASNet runtime [14]. Even though UPC is an emerging
language, there are not many real life scientific applications using
it as their primary parallel programming model. Real life scientific
applications require a lot of investment by domain scientists for
design and verification, and their life cycles are in decades. Since
MPI is standardized, adopted and portable, it provides a low-risk
implementation choice. It is unlikely that entire applications will
be re-designed using UPC in the near future. It is more likely that
parts of these applications (primarily written in MPI) will be con-
verted to UPC, resulting in a “hybrid” application.

InfiniBand [4] is an industry standard interconnection technol-
ogy that has gained wide acceptance and is rapidly becoming one
of the dominant interconnection technologies in HEC domain. Ac-
cordingly, the size of InfiniBand clusters is growing as well, with
the Nebulae cluster in China having 120,640 cores. Design and im-
plementation of highly scalable InfiniBand runtimes is not a trivial
task as the software interface provided by verbs is at a very low-
level. Using verbs, various buffer management, connection man-
agement, message coalescing, and reliability mechanisms need to
be explored [19–22, 28].

Thus, there are two emerging trends: that of the need of hybrid
programming support and need for extreme scalability on Infini-
Band clusters. In order to realize the vision of highly scalable hy-
brid computing, the following questions need to be answered:

1. Can a communication library be designed for UPC that provides
excellent performance and scalability on very large InfiniBand
clusters?

2. Can one unified communication library support both UPC and
MPI communications in a manner that does not degrade perfor-
mance for either?

In this paper, we aim to answer the above questions. We have
extended the MVAPICH-Aptus [21] runtime, which is known to be
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one of the most scalable InfiniBand runtimes, to support UPC com-
munications. MVAPICH/MVAPICH2 [25] are very widely used
MPI libraries, supporting MPI-1 and MPI-2 standards specifically
designed for InfiniBand. It is currently being used by more than
1,185 organizations in 59 countries. This extended MVAPICH li-
brary is capable of acting as a new GASNet communication con-
duit. Since these extensions are made to an MPI library, they do
not interfere in any way with existing MPI communication infras-
tructure or affect MPI communication performance (MPI applica-
tions simply ignore the extensions). Our evaluation reveals that this
new extended MVAPICH conduit is able to not only match the ex-
isting GASNet InfiniBand conduit in both microbenchmarks and
application-level evaluation; but also to improve scalability sig-
nificantly. We observe that with UPC NAS benchmarks CG and
MG (class B) at 128 processes, the new design outperforms current
GASNet implementation by 36% and 25%, respectively.

The rest of the paper is organized as follows. In Section 2, we
describe background material for this work along with a discussion
of related work. We contrast our work with existing software stack
and research work. Then, in Section 3, we describe our design
approach in detail. We present our evaluations in Section 4. Finally,
we conclude and illustrate future directions in Section 5.

2. Background and Related Work
In this Section, we describe associated background work that is rel-
evant to the contributions of this paper. We also cover other recent
and related work in this area. We first start with the lowest Infini-
Band layer. Then, we describe recent work in designing scalable
communication techniques for MPI on InfiniBand. After that, we
recount work in UPC and the GASNet communication system. Fi-
nally, we compare and contrast our work with related recent efforts
to develop a common communication subsystem for multiple pro-
gramming models.

2.1 InfiniBand Overview
InfiniBand [4] is an industry standard switched fabric that is de-
signed for interconnecting nodes in HEC clusters. It is a high-
speed, general purpose I/O interconnect that is widely used by sci-
entific computing centers world-wide. The recently released TOP
500 rankings in June 2010 reveal that more than 40% of the com-
puting systems use InfiniBand as their primary interconnect. The
yearly growth rate of InfiniBand in the TOP 500 systems is pegged
at 30%, indicating a strong momentum in adoption. It is also gain-
ing ground in the commercial domain with the recent convergence
around RDMA (Remote Direct Memory Access) over Converged
Enhanced Ethernet (RoCE).

The InfiniBand specification clearly demarcates the duties of
hardware (such as Host Channel Adapters (HCAs)) and software.
Upper level software uses an interface called verbs to access the
functionality provided by HCAs and other network equipment
(such as switches). The verbs interface is a low-level communi-
cation interface that follows the Queue Pair model. Communi-
cation end-points are required to establish a queue pair between
themselves. Each queue pair has a certain number of work queue
elements. Upper level software places a work request on the queue
pair that is then processed by the HCA. When a work element is
completed, it is placed in the completion queue. Upper level soft-
ware can detect completion by polling the completion queue.

Additionally, there are different types of Queue Pairs based on
the type of transport used. There are Reliably Connected (RC)
queue pairs that provide reliable transmission (retransmissions after
packet losses are performed by the HCA). These RC queue pairs
need to be established uniquely for each communicating pair. This
implies an O(n2) memory usage (for a system with N processes).
Another type of queue pair is the Unreliable Datagram (UD). This

queue pair type does not provide reliable transmission, although it
has a significant memory advantage – only one UD QP is capable of
communicating with all remote processes. Thus, the memory usage
of UD QP is O(n) (for a system with N processes).

Yet another feature of InfiniBand is Remote Direct Memory Ac-
cess (RDMA). This feature allows software to remotely read mem-
ory contents of another remote process without any software in-
volvement at the remote side. This feature is very powerful and can
be used to implement high-performance communication protocols.

As indicated above, the verbs software layer is very low-level
and the responsibility of communication protocols, buffer manage-
ment mechanisms, connection management techniques etc. are left
to the upper level software. The following Section 2.2 describes
some recent work in designing scalable mechanisms using these
verbs. Not all features are mentioned in this section and readers
are encouraged to peruse the InfiniBand specification [4] for more
details.

2.2 Scalable MPI Design over InfiniBand: MVAPICH-Aptus
MPI has been the dominant parallel programming model for the
past couple of decades. It has been widely ported and several open-
source implementations have been available. It has also achieved
very good performance and scalability. As a result, all modern
super-computers support it. During the past several years, Infini-
Band has made great inroads into the HPC domain. Clusters using
InfiniBand have been growing in size rapidly. One of the largest
clusters is the Nebulae cluster in China with 120,640 cores. As in-
dicated in the previous section, InfiniBand offers a low-level verbs
interface with several types of Queue Pairs, with varying levels of
services. This enables upper-level software, such as those in MPI
implementations, to design flexible and high-performance connec-
tion management, buffer management, coalescing strategies, etc.

MVAPICH/MVAPICH2 [25] are high-performance implemen-
tations of MPI-1 and MPI-2 interfaces on InfiniBand, iWARP and
RoCE (RDMA over Converged Ethernet). The internal design of
MVAPICH has been systematically designed to achieve very good
scalability by exploiting various InfiniBand features, such as Un-
reliable Datagrams [20], Shared Receive Queues (SRQ) [28], eX-
tended Reliable Connections (XRC) [22] along with connection
management strategies such as On-demand connections and buffer-
ing strategies for message coalescing [19] and to improve memory
efficiency. All of these optimizations have been combined into one
unified runtime, called MVAPICH-Aptus [21]. To the best of our
knowledge, this is the most scalable runtime on InfiniBand that of-
fers high-performance and is open-source. Our team is in the pro-
cess of bringing this framework into the MVAPICH2 library, so that
MPI-2 applications can also leverage this scalable runtime.

2.3 UPC, PGAS and GASNet Communication System
Unified Parallel C (UPC) [29] is an emerging parallel program-
ming language that aims to increase programmer productivity and
application performance by introducing parallel programming and
remote memory access constructs in the language. UPC is based
on the Partitioned Global Address Space (PGAS) programming
model. The PGAS programming model allows programmers to
view a distributed memory supercomputer as a global address
space, that may be partitioned to improve performance. There are
several other PGAS programming languages, namely X10 [18],
Chapel [10] and HPF [17], along with Global Address Space li-
braries such as Global Arrays [15].

The runtime implementations of UPC have been demonstrated
to be scalable and provide very good performance to end appli-
cations through fine-grained remote memory accesses [9] and im-
proved communication overlap [26]. In particular, the Blue Gene
implementation of UPC, developed by IBM, has been demonstrated
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to be highly scalable [7]. In this paper, we focus on the InfiniBand
design and implementation of UPC through the popular GASNet
communication library [14]. GASNet for InfiniBand clusters has
only been mildly optimized with Firehose [8], which is a strategy to
manage remote keys (required for RDMA). It is to be noted that as
compared to the exhaustive scalability and optimization work car-
ried out to scale MVAPICH/MVAPICH2 up to the level of 81,920
cores (of Pleiades at NASA) and 62,976-core (of Ranger at TACC),
not much recent work has taken place in the InfiniBand implemen-
tation of GASNet. In particular, even on-demand connections and
shared receive queues, which are considered to be fundamental re-
quirements to scale InfiniBand runtimes, are missing in the current
GASNet implementation. In this paper, we present our strategy to
unify the runtimes of MVAPICH and GASNet in such a way that
the InfiniBand communication schemes are unified between them
in an efficient manner. Thus, our work adds major scalability fea-
tures to the GASNet implementation on InfiniBand.

2.4 Common Communication Subsystems for Multiple
Programming Model Support

High-performance communication libraries for HEC systems have
historically been very closely tied with their corresponding pro-
gramming models and their implementations. This has been due to
the fact that each communication layer has been optimized heav-
ily to suit the particular programming model and its requirements.
Some libraries, such as ARMCI [16] are deployed along with MPI
in a side-by-side manner to enable Global Arrays applications that
occasionally use utility functions from MPI. There have been some
efforts to unify the communication subsystems, such as CCS by
Buntinas, et. al [12]. It is to be noted that even though the CCS
layer had the potential to support multiple programming models, it
did not offer the best performance as compared to GASNet (please
refer to Fig. 2 of [12]), especially for short messages. Also, the
authors of [12] did not evaluate whether CCS will be suitable for
MPI itself as a communication layer or not. Additionally, there was
no evaluation of UPC or GASNet on top of CCS. In this paper,
we describe a truly unified communication library which provides
the best performance to both UPC and MPI libraries in conjunction
with thorough evaluation of the entire UPC stack through our new
communication runtime.

The Low-level Application Programming Interface (LAPI) [3],
is a unified communication layer that is known to support both
MPI and pure LAPI communications. The LAPI layer is available
only on IBM systems and is not available on general commodity
cluster systems with InfiniBand. In this respect, it can potentially
support GASNet implementation over LAPI along with MPI over
LAPI. We have not yet found any publicly available document
describing the feasibility of this approach. Additionally, publically
available documents, such as [1] describes the limitations of LAPI
supporting both MPI and LAPI communications. In particular, it
mentions that in the event of concurrent communications, the DMA
Receive Buffer may be too small to contain packets from both LAPI
and MPI, and packets may be dropped, impairing performance.
Further, the MP CSS INTERRUPT variable, that allows incoming
messages to cause interrupts and message progress, is available to
MPI API only, therefore, not progressing LAPI communications.
We believe that the MVAPICH-Aptus design is not constrained
by these limitations. Firstly, DMA buffer space is shared among
all communication contexts. Secondly, MVAPICH-Aptus follows
a “low-watermark” based flow control mechanism. In this mode,
interrupts do not need to be generated for each incoming message,
rather only one interrupt is generated when DMA buffer space
is low. Thus, we believe that this is a much more flexible buffer
management strategy compared to the one described for LAPI.

The MPI-2 RMA interface has been criticized before for its in-
adequacy as a compiler target [11]. The MPI community is actively
discussing the upcoming MPI-3 standard. The MPI-3 RMA Work-
ing Group [27] is attempting to completely revamp the MPI-2 RMA
semantics, in such a way that supporting PGAS languages becomes
simpler at the MPI level. However, these discussions are a long way
from inclusion in the formal standard. Our work is intended to in-
fluence these discussions by providing critical data about a high-
performance UPC implementation in an existing MPI stack.

3. INCR: Design Requirements and Solutions
In this section, we discuss the design requirements and solutions
for the implementation of the Integrated Communication Runtime
(INCR) for InfiniBand clusters.

3.1 Design Requirements
The major design requirement of our work is to enable simultane-
ous MPI and UPC communications without imposing any perfor-
mance penalties on either MPI or UPC, i.e. using our runtime, UPC
programs should get identical or better performance than currently
available software (and the same for MPI applications). Another
design requirement is to eliminate buffer wastage inside the com-
munication library. For example, we envision that the solution do
not require separate communication resources, such as connections,
buffers etc. for supporting simultaneous communications.

3.2 Design Approach
Currently, there exist several approaches that can be deployed on
commodity InfiniBand clusters. We have outlined some of these ap-
proaches in Figure 1. Each implementation option is referred to the
name given below the stack. The left-most alternative demonstrates
that pure-MPI operations can work through the MPI standard im-
plementations of MVAPICH on InfiniBand. The second alternative,
marked “GASNet-IBV” indicates currently available GASNet im-
plementation on OpenFabrics verbs. This implementation is on the
lowest software layer made available by InfiniBand vendors. Cur-
rently, the two approaches “MPI” and “GASNet-IBV” can be com-
bined together to support simultaneous communications of hybrid
MPI and UPC applications. However, this approach suffers from
two main drawbacks: (a) Communication progress of both UPC
and MPI are separate, and it is possible to deadlock UPC and MPI
by not progressing in their respective communications [5] and (b)
It wastes communication resources, since both MPI and UPC allo-
cate their own connection and buffer resources. Another approach
is to use the “GASNet-MPI” stack for both MPI and UPC com-
munications. This mode has the added advantage of progressing
both MPI and UPC communications simultaneously. However, the
disadvantage of this mode is that there is a mismatch of Active
Messages (a fundamental design point of GASNet), and the MPI-
1 point-to-point primitives. Due to this mismatch, there is a per-
formance penalty imposed on most operations. As discussed in
Section 2, MPI-2 RMA is not a viable target for compilers [11].
Thus, even though simultaneous communication is possible with
“GASNet-MPI” mode, there is a performance penalty associated
with it. Our design approach, presented in the right-most stack,
“GASNet-INCR”, we extend the existing MVAPICH-Aptus run-
time to support native active messages. In addition, we design a
new communication conduit for GASNet that supports this inter-
face. Using this approach, both UPC and MPI communication re-
sources are shared. Further, we have the benefit of utilizing several
common communication related optimizations that have been de-
signed for MPI over the past several years (described in Section 2)
for UPC communications as well.
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Figure 1. An overview of various communication stack options available for MPI and UPC applications and our contribution

3.3 Internal Implementation Details
Our design requirements are to enable the highest possible perfor-
mance for both GASNet and MPI communications. We made the
following changes to implement MVAPICH-INCR.

Packet Headers: MPI communications stacks are required to carry
message matching information triplet: {src, tag, context} to
enable tag matching semantics of MPI. This represents an over-
head of 12 bytes per packet. Additionally, packets are required
to carry information for credits (such as last received packet), for
flow-control. Overall, the minimum MPI packet header is 20 bytes.
We have decided that this overhead is too heavy for GASNet. Thus,
we have added extra packet types in the MVAPICH-Aptus imple-
mentation. Accordingly, the packets used by GASNet messages
are handled completely separately from the MPI packets. This ap-
proach allows us to share common optimizations from the MPI
communications layer, while providing least overhead for GASNet
communications. Our GASNet-INCR has only four bytes of extra
header on top of GASNet specific fields. We believe that in the
future this can be improved upon as well.

Extended Interfaces: As indicated earlier in this Section, we have
extended the communication implementation of the MVAPICH-
Aptus runtime to support native Active Messages. In addition, we
have also implemented the extended GASNet interfaces for natively
supporting RDMA. Below is a short description of the interface.

Active Messaging Interfaces: These are the new active messaging
functions that are implemented inside MVAPICH-Aptus.

1) int incr send short am no args(uint16 t dest grank
, uint16 t token, uint8 t handler): This function imple-
ments sending very short messages without any arguments to a re-
mote destination. This is an optimization over the short message
functions which need to send arguments. Since the handler at the
remote end expects no arguments, the space for arguments in the
message packet can be optimized out.
2) int incr send short am with args(uint16 t
dest grank, uint16 t token, uint8 t handler, va list
argptr, uint8 t numargs): This function implements sending

short messages to remote destinations. Short active messages do
not carry any data payload.
3) int incr send medium msg(uint16 t dest grank,
uint16 t token, uint8 t handler, void * source addr,
uint32 t nbytes, va list argptr, uint8 t numargs):
This function implements sending medium size messages with data
payload. The data payload can be sent over a bounce buffer imple-
mentation that is implemented using native RDMA [24]. It is to be
noted that using MVAPICH-Aptus, RDMA connections are only
opened in an on-demand basis and not an all-to-all manner during
communication startup.
4) int incr send long msg(uint16 t dest grank,
uint16 t token, uint8 t handler, void * source addr,
uint32 t nbytes, uint32 t lkey, va list argptr,
uint8 t numargs, void * dest addr, uint32 t rkey,
incr handle t *handle ptr): This function implements send-
ing large messages. Since large messages may take a long time to
send, this interface call supports returning a handle to the com-
munication request. Using this handle, this call may be used in a
non-blocking manner. Long messages are always sent using In-
finiBand RDMA, with reliable connections (RC) established in an
on-demand fashion.

Extended Remote Memory Interfaces: These interfaces implement
the GASNet extended interface. These focus on efficient remote
memory access. These functions currently do not return any error
status, i.e. all errors in remote memory access are considered fatal.

1) void incr inline put (uint16 t dest, void
*rem addr, void *local addr, size t nbytes, uint32 t
rkey, incr handle t *handle ptr): This function sends a
very small (< 128 bytes) data payloads directly to remote memory
using RDMA. This utilizes the InfiniBand “inline” send operation,
which reduces sender side overhead of DMAs. As long as send
work queue elements (WQEs) are available, this function com-
pletes the put on returning.
2) void incr put (uint16 t dest, void *rem addr, void
*local addr, size t nbytes, uint32 t rkey,
incr handle t *handle ptr, uint32 t lkey): This func-
tion is used for remote put. The payload data is put directly using
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RDMA write. If no send work queue elements (WQEs) are avail-
able, then this data can be buffered internally (decision made based
on message size), and the call returns immediately. To test for com-
pletion of the data transfer, the handle needs to be checked upon.
Since the call is implemented using RDMA put, RC connection is
used (set up in an on-demand fashion).
3) void incr put bulk (uint16 t dest, void *rem addr,
void *local addr, size t nbytes, uint32 t
rkey, incr handle t *handle ptr, uint32 t lkey): This
function is also used for remote put. This is for supporting the
GASNet put bulk interface, in which the local memory is guaran-
teed to be untouched until the put operation is completed, so that
data need not be buffered internally if the work queue elements
(WQEs) are not available.
4) void incr get (uint16 t dest, void *rem addr, void
*local addr, size t nbytes, uint32 t rkey,
uint32 t lkey, incr handle t *handle ptr): This func-
tion is used for remote get operations. This maps directly to RDMA
Read operation, which uses RC connection (set up in an on-demand
fashion).

4. Experimental Results
In this section, we compare performance evaluation results of
the three design approaches: GASNet-IBV, GASNet-MPI and
GASNet-INCR described in section 3.2. The existing implemen-
tation of GASNet implementation on OpenFabrics verbs is called
GASNet-IBV and the implementation on MPI is called GASNet-
MPI. GASNet-INCR, which is our contribution in this paper, is the
GASNet implementation over extended MVAPICH-Aptus runtime.

GASNet interface consists of core APIs and extended APIs. The
core API interface is a narrow interface based on Active Message
paradigm. Extended APIs provide a richly expressive and flexible
interface that provides medium and high-level operations on remote
memory and collective operations [14]. GASNet-MPI has only the
core APIs implemented where as GASNet-IBV and GASNet-INCR
have the extended APIs for one sided put and get operations. As
mentioned in Section 2, the GASNet-MPI implementation cannot
utilize the MPI2-RMA interface for put and get due to several
restrictions and is limited to only using the core APIs.

We compared these three design approaches from different an-
gles. These include microbenchmark level performance evaluation,
scalability analysis based on memory footprint, and performance
analysis of different NAS benchmarks using these conduits. De-
tailed analysis of these performance evaluation is presented in the
following sections. Section 4.2 covers the microbenchmark level
performance analysis, and sections 4.3 and 4.4 covers the scala-
bility analysis and NAS benchmark results respectively.

4.1 Experimental Platform
We used three different clusters for our experimental evaluations.
Cluster A consists of four Intel Nehalem machines equipped with
ConnectX QDR HCAs. Each node has eight Intel Xeon 5500 pro-
cessors organized into two sockets of four cores each clocked at
2.40 GHz with 12 GB of main memory. Cluster B consists of 32
Intel Clovertown based systems equipped with ConnectX DDR
HCAs. Each node in this cluster has eight Intel Xeon processors,
organized into two sockets of four cores each clocked at 2.33 GHz
with 6 GB of main memory. Cluster C consists of eight AMD
Barcelona hosts. Each node has four sockets each with a Quad-Core
AMD Opteron 8350 2GHz Processor with 512KB L2 cache and 2
MB L3 cache per core. Each node has a Mellanox MT25418 dual-
port ConnectX HCA. RedHat Enterprise Linux Server 5 was used
on all machines along with OFED version 1.4.2. We used Cluster A
for the microbenchmark level experiments, Cluster B for scalability
analysis and Cluster C for application level evaluations.

4.2 Microbenchmark Level Evaluation
We chose three representative benchmarks for the microbenchmark
level performance analysis. These include the performance evalua-
tion of UPC calls, upc memput, upc memget and bupc memput si
gnal. The upc memput call writes specified amount of data bytes
to the remote side. Similarly, upc memget fetches specified amount
of data bytes from remote side. The bupc memput signal is part
of the UPC extensions proposed by Berkeley Lab. It performs the
same data movement semantics as that of upc memput, and up-
dates the specified semaphore in the remote side. The update of
semaphore in the remote side signals the global completion of data
movement. We used Cluster A for microbenchmark performance
evaluation.

In upc memput and upc memgetmicrobenchmarks, upc memput
and upc memget were called in the sender thread for message sizes
varying from one byte to two mega bytes. The receiver thread waits
on a barrier. Time taken for the upc call for each of these message
sizes is reported. We have split the latency results into two graphs,
one showing the latency results for small payload sizes (1bye to
2K bytes) and other one for large payload sizes (4KB to 2MB).
Micro-benchmark results are shown in Figures 2 and 3. Results
indicate that the performance of GASNet-INCR is very much sim-
ilar to that of the high performance GASNet-IBV. Since GASNet-
MPI does not have the GASNet extended APIs, upc memget and
upc memput calls are translated into active messages These active
messages are exchanged using MPI send/recv calls. This involves
not only the overhead of translating into active messages, but also
the extra MPI headers that these messages have to carry. But for
GASNet-IBV and GASNet-INCR, upc memput and upc memget
calls are translated into one sided RDMA put/get operations. This
explains the huge performance difference between GASNet-MPI
and the other two GASNet implementations.

We used ping-pong test in bupc memput signal microbench-
mark. The sender thread calls bupc memput signal and then
calls bupc sem wait. The receiver thread calls bupc sem wait
and then calls bupc memput signal. The bupc sem wait call
causes the thread to wait until the semaphore gets incremented. The
bupc sem wait call in the receiver thread gets unblocked when
the data movement initiated by the sender thread is over. Similarly,
the semaphore in the sender thread gets unblocked when the data
movement initiated by receiver thread is over. The test was also
done for message sizes varying from one byte to two mega bytes.
The one-way latency numbers are reported. Here also, the latency
numbers are shown in two different graphs for fine grain analy-
sis. The observed performance results of bupc memput signal
benchmark is similar to that of upc memget and upc memput
benchmarks. The results are shown in Figure 4.

The microbenchmark performance results indicate that the
GASNet-INCR delivers similar performance as that of GASNet-
IBV conduit, and it even outperforms GASNet-IBV conduit for
small payload sizes in bupc memput signal microbenchmark.
GASNet-MPI performs worse in all microbenchmarks.

4.3 Scalability Evaluation
In order to analyze the scalability aspect of the GASNet-INCR de-
sign, we conducted some scalability experiments as well. We used
a simple UPC hello world program in this experiment. We mea-
sured memory foot-print of the process, with number of connec-
tions (processes) ranging from 16 to 256. The memory foot-print
analysis results are shown in Figure 5. We used Cluster B for scal-
ability analysis.

It was observed that for a 256 process UPC hello world execu-
tion, each process consumed a memory of about 227 MB in case
of GASNet-INCR conduit, 265 MB in case of GASNet-IBV con-
duit and 237 MB in case of GASNet-MPI conduit. It can be noticed
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Figure 2. Memput performance
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that, with increase in number of connections, memory foot print in-
creases almost linearly for GASNet-IBV conduit, where as memory
foot print of GASNet-INCR and GASNet-MPI conduits remain al-
most constant. The low memory foot-print of GASNet-INCR and
GASNet-MPI conduits is because it uses the MVAPICH-Aptus run-
time, which is known to scale to tens-of-thousands of cores.

Analyzing the slope of the scalability performance results, it
can be noted that, for GASNet-IBV, the memory foot-print in-
creases by around 128KB with every additional process, where as
the memory foot-print of GASNet-INCR and GASNet-MPI con-
duit remains constant. If we extrapolate the memory foot print for a
10,000 process run, then memory foot-print of GASNet-IBV con-
duit process will be around 1.4 GB, where as the memory foot-print
of a GASNet-INCR conduit process will be around 250-300 MB.
This shows that our design is highly scalable.

4.4 Application Level Evaluation
To study the impact of our GASNet-INCR design, we evaluated its
performance with a few NAS benchmarks [2]. We chose the Con-
jugate Gradient benchmark (CG), 3-D FFT PDE benchmark (FT)
and the Multi-Grid benchmark (MG), so as to analyze GASNet de-
signs from different angles. These benchmarks were ran for differ-
ent problem sizes (class B and C) with 64 and 128 processes. We
chose not to present experimental data for the NAS EP benchmark
as it has very little communication. We used cluster C for these
experiments.

CG benchmark has the smallest problem size (75,000 for Class
B and 150,000 for Class C) among the three benchmarks and has a
relatively more frequent communication pattern. The communica-
tion pattern in CG benchmark is mainly point-to-point operations;
FT benchmark is dominant in collective operations; and MG bench-
mark is mainly utilizing point-to-point operations with 1% collec-
tive operations [13] [6]. The execution times for these different
NAS benchmarks are shown in Figure 7.

The performance results observed for CG and MG benchmarks
are similar as indicated in Figures 7(a) and 7(b). For 128 process
CG benchmark, GASNet-INCR performs 1.36 times and 1.12 times
faster as compared to GASNet-IBV conduit for classes B and
C, respectively. For 128 process MG benchmark, GASNet-INCR
performs 1.25 times and 1.20 times faster as compared to GASNet-
IBV conduit for classes B and C, respectively. These results were a
little surprising, because in the microbenchmark evaluation, we got
similar performance results for GASNet-IBV and GASNet-INCR
conduits.

In order to investigate further, we analyzed the communica-
tion pattern in these benchmarks. We timed the different sections
of the CG benchmark. The results showed that much of the dif-
ference came from the barrier performance, in ‘reduce-all’ sec-
tion of the benchmark. For a 64 process CG class B benchmark,
the barrier time for GASNet-INCR conduit was just 3.63 sec-
onds, where as for the GASNet-IBV conduit, it was 5.42 seconds.
So we plotted the upc barrier performance of the three con-
duits, for number of processes ranging from 2 to 128. Results in-
dicate that the barrier performance of GASNet-IBV is not good,
when the number of processes increase. For a 128 process bar-
rier, GASNet-INCR takes 3.48 seconds where as GASNet-IBV and
GASNet-MPI conduit takes 9.65 seconds and 4.95 seconds, respec-
tively. The upc barrier is implemented using active messages
in the GASNet, so we suspect the active message implementation
in GASNet-IBV for the poor barrier performance. We plotted the
MPI Barrier performance also along with upc barrier. Results
indicate that MPI Barrier performs better than upc barrier of
all three GASNet implementations. This result underlines the need
for hybrid programming models. Hybrid programs can make use of
the highly-optimized MPI collectives and other constructs, thereby

avoiding the need for re-inventing these in new programming mod-
els.

Another surprising result was that the GASNet-MPI conduit
was giving almost similar performance results in FT benchmark
and it even out-performed other two conduits for 64-process FT(C)
benchmark. In order to investigate this, we took the FT bench-
mark and timed the different sections. Here the major difference
was identified in the ‘all-to-all’ section of the benchmark. For a 64
process class B FT benchmark, the all-to-all section took 4.67 sec-
onds using GASNet-IBV conduit, but it just took 2.67 seconds us-
ing the GASNet-MPI conduit. In the all-to-all section of FT bench-
mark, all the processes fetch a chunk of around 130K bytes from
the shared memory area, which is actually a upc memget. The
upc memget implementation in the GASNet-MPI conduit is differ-
ent as compared to that of GASNet-IBV and GASNet-INCR. Since
the later two conduits implement GASNet Extended API for Get
(gasnet-get-bulk), the GASNET layer translates the upc memget to
gasnet get bulk. Thus, in these conduits, the upc memget gets
translated as an RDMA Get of 130K.

But for the GASNet-MPI conduit, the Extended APIs interfaces
can not be implemented (due to MPI-2 RMA inadequacies). Ac-
cordingly, GASNet translates the upc memget to active messages
(Long Active Message) [14]. In GASNet AMMPI implementa-
tion, the maximum long active message limit is set to 65K bytes.
So in case of the GASNet-MPI conduit, the 130K upc memget is
translated into two 65K long active messages. Therefore, the Get
operations do not start immediately, rather consist of the request-
and-reply set of operations. This results in some delay between the
processes, and not all Get operations start at the same time. This
may result in better network utilization, as congestion is avoided.
In order to verify this, we modified the GASNet-IBV conduit im-
plementation to disable the Extended API interface and set the
maximum long message limit as 65K bytes. With these modifi-
cations, we observed similar performance for GASNet-MPI con-
duit and GASNet-IBV conduit for the FT benchmarks. Thus, it
is our understanding that the all-to-all implemented by point-to-
point memgets is not a very efficient mechanism, as it robs the un-
derlying communication layer of optimization opportunities. We
also note that MPI Alltoall algorithms in MPI stacks (including
MVAPICH and MVAPICH2), have congestion management by us-
ing hierarchical algorithms along with pair-wise send-receive (to
avoid flooding the network with numerous very large messages).
We are continuing to investigate this and will include a more de-
tailed description of this result in the camera ready version of the
paper.

The application level performance results indicate that the
GASNet-INCR design performs better than the GASNet-IBV con-
duit. It also highlights that hybrid programming models can provide
better performance along with improved programmer productivity.

5. Conclusions and Future Work
During the past few years, there has been an increasing interest
in improving programmer productivity for scientific applications.
UPC and other PGAS languages have emerged as alternatives to
the still popular MPI programming model. At the same time, In-
finiBand technology is being widely deployed and very large clus-
ters, consisting of many tens-of-thousands of cores are being de-
ployed for conducting ground-breaking science. In this context,
there is a need for a communication library that supports both UPC
and MPI programming models, provides excellent performance for
them and is highly scalable. In this paper, we have presented our
designs for Integrated Native Communication Runtime (INCR) for
MPI and PGAS on InfiniBand clusters. Our design and evaluation
reveal that we are able to achieve our primary design objectives.
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For UPC NAS benchmarks CG and MG (class B) at 128 processes,
GASNet-INCR outperforms the GASNet-IBV runtime by 36% and
25%, respectiveley. Also the memory scalability analysis reveals
that GASNet-INCR is highly scalable.

In the future, we aim to continue working in this direction. In
this paper we presented performance results for UPC using our
communication runtime. We plan to extend our evaluation to hy-
brid MPI and UPC applications. Our team is involved in optimiza-
tions of several well-known applications from the San Diego Su-
percomputer Center and Texas Advanced Computing Center. We
plan to investigate optimization opportunities by using hybrid pro-
gramming models in those applications. Additionally, we are also
working towards more generalization of our proposed runtime. Our
aim is to support PGAS in general in the future.
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