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Abstract—With the availability of on-demand compute and
storage infrastructures, many users are deploying data-intensive
scientific applications onto Clouds. To accelerate these applica-
tions, the prospect of caching intermediate data using the Cloud’s
elastic compute and storage framework has been promising. To
this end, we believe that an in-depth study of cache placement
decisions over various Cloud storage options would be highly
beneficial to a large class of users. While tangential analyses
have recently been proposed, ours in contrast focuses on cost and
performance tradeoffs of maintaining a data cache with varying
parameters of any Cloud application. We have compared several
Amazon Web Service (AWS) Cloud resources as possible cache
placements: within machine instances (in-memory, on-disk, on
large mountable disk volumes) and in cheap persistent Cloud
storage (S3). We found that application-dependent attributes like
unit-data size, total cache size, persistence requirements, etc.,
have far-reaching implications on the cost to sustain their cache.
Also, while instance-based caches expectedly yield higher cost, the
performance that they afford may outweigh lower cost options.

Keywords-Cloud storage and caching strategies, cost analysis

I. INTRODUCTION

The mounting growth of scientific data has spurred the need
to facilitate highly responsive compute- and data-intensive pro-
cesses. Such large-scale applications have traditionally been
hosted on commodity clusters or grid platforms. However,
the recent emergence of on-demand computing is causing
many to rethink whether it would be more cost-effective
to move their projects onto the Cloud. Several attractive
features offered by Cloud providers, after all, suit scientific
applications nicely. Among those, elastic resource provisioning
enables applications to expand and relax computing instances
as needed to scale and save costs respectively. Affordable and
reliable persistent storage are also amenable to supporting the
data deluge that is often present in these applications.

A key novel consideration in Cloud computing is the pricing
of each resource and the resulting costs for the execution
of an application. Together with considerations like wall-
clock completion time, throughput, scalability, and efficiency,
which have been metrics in traditional HPC environments, the
cost of execution of an application is very important. Several
recent studies have evaluated the use of Cloud computing for
scientific applications with this consideration. For example,
Deelman, et al. studied the practicality of utilizing the Amazon
Cloud for an astronomy application, Montage [9]. Elsewhere,
researchers discussed the challenges in mapping a remote
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sensing pipeline onto Microsoft Azure [13]. In [12], the au-
thors studied the cost and feasibility of supporting BOINC [2]
applications, e.g., SETI@home, using Amazon’s cost model.
Vecchiola, et al. deployed medical imaging application onto
Aneka, their Cloud middleware [17]. An analysis on using
storage Clouds [14] for large-scale projects have also been
performed. While other such efforts exist, the aforementioned
studies are certainly representative of the growing interest
in Cloud-supported frameworks. However, there are several
dimensions to the performance and cost of executing an
application in a Cloud environment. While CPU and network
transfer costs for executing scientific workflows and processes
have been evaluated in these efforts, several aspects of the use
of Cloud environments require careful examination.

In this paper, we focus on evaluating the performance and
costs associated with a number of caching and storage options
offered by the Cloud. The motivation for our work is that,
in compute- and data-intensive applications, there could be
considerable advantage in caching intermediate data sets and
results for sharing or reuse. Especially in scientific workflow
applications, where task dependencies are abundant, there
could be significant amounts of redundancy among related pro-
cesses [19], [6]. Clearly, such tasks could benefit from fetching
and reusing any stored precomputed data. But whereas the
Cloud offers ample flexibility in provisioning the resources to
store such data, weighing the tradeoff between performance
and usage costs makes for a compelling challenge.

The Amazon Web Service (AWS) Cloud [4], which is being
considered in this paper, offers many ways for users to support
such a cache. In one approach, a cohort of virtual machine
instances can be allocated, and data can be stored either
on disk or in memory (for faster access, but with limited
capacity). The costs of maintaining such a cache would also be
much higher, as users are charged a fixed rate per hour. This
fixed rate is moreover dependent on the requested machine
instances’ processing power, memory capacity, bandwidth, etc.
On the other hand, AWS’s Simple Storage Service (S3) can
also be used store data. It could be a much cheaper alternative,
as users are charged a fixed rate per GB stored per month.
Data are also persisted on S3, but because of this overhead,
we might expect some I/O delays. However, depending on
the application user’s requirements, performance may well
outweigh costs or vice versa.

We offer an in-depth view of these tradeoffs in employing



various AWS options for caching data to accelerate data-
intensive processes, and our contributions are as follows.
We evaluate performance and cost behavior given various
average data sizes of an application. Several combinations
of Cloud features are evaluated vis a vis as possible cache
storage options. We furthermore consider several require-
ments, including data persistence requirements, cost, and high-
performance needs. We believe that our analysis would be
useful to the computing community by offering new insights
into employing the AWS Cloud. Our experimental results may
also generate ideas for novel cost-effective caching strategies.

The remainder of this paper is organized as follows. In
Section II, we present some background into the AWS Cloud
services, their cost model, and we briefly explain a Cloud-
enabled cache framework we had previously developed for
supporting large-scale computing environments. We present
the results from detailed experiments in Section III. Related
works are discussed in Section IV, and we conclude and briefly
discuss future plans in Section V.

II. BACKGROUND

In this section, we initially present a general cache frame-
work, and then briefly present the various Infrastructure-as-a-
Service (IaaS) features offered by the Amazon Web Services
(AWS) Cloud, which includes persistent storage and on-
demand compute nodes.

A. Cache Framework

Large-scale applications such as scientific workflows,
data analysis, simulation, etc., are traditionally highly data-
intensive. This characteristic is responsible for long-running
compute processes, which is further compounded by data
movement between compute nodes. For example, within scien-
tific workflow applications, processes may have certain depen-
dencies on each other’s execution. These dependencies may
require data to be transferred to the next set of processes before
they can execute or be combined to generate some result.
Such data-intensive situations are not singular to workflow
applications, and data movement and computation are clearly
bottlenecks. To accelerate these types of processes, caches can
be deployed to maintain some set of precomputed/intermediate
data for reuse. Especially in scientific applications, precom-
puted data could not only replace the need to compute re-
dundant information, but it can also significantly reduce the
amount of data transfers required.

For this purpose, we have previously proposed a cooperative
cache that had been deployed onto the grid for reducing
the overall processing times of scientific workflows [6]. We
have since developed a self-managed variant of this cache
framework, which automatically allocates machine instances
as to expand the cache’s capacity, as well as a heuristic to relax
instances to save costs [7]. Thus, each node is responsible for
a fraction of the entire data cache, which is managed using
a consistent hashing approach [16], seen in Figure 1. In this
figure, a hash line running from 0 to r — 1 is configured.
Each data set is first hashed onto this line using 4/(k) = (k
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Fig. 1. Cooperating Cache Containing Two Nodes

mod r). The node which should store data set, k, is then
referenced by the nearest bucket larger than k.

A consistent hashing scheme allows minimal disruption to
our cooperating system as we add and remove nodes to our
cache dynamically. Indeed, since the hash function is fixed,
only a small amount of data must be moved from one node
to another when a node is introduced or relinquished into the
scheme. Each node further contains B+-Tree which indexes
the stored data sets. Our cache provides a high-level API, and
can be accessed as a service so it is also non-intrusive to
existing systems. Detailed descriptions can be found in [7].

Depending on the needs of an application, a high-
performance cache can be deployed over Cloud nodes that
have large amounts of memory and high bandwidth, at a
higher cost. Similarly, persistent Cloud storage services or
smaller Cloud nodes may also be used as less costly option.
We envision a cache manager that can select and manage the
best such configuration given some cost and QoS constraints.
To do this, we must first evaluate the cost and performance of
these resource configurations.

B. Cloud Services and Costs

AWS offers many options for on-demand computing as a
part of their Elastic Compute Cloud (EC2) service. EC2 nodes
(instances) are virtual machines that can launch snapshots of
systems, i.e., images. These images can be deployed onto
various instance types (the underlying virtualized architecture)
with varying costs depending on the instance type’s capabili-
ties.

TABLE I
AMAZON WEB SERVICES COSTS

[ AWS Feature | Cost (USD)

S3 $0.15 per GB-month

$0.15 per GB-out

$0.01 per 1000 in-requests
$0.01 per 10000 out-requests
$0.085 per allocated-hour

$0.15 per GB-out

$0.68 per allocated-hour

$0.15 per GB-out

$0.10 per GB-month

$0.10 per 1 million I/O requests

Small EC2 Instance

Extra Large EC2 Instance

EBS

For example, a Small EC2 Instance (m1 . small), according



to AWS! at the time of writing, contains 1.7 GB memory, 1
virtual core (equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007
Xeon processor), and 160 GB disk storage. AWS also states
that the Small Instance has moderate network 1/O. Another
instance type we consider is the Extra Large EC2 instance
(ml.xlarge), which contains 15 GB memory, 4 virtual cores
with 2 EC2 Compute Units each, 1.69 TB disk storage with
high 1/0 Performance. Their costs are shown in Table 1. We
focus on these two highly contrasting instance types in this
paper because they offer a wide spectrum between capabilities,
while also noting that several other instance types are in fact
available in EC2.

Amazon’s persistent storage framework, Simple Storage
Service (S3), provides a key-value store with simple ftp-style
APL: put, get, del, etc. Typically, the unique keys are
represented by a filename, and the values are themselves the
data objects, i.e., files. While the objects themselves are limited
to 5 GB, the number of objects that can be stored in S3 is
unlimited. Aside from the simple API, the S3 architecture
has been designed to be highly reliable and available. It is
furthermore very cheap (see Table I) to store data on S3.

Another option for persistent storage is to employ Elastic
Block Storage (EBS) in conjunction with EC2 instances. The
EBS service is a persistent disk volume that can be mounted
directly onto a running EC2 instance. The size of an EBS
volume is user defined and limited to 1 TB. Although an EBS
volume can only be attached to one instance at any time, an
instance can conversely mount multiple EBS volumes. From
the viewpoint of the EC2 instance, the EBS volume can be
treated simply as a local filesystem.

C. Tradeoffs

We now offer a brief discussion on the tradeoffs of deploy-
ing our cache over the aforementioned Cloud resources.

In-Instance-Core Option: There are several advantages in
supporting our cache over EC2 nodes in terms of flexibility and
throughput. Depending on the application, it may be possible
to store all cached data completely directly in memory, which
reduces access time. But because small instances consist only
1.7 GB of memory, we may need to dynamically allocate more
instances to cooperate in establishing a larger capacity. On the
other hand, we could also allocate an extra large instance with
much more memory capacity. However, the instance could
overfit our cache needs, which would betray cost-effectiveness.
Because of these reasons, we would expect a memory-based
cache to be the most expensive, but possibly with the highest
performance, especially for an abundance smaller data units.

In-Instance-Disk Option: In cases where larger amounts
of data are expected to be cached, we could store on the
instance’s disk. Even small EC2 instances provide ample disk
space (160 GB), which would save us from having to allocate
new instances very frequently for capacity, as we would expect
in the previous option. However, disk accesses could be very
slow compared to an in-memory cache if request rates are

'AWS Instance Types, http://aws.amazon.com/ec2/instance-types

high. Conversely, if the average data size is large, disk access
overheads may be amortized over time. We can expect that this
disk-based option should be cheaper than the memory-based,
with slightly lower performance depending on the average
unit-data size.

Persistent Options: The previous two configurations do not
account for persisting data. That is, upon node failure, all data
is presumed lost even if stored on disk. Moreover, it can be
useful to stop and restart a cache, perhaps during peak/non-
peak times, to save usage costs.

The simplest persistent method is to directly utilize S3 to
store cached data. This avoids any indexing logic from the
application developer, as we can subscribe to S3’s APL It is
very inexpensive to store data on S3 and more importantly,
because S3 is independent from EC2, we further elude instance
allocation costs. However, due to S3’s reliability and availabil-
ity guarantees, it implements an architecture which supports
replication and consistency, which would likely impact perfor-
mance. Also, although storage costs are low, the data transfer
costs are equivalent to those of EC2 instances, which leads
to the expectation that high-throughput environments may not
benefit cost-wise from S3.

Another persistent method are EBS volumes. One difference
between EBS and S3 is that EBS volumes are less accessible.
They must first be mounted onto an EC2 instance. But because
they are mounted, it alludes to the potential for higher through-
put than S3, whose communications is only enabled through
high-level SOAP/REST protocols that ride over HTTP. Also
in contrast to S3, EBS volumes are not unlimited in storage,
and their size must be predefined by users. In terms of cost,
however, EBS invokes a storage and request overhead to the
hourly-based EC2 instance allocation costs. In the next section
we evaluate these options in depth.

III. EXPERIMENTAL RESULTS

We now discuss the evaluation of various cache and storage
schemes over the aforementioned AWS Cloud resources

A. Experimental Setup

Resource Configuration: We have run experiments over the
following configurations:

e S3: Data stored as files directly onto the S3 storage
service (persistent).

e ec2-ml.small-mem: Data stored in memory on Small
EC2 instance (volatile, moderate 1/0).

e ec2-ml.small-disk: Data stored as files on disk on
Small EC2 instance (volatile, moderate 1/0O).

e ec2-ml.small-ebs: Data stored as files on a
mounted Elastic Block Store volume on small EC2 in-
stance (persistent, moderate 1/O).

e ec2-ml.xlarge-mem: Data stored in memory on Ex-
tra Large EC2 instance (volatile, high I/O).

e ec2-ml.xlarge—disk: Data stored as files on disk
on Extra Large EC2 instance (volatile, high 1/0).



e ec2-ml.xlarge—ebs: Data stored as files on a
mounted Elastic Block Store volume on Extra Large EC2
instance (persistent, high I/O).

Within the EC2 instances, we evaluate three disparate ways
to store the cache: in-core (x—mem), on local disk (x—disk),
and on Amazon’s Elastic Block Storage, or simply EBS
(¥—ebs). In both ml.small (32-bit) and ml.xlarge
(64-bit) systems, we employ the Ubuntu Linux 9.10 Server
image provided by Alestic.”?

Application: As a representative workload, we performed
repeated execution on a Land Elevation Change process,
a real application provided to us by our colleagues in
the Department of Civil and Environmental Engineering
and Geodetic Science here at Ohio State University. This
process inputs a triple, (L,t,t'), where location, L, denotes
a coordinate and t,t' : t < ¢’ represent the times of interest.
The service locates two Digital Elevation Model (DEM) files
with respect to (L,t) and (L,t'). DEMs are represented
by large matrices of an area, where each point denotes an
elevation reading. Next, the process takes the difference
between the two DEMs, which derives a DEM of the same
size, where each point now represents the change in elevation
from ¢ to ¢’. We do stress that, while all our experiments were
conducted with this process, by changing certain parameters,
we can capture a variety of applications.

We have fixed the parameters of this process to take in
500 possible input keys, i.e., 500 distinct (L, ¢, t) triples, and
our experiment queries randomly over this range. These input
keys represent linearized coordinates and date. The queries are
first sent to a coordinating compute node, and the underlying
cooperating cache is then searched on the input key to find a
replica of the precomputed results. Upon a hit, the results are
transmitted directly back to the caller, whereas a miss would
prompt the coordinator to invoke the process.

TABLE I
BASELINE EXECUTION TIME FOR LAND ELEVATION CHANGE PROCESS

[ DEM Size | Execution Time (sec) |

1 KB 2.09
1 MB 6.32
5 MB 20.52
50 MB 75.39

To analyze cache and storage performance, which can be
affected by memory size, disk speed, network bandwidth, etc.,
we varied the sizes of DEM files: 1 KB, 1 MB, 5 MB, 50 MB.
One such file is output from one execution, and over time, we
would need to store a series of such files in our cache. These
sizes allow for scenarios from cases where all cached data can
fit into memory (e.g., 1 KB, 1 MB) to cases where in-core
containment would be infeasible (e.g., 50 MB), coercing the
need for disk or S3 storage. The larger data will also amortize
network latency and overheads, which increases throughput.
The baseline execution times of the service execution are
summarized for these input sizes in Table II.

2 Alestic, http://alestic.com/

B. Performance Evaluation

In this subsection, we measure performance in terms of
relative speedup to the baseline execution times shown in
Table II, as well as the overall throughput of the various
system configurations. We randomly submitted 2000 queries
over the 500 possible (L,¢,t¢') inputs to the Land Elevation
Change process. The querying strategy is not unlike most
cache-aware systems. Each query submission first checks our
cache, and on a miss, the process is executed and its derived
result is transferred and stored in the cache for future reuse.
Upon a hit, the result is transmitted immediately to the user.
To ensure consistency across all experiments, we do not
consider cache eviction here, and all caches start cold.

Relative Speedup: Let us first consider the relative speedup
for 1 KB, 1 MB, 5 MB, and 50 MB DEM files, shown in
Figure 2(a), 2(b), 2(c), and 2(d) respectively.

In Figure 2(a), it is somewhat surprising that the same
speedup is observed in the across all configurations. Because
the data size is small, we believe that this is due to internal
memory caching mechanisms within the machine instances.
Also, the network transmission time for 1 KB data is so
insignificant as to not favor either moderate or high 1/0O.
S3’s performance appears to drop relative to the instance-
based settings toward the end of the experiment. Due to S3’s
persistence features, this was not completely unexpected, and
we posit that larger files may amortize S3 invocation overhead.
This becomes clear when we evaluate the average hit times per
configuration later in this section.

The results for 1 MB and 5 MB DEMs are shown in
Figures 2(b) and 2(c) respectively, with one caveat: The
ec2-ml.small-mem configuration cannot fit all the data
completely in its memory in the case of 5 MB. Fortunately,
our cache had been designed to handle such cases (recall
from Section II that our cache can add/remove cooperating
nodes as needed. Every time a memory overflow is imminent,
we allocate a new ml.small instance and migrate half the
records from the overflown node to the new instance. In
Figure 2(c), each instance allocation is marked as a triangle
on ec2-ml.small-mem. Instance allocation is no doubt
responsible for the performance slowdown.

In Figure 2(b), it becomes clear that in-memory con-
tainment is, in fact, beneficial for both small and extra
large instance types. However, the high 1/O afforded by
the m1.xlarge instance marks the difference between the
two memory-bound instances. This is justified by the fact
that the persistent ec2-ml.xlarge-ebs eventually over-
comes ec2-ml.small-mem. Also interesting is the per-
formance degradation of the small disk-bound instances,
ec2-ml.small-disk and ec2-ml.small-ebs, which
performs comparably to S3 during the first ~ 500 queries.
Afterward, their performance decreases below S3. This is an
interesting observation, considering that the first 500 queries
are mostly cache misses (recall we start all caches out cold),
which implies that the m1.small disk-based instance re-
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trieves and writes the 1 MB files to disk faster than S3.
However, when queries start hitting the cache more often after
the first 500 queries, the dropoff in performance indicate that
repeated random disk reads on the m1.small instances are
generating significant overhead, especially in the case of the
persistent ec2-ml.small-ebs.

Similar behavior can be observed for the 5 MB case,
shown in Figure 2(c). The overhead of node allocation for
ec2-ml.small-mem is solely responsible for its reduc-
tion in speedup. While the results are as expected, we do
concede that our system’s conservative instantiation of seven
ml.small instances (that is, 1 to start + 6 over time) to
hold a total of 500 x 5 MB of data in memory is indeed
an overkill. Our instance allocation method was conservative
here to protect against throttling, that is, the possibility that an
instance becomes overloaded and automatically stores on disk.
Clearly, these cases would invalidate speedup calculations.

Finally, we experimented with 50 MB DEM data files.
As a representative size for even larger sized data often
seen in data analytic and scientific processes, we operated
under the assumption that memory-bound caching would
most likely be infeasible, and we experimented only with
disk-bound settings. One interesting trend is the resurgence
of ec2-ml.small-disk and ec2-ml.small-ebs over
S3. One explanation may be that disk-bound caches favor
larger files, as it would amortize random access latency. It
may also be due to S3’s persistence guarantees — we noticed,
on several occasions, that S3 prompted for retransmissions
of these larger files.

Cache Access Time: In all of the above experiments,
the difference among speedups still seem rather trivial,
albeit some separation can be seen toward the end of
most experiments. We posit that, had the experiments run
much longer (i.e., much more than only 2000 requests) the
speedups will diverge greatly. To justify this, Figures 3(a),
3(b), 3(c), and 3(d) show the average hit times for each cache
configuration. That is, we randomly submitted queries to full
caches, which guarantees a hit on every query, and we are
reporting the mean time in seconds to search the cache and
retrieve the relevant file.

Here, the separation among the resource configuration be-
comes much clearer. Figure 3(a) shows that using S3 for
small files eventually exhibits slowdowns by 2 orders of
magnitude. This fact eluded our observation previously in
Figure 2(a) because the penalty caused by the earlier cache
misses dominated the overall times. In the other figures, we
again see justification for using memory-bound configurations,
as they exhibit for the lowest mean hit times. Also, we
observe consistent slowdowns for ec2-ml.small-disk
and ec2-ml.small-ebs below S3 in the 1 MB and 5
MB cases. Finally, using the results from Figure 3(d), we
can conclude that these results again support our belief that
disk-bound configurations of the small instance types should
be avoided for such mid-sized data files due to disk access
latency. Similarly for larger files, S3 should be avoided in

favor of ec2-ml.xlarge—ebs if persistence is desirable.
We have also ascertained from these experiments that the high
I/O that is promised by the extra large instances contributes
significantly to the performance of our cache.

C. Cost Evaluation

In this subsection, we present an analysis on cost for the
instance configurations considered. The costs of the AWS
features evaluated in our experiments are summarized in Table
I. While in-Cloud network I/O is currently free, in practice,
we cannot assume that all users will be able to compute within
the same Cloud. We thus assume that cache data is transferred
outside of the AWS Cloud network in our analysis. We are
repeating the settings from the previous set of experiments, so
an average unit data size of 50 MB will yield a total cache size
of 25 GB of Cloud storage (recall that there are 500 distinct
request keys). We are furthermore assuming a fixed rate of
R = 2000 requests per month from clients outside the Cloud.
We have also extrapolated the costs (right side of table) for
when request rate R = 200000, using the Mean Hit Times
from Figure 3 as the limits for such a large request rate R.
Clearly, as R increases for a full cache, the speedup given by
cache will eventually become denominated by the Mean Hit
Times.

The cost, C', of maintaining our cache, the speedup S
(after 2000 and 200000 requests), and the ratio C'/S (i.e., the
cost per unit-speedup), are reported under two requirements:
volatile and persistent data stores. Again, volatile caches are
less reliable in that, upon a node failure, all data is lost.
The costs for sustaining a volatile cache for one month is
reported in Table III. Here, the total cost can be computed as
C = (Caioc + C10), where Cajoc = h x k X ¢; denotes
hours, h to allocate some k number of nodes using the said
costs (from Table I) for instance type t. C;1o = R X d X ¢,
accounts for transfer costs, where R transfers were made per
month, each involving d GB of data per transfer, multiplied
by the cost to transfer per GB, c;,.

First, we recall that if the unit-data size, d, is very small
(1 KB), we can obtain excellent performance for any volatile
configuration. This is because everything easily fits in memory,
and we speculate that, even for the disk-based options, the
virtual instance is performing its own memory-based caching,
which explains why performance is not lost. This is further
supported by the speedup when d = 1 MB, under the disk-
based option. When projected to R = 200000 requests, we ob-
serve lucrative speedups, which is not surprising, considering
the fast access and retrieval times for such a small file. Further-
more, when R = 2000 requests, the ec-ml.small-disk
option offers excellent C'/S ratios, making it a very good
option. Conversely, when request rate R is large, the I/O
performance of the small instances accounts for too much of
a slowdown, resulting in low speedups, and a low C'/S ratio.
This suggests that m1.xlarge is a better option for systems
expecting higher throughput rates.

Next, we compiled the cost for persistent caches, supported
by S3 and EBS in Table IV. Here, Cg refers to the cost per



TABLE III
MONTHLY VOLATILE CACHE SUBSISTENCE COSTS (S = SPEEDUP, C'/S = COST PER UNIT-SPEEDUP)

2000 Requests 200000 Requests
Unit-Size S C = Cajioe + Cro C/S S Cro c/S
1 KB ml.small-mem 3.54 | $63.24 = $63.24 + $0.00 $17.84 2629.52 $0.03 $0.03
(500 KB total) | ml.small-disk 3.67 | $63.24 + $0.00 = $63.24 $17.23 2147.681 | $0.03 $0.03
ml.xlarge-mem 3.64 | $505.92 = $505.92 + $0.00 $138.99 2302.43 $0.03 $0.22
ml.xlarge-disk | 3.63 | $505.92 = $505.92 4+ $0.00 $139.57 1823.215 | $0.03 $0.28
1 MB ml.small-mem 3.5 $63.54 = $63.24 + $0.30 $18.17 267.19 $30.00 $0.35
(500 MB total) | ml.small-disk 3.26 | $63.54 = $63.24 + $0.30 $19.49 28 $30.00 $4.06
ml.xlarge-mem 3.6 $506.22 = $505.92 + $0.30 $140.62 347.3 $30.00 $1.53
ml.xlarge-disk | 3.59 | $505.92 + $0.30 = $506.22 $141.13 180.53 $30.00 $2.94
5 MB ml.small-mem 3.3 $444.18 = $442.68 + $1.50 $96.27 109.47 $150.00 $4.26
(2.5 GB total) | ml.small-disk 3.2 $64.74 = $63.24 + $1.50 $20.24 33.84 $150.00 $6.30
ml.xlarge-mem 3.6 $506.78 = $505.92 + $1.50 $140.78 174.42 $150.00 $3.76
ml.xlarge-disk | 3.38 | $506.78 = $505.92 4 $1.50 $149.94 111.71 $150.00 $5.87
50 MB ml.small-disk 2.9 $78.74 = $63.24 + $15.00 $27.16 16.05 $1500.00 | $97.40
(25 GB total) ml.xlarge-disk | 3.31 | $520.92 = $505.92 + $15.00 | $152.85 31.66 $1500.00 | $63.36

TABLE IV
MONTHLY PERSISTENT CACHE SUBSISTENCE COSTS (S = SPEEDUP, C/S = COST PER UNIT-SPEEDUP)
2000 Requests 200000 Requests
Unit-Size S Cg3=Cs+Cr+Cro c/s S Cro c/s
CpgBs = Cauoc + Cs + Cr + Cro
1 KB sS3 3.4 $0.0023 = $0.00 + $0.002 + $0.0003 $0.0007 24.79 $0.23 $0.01
(500 KB total) | ml.small-ebs 3.62 | $63.49 = $63.24 + $0.0002 + $0.00 + $0.0003 $17.54 1984.5 | $0.48 $0.04
ml.xlarge-ebs | 3.58 | $506.17 = $505.92 + $0.0002 + $0.00 + $0.0003 $141.39 2091.7 | $0.48 $0.25
1 MB S3 3.39 | $0.38 = $0.075 + $0.002 + $0.30 $0.12 29.98 $30.01 $1.01
(500 MB total) | ml.small-ebs 2.95 | $63.59 = $63.24 + $0.05 + $0.00 + $0.30 $21.56 13.62 $30.25 $6.87
ml.xlarge-ebs | 3.57 | $506.27 = $505.92 + $0.05 + $0.00 + $0.30 $142.00 133.96 | $30.25 $4.01
5 MB S3 3.27 | $1.88 = $0.375 + $0.002 + $1.50 $0.58 19.97 $150.00 $7.53
(2.5 GB total) ml.small-ebs 2.83 | $64.99 = $63.24 + $0.25 + $0.00 + $1.50 $22.97 11.84 $150.27 $18.04
ml.xlarge-ebs | 3.3 $507.67 = $505.92 + $0.25 + $0.00 + $1.50 $153.92 74.66 $150.27 $8.79
50 MB S3 2.59 | $18.75 = $3.75 + $0.002 + $15.00 $7.24 6.43 $1500.00 | $233.87
(25 GB total) ml.small-ebs 2.74 | $80.74 = $63.24 + $2.50 + $0.00 + $15.00 $29.47 11.09 $1502.52 | $142.70
ml.xlarge—ebs | 3.16 | $520.42 = $505.92 + $2.50 4+ $0.00 + $15.00 $164.69 22.66 $1502.52 | $88.63

1 GB-month storage, C'r is the request cost, and Cjo refers
to the data transfer costs per GB transferred out. Initially, we
were surprised to see that S3’s C/S ratio is comparable to
EBS (and even to the volatile options) when request rate R
is low regardless of data size. However, for a large request
rate, R, its overhead begins to slowdown its performance
significantly compared to EBS options. Especially observed
when unit-size, d, is very small, S3’s speedup simply pales
in comparison to other options. Its performance expectedly
increases as d becomes larger, due to the amortization of
overheads when moving larger files. This performance gain
of 53, however, drops sharply when d = 50 MB, resulting in
only 6.43x speedup, making EBS better options in terms of
cost per unit-speedup.

D. Discussion

The experiments demonstrate some interesting tradeoffs be-
tween cost and performance, the requirement for persistence,
and the average unit-data size. We summarize these options
below, given parameters d = average unit-data size, T = total
cache size, and R cache requests per month.

For smaller data sizes, i.e., d < 5 MB, and small total cache
sizes T' < 2 GB, we posit that because of its affordability, S3
offers the best cost tradeoff when R is small, even for support-
ing volatile caches. m1.small.mem and m1.small.disk

also offer very good cost-performance regardless of the request
rate, R. This is due to the fact that the entire cache can be
stored in memory, together with the low cost of m1.small
allocation. Even if the total cache size, T', is much larger than
2 GB, then depending on costs, it may still even make sense
to allocate multiple small instances and still store everything
in memory, rather than using one small instance’s disk — we
showed that, if request rate R is high, and the unit-size, d, is
small, the speedup form1.small.disk is eventually capped
two orders of magnitude below the memory-bound option.
If d > 50 MB, we believe it would be wise to consider
ml.xlarge. While it could still make sense to use a single
small instance’s disk if R is low, we observed that performance
is lost quickly as R increases, due to m1.small’s lower-end
I/0.

If data persistence is necessary, S3 is by far the most
cost-effective option in most cases. However, it also comes
at the cost of lower throughput, and thus S3 would be
viable for systems with less expectations for high amounts
of requests. The cost analysis also showed that storage costs
are almost negligible for S3 and EBS if request rates are
high. If performance is an issue, it would be prudent to
consider m1 . small-ebs and ml.xlarge—ebs for smaller
and larger unit-data sizes respectively, regardless of the total



cache size. Of course, if cost is not an a pressing issue,
ml.xlarge with or without EBS persistence should be used
achieve the highest performance.

IV. RELATED WORKS

Since its emergence, there has been growing amounts of
interest in testing the feasibility of performing data- and
compute-intensive analysis in the Cloud. For instance, a
plethora of efforts have been focused around the popular
MapReduce paradigm [8], which is being supported in various
Cloud frameworks, including Google AppEngine [10], AWS
Elastic MapReduce [5], among others. One early experience
with scientific workflows in the Cloud is discussed in [11].
They showed that the running their scientific workflow over
the Cloud was comparable to performance in a cluster, albeit
that certain configuration overheads do exist in the Cloud. This
specific application is among several others [17], [15], [13]
that have been mapped onto the Cloud.

While Cloud-based data-intensive applications continues to
grow, the cost of computing is of chief importance [3]. Several
efforts have been made to assess costs for various large-scaled
projects. Kondo, ef al. compared cost-effectiveness of AWS
against volunteer grids with the [12]. Deelman, et al. reported
the cost of utilizing Cloud resources to support a representative
workflow application, Montage [9]. They reported that CPU
allocation costs will typically account for most of the cost
while storage costs are amortized. Because of this, they found
that it would be extremely cost effective to cache intermediate
results in Cloud storage. Palankar et al. conducted an in-depth
study on using S3 for supporting large-scale computing [14].
Our results on S3 echoed their findings, and we agree that S3
can be considered when average data size is larger.

In terms of utilizing the Cloud for caching/reusing data,
Yuan, et al. proposed a strategy [19] for caching for large-scale
scientific workflows. Their system decides to store or evict
intermediate data produced at various stages of a workflow,
based on cost tradeoffs between storage and recomputation and
reuse likelihood. Their analysis ignores network transfer costs,
which we showed to be a dominant factor. A tangential study
by Adams er al. discussed the potentials of trading storage
for computation [1]. Weissman and Ramakrishnan discussed
deploying Cloud proxies [18] for accelerating web services.
Servers close to the computation are used to store intermediate
data. Our work differs from the above in that, we are evaluating
various cache storage options in the Cloud and projecting the
cost, performance, and persistence tradeoffs of each.

V. CONCLUDING REMARKS

As large-scale applications are becoming increasingly data-
intensive, caching and data storage strategies can help increase
their performance. Using the Cloud, which has become in-
creasingly popular, can offer an on-demand framework for
supporting such data caches. However, a major issue is the
cost that comes coupled of utilizing several mixed options
to support a cache. Depending on application parameters and

needs, we have shown that certain scenarios call for different
Cloud resources.

We hope to use this study to initiate the development of
finer-grained cost models and automatic configuration of such
caches given user parameters. We will also develop systematic
approaches, including hybrid cache configurations to optimize
cost-performance tradeoffs.
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