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ABSTRACT
Graph clustering has generally concerned itself with cluster-
ing undirected graphs; however the graphs from a number of
important domains are essentially directed, e.g. networks of
web pages, research papers and Twitter users. This paper
investigates various ways of symmetrizing a directed graph
into an undirected graph so that previous work on clus-
tering undirected graphs may subsequently be leveraged.
Recent work on clustering directed graphs has looked at
generalizing objective functions such as conductance to di-
rected graphs and minimizing such objective functions using
spectral methods (such approaches are also shown to fit in
our graph symmetrization framework). We show that more
meaningful clusters (as measured by an external ground
truth criterion) can be obtained by symmetrizing the graph
using measures that capture in- and out-link similarity, such
as bibliographic coupling and co-citation strength. How-
ever, direct application of these similarity measures to mod-
ern large-scale power-law networks is problematic because of
the presence of hub nodes, which become connected to the
vast majority of the network in the transformed undirected
graph. We carefully analyze this problem and propose a
Degree-discounted similarity measure which is much more
suitable for large-scale networks. We show extensive empir-
ical validation.

1. INTRODUCTION
A number of complex systems and applications can be

modeled in the form of a relationship graph or network. Ex-
amples abound ranging from Protein Interaction Networks
to Twitter networks, from Citation networks to technologi-
cal networks such as the hyperlinked structure on the World
Wide Web. Analyzing such networks can yield important
insights about the domain problem in question. A common
analysis tool here is to discover the community or cluster
structure within such networks.

Directed graphs are essential in domains where relation-
ships between the objects may not be recriprocal i.e., there

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

may be an implicit or explicit notion of directionality in the
context of the complex system being modeled. Most of the
work to date on community discovery or clustering of graphs
has targeted undirected networks and very little has focused
on the thorny issue of community discovery in directed net-
works as noted in a recent survey on the topic[6].

A major challenge is that the nature of relationships cap-
tured by the edges in directed graphs is fundamentally dif-
ferent from that for undirected graphs. Consider a citation
network where an edge exists from paper i to j if i cites j.
Now i may be a paper on databases that cites an impor-
tant result from the algorithmic literature (j). Our point
is that paper i need not necessarily be similar to paper j.
A common approach to handle directionality is to ignore
it – i.e. eliminate directionality from edges and compute
communities. In the above example that would not be the
appropriate solution. Such a semantics of directionality is
also evident in the directed social network of Twitter, where
if a person i follows the feed of a person j, it tell us that
i thinks the updates of j are interesting but says nothing
about the similarity of i and j.

Recent research (summarized in Section 2) has addressed
this problem via generalizing objective functions for groups
of vertices in undirected graphs to the context of directed
graphs. Frequently, such approaches have relied on spectral
clustering in one form or another, but spectral clustering
unfortunately does not scale very well. In this article, we
instead propose to solve the directed graph clustering prob-
lem via a two stage approach; in the first stage, the graph is
symmetrized in one of several possible ways, and in the sec-
ond stage, the so-obtained symmetrized graph is clustered
using any state-of-the-art (undirected) graph clustering al-
gorithm. Our argument for pursuing a symmetrization ap-
proach is that, if there exists a good symmetric similarity
measure - and domains which have reasonable cluster struc-
ture must possess a coherent notion of similarity - one can
use the similarity measure to induce a symmetrized graph
suitable for subsequent clustering. Furthermore, we show
that the directed spectral clustering efforts of previous re-
searchers can be cast in our two-stage framework, enabling
the use of more scalable graph clustering algorithms other
than spectral clustering. We also draw together existing
work to define Bibliometric symmetrization, which takes
into account the number of common in- and out- links be-
tween nodes. However, Bibliometric symmetrization does
not work well with large-scale power-law like graphs, as it
does not handle hub nodes well. Moreover, we also need
a suitable similarity measure between nodes in a directed



graph. With these desiderata in mind, we propose Degree-
discounted symmetrization, where we explicitly account for
the influence of hub nodes via a degree-discounting process.

Ours is, to the best of our knowledge, the first compre-
hensive comparison of different graph symmetrization tech-
niques. We perform evaluation on four real datasets, three
of which (Wikipedia, LiveJournal and Flickr) have million
plus nodes, and two (Wikipedia,Cora) of which have de-
pendable ground truth for evaluating the resulting clusters.
We examine the characteristics of the different symmetrized
graphs in terms of their suitableness for subsequent cluster-
ing. Our proposed Degree-discounting symmetrization ap-
proach achieves a 22% improvement in F scores over a state-
of-the-art directed spectral clustering algorithm on the Cora
dataset, and furthermore is two orders of magnitude faster.
The degree-discounting symmetrization is also shown to en-
able clustering that is at least 4-5 times faster than other
symmetrizations on our large scale datasets, as well as en-
abling a 12% qualitative improvement in Wikipedia. We
also show compelling examples of the clusters that our sym-
metrization enables recovery of in the Wikipedia dataset;
the structure of this cluster conforms with the examples we
have used to motivate our symmetrizations early on in the
paper.

2. PRIOR WORK

2.1 Normalized cuts for directed graphs
Many popular methods for clustering undirected graphs

search for subsets of vertices with low normalized cut [9,
13, 16] (or conductance[9], which is closely related). The
normalized cut of a group of vertices S ⊂ V is defined as[16,
13]

Ncut(S) =

P

i∈S,j∈S̄ A(i, j)
P

i∈S degree(i)
+

P

i∈S,j∈S̄ A(i, j)
P

j∈S̄ degree(j)
(1)

where A is the (symmetric) adjacency matrix and S̄ = V −S

is the complement of S. Intuitively, groups with low nor-
malized cut are well connected amongst themselves but are
sparsely connected to the rest of the graph.

The connection between random walks and normalized
cuts is as follows [13] : Ncut(S) in Equation 1 is the same
as the probability that a random walk that is started in the
stationary distribution will transition either from a vertex
in S to a vertex in S̄ or vice-versa, in one step [13]

Ncut(S) =
Pr(S → S̄)

Pr(S)
+

Pr(S̄ → S)

Pr(S̄)
(2)

Using the unifying concept of random walks, Equation 2
have been extended to directed graphs by Zhou et. al. [18]
and Huang et. al. [8]. Let P be the transition matrix of a
random walk on the directed graph, with π being its associ-
ated stationary distribution vector (e.g. PageRank vector)
satisyfing πP = π. The probability that a random walk
started in the stationary distribution traverses a particular
directed edge u → v is given by π(u)P (u, v). The Ncut of a
cluster S is again the probability of a random walk transi-
tioning from S to the rest of the graph, or from the rest of
the graph into S in one step:

Ncutdir(S) =

P

i∈S,j∈S̄ π(i)P (i, j)
P

i∈S π(i)
+

P

j∈S̄,i∈S π(j)P (j, i)
P

j∈S̄ π(j)

(3)

Figure 1: The nodes 4 and 5 form a natural cluster
even though they don’t link to one another, as they
point to the same nodes and are also pointed to by
the same nodes.

Meila and Pentney [12] introduce a general class of weighted
cut measures on graphs, called WCut, parameterized by the
vectors T, T ′ and the matrix A:

WCut(S) =

P

i∈S,j∈S̄a T ′(i)A(i, j)
P

i∈S T (i)
+

P

j∈S̄,i∈S T ′(j)A(j, i)
P

j∈S̄ T (j)

(4)
Different NCut measures can be recovered from the above
definition by plugging in different values for T, T ′ and A,
including the definitions for NCut and NCutdir given above.

All of the above work minimizes these various cut mea-
sures via spectral clustering i.e. by post-processing the eigen-
vectors of suitably defined Laplacian matrices. The Lapla-
cian matrix L for Ncutdir , e.g., is given by [18, 8, 3]

L = I −
Π1/2PΠ−1/2 + Π−1/2P ′Π1/2

2
(5)

where P is the transition matrix of a random walk, and Π is
a diagonal matrix with diag(P ) = π, π being the stationary
distribution associated with P .

2.1.1 Drawbacks of normalized cuts for directed graphs
A common drawback of the above line of research is that

there exist meaningful clusters which do not necessarily have
a low directed normalized cut. The prime examples here are
groups of vertices which do not point to one another, but all
of which point a common set of vertices (which may belong
to a different cluster) We present an idealized example of
such situations in Figure 1, where the nodes 4 and 5 can be
legitimately seen as belonging to the same cluster, and yet
the Ncutdir for such a cluster will be high (the probabil-
ity that a random walk transitions out of the cluster {4, 5}
to the rest of the graph, or vice versa, in one step, is very
high.) Such situations may be quite common in directed
graphs. Consider, for example, a group of websites that be-
long to competing companies which serve the same market;
they may be pointing to a common group of websites out-
side themselves (and, similarly be pointed at by a common
group of websites), but may not point at one another for fear
of driving customers to a competitor’s website. Another ex-
ample may be a group of research papers on the same topic
which are written within a short span of time and there-
fore do not cite one another, but cite a common set of prior
work and are also in the future cited by the same papers.
We present real examples of such clusters in Section 5.5.

Another drawback of the above line of research is the poor
scalability as a result of the dependence on spectral cluster-
ing (except for Andersen et. al. [1] who use local partitioning
algorithms). We further discuss this issue in Section 3.2.

2.2 Bibliographic coupling and co-citation ma-
trices



The bibliographic coupling matrix was introduced by Kessler [11],
in the field of bibliometrics, for the sake of counting the
number of papers that are commonly cited by two scientific
documents. It is given by B = AAT , and B[i, j] gives the
number of nodes that the nodes i and j both point to in the
original directed graph with adjacency matrix A.

B(i, j) =
P

k A(i, k)A(j, k) =
P

k A(i, k)AT (k, j)
B = AAT

The co-citation matrix was introduced by Small [17], again
in the field of bibliometrics. It is given by C = AT A, and
C[i, j] gives the number of nodes that commonly point to
both i and j in the original directed graph.

3. GRAPH SYMMETRIZATIONS
We adopt a two-stage approach for clustering directed

graphs, schematically depicted in Figure 2. In the first stage
we transform the directed graph into an undirected graph
(i.e. symmetrize the directed graph) using one of different
possible symmetrization methods. In the second stage, the
undirected graph so obtained is clustered using one of sev-
eral possible graph clustering algorithms. The advantage
of this approach is that it allows a practitioner to employ
a graph clustering algorithm of their choice in the second
stage. For example, spectral clustering algorithms are typ-
ically state-of-the-art quality-wise, but do not scale well as
eigenvector computations can be very time-consuming [4].
Under such circumstances, it is useful to be able to plug in
a scalable graph clustering algorithm of our own choice, such
as Graclus [4], MLR-MCL [15], Metis [10] etc. Note that it
is not the objective of this paper to propose a new (undi-
rected) graph clustering algorithm or discuss the strengths
and weaknesses of existing ones; all we are saying is that
whichever be the suitable graph clustering algorithm, it will
fit in our framework.

Of course, the effectiveness of our approach depends cru-
cially on the the symmetrization method. If the symmetriza-
tion itself is flawed, even a very good graph clustering algo-
rithm will not be of much use. But do we have reason to
believe that an effective symmetrization of the input directed
graph is possible? We believe the answer is yes, at least if the
domain in question does indeed have some cluster structure.
Fundamentally a cluster is a group of objects that are similar
to one another and dissimilar to objects not in the cluster.
If a domain admits of clusters, this means that there must
exist some reasonable similarity measure among the objects
in that domain. Since similarity measures are generally sym-
metric (i.e. similarity(i, j) = similarity(j, i)) and positive,
defining a notion of similarity for a fixed set of input objects
is equivalent to constructing an undirected graph among
them, with edges between pairs of objects with non-zero
similarity between them and the edge weight equal to the
actual value of the similarity. In fact, our proposed degree-
discounted symmetrization method can just as validly be
thought of as measuring the similarity between pairs of ver-
tices in the input directed graph.

We next discuss various ways to symmetrize a directed
graph. In what follows, G will the original directed graph
with associated (asymmetric) adjacency matrix A. GU will
be the resulting symmetrized undirected graph with associ-
ated adjacency matrix U .

Figure 2: Schematic of our framework

3.1 A+A’
The simplest way to derive an undirected graph from a di-

rected one is via the transformation U = A + A′. Note that
this is very similar to the even simpler strategy of simply ig-
noring the directionality of the edges, except that in the case
of pairs of nodes with directed edges in both directions, the
weight of the edge in the symmetrized graph will be the sum
of the weights of the two directed edges. It is important to
empiricallly compare this scheme against other symmetriza-
tions since this is the implicit symmetrization used by most
algorithms.

The advantage of this method is, of course, its simplicity.
On the other hand, this method will fare poorly with situa-
tions of the sort depicted in Figure 1; the nodes 4 and 5 will
continue to remain unconnected in the symmetrized graph,
making it impossible to cluster them together.

3.2 Random walk symmetrization
Is it possible to symmetrize a directed graph G into GU

such that the directed normalized cut of a group of vertices
S, NCutdir(S) is equal to the (undirected) normalized cut
of the same group of vertices in the symmetrized graph GU?
The answer turns out to be yes.

Let P be the transition matrix of the random walk, π its
associated stationary distribution, and Π is the diagonal ma-
trix with π on the diagonal.Let U be the symmetric matrix
such that

U =
ΠP + P ′Π

2

Gleich [7] showed that for the symmetrized graph GU with
associated adjacency matrix U , the (undirected) Ncut on
this graph is equal to the directed Ncut on the original di-
rected graph, for any subset of vertices S. This means that
clusters with low directed ncut can be found by clustering
the symmetrized graph GU , and one can use any state-of-
the-art graph clustering for finding clusters with low ncut
in GU , instead of relying on expensive spectral clustering
using the directed Laplacian (given in Eqn 5) as previous
researchers have [18, 8].

The matrix P can be obtained easily enough by normaliz-
ing the rows of input adjacency matrix A, and the stationary
distribution π can be obtained via power iterations. owever,
the clusters obtained by clustering GU will still be subject
to the same drawbacks that we pointed out in Section 2.1.1.
Also note that this symmetrization leads to the exact same
set of edges as A + A′, since P and P ′ have the same non-
zero structure as A and A′ and Π is a diagonal matrix. The
actual weights on the edges will, of course, be different for
the two methods.

3.3 Bibliometric symmetrization



One desideratum of the symmetrized graph is that edges
should be present between nodes that share similar (in- or
out-) links, and edges should be absent between nodes in the
absence of shared (in- or out-)links. Both A + A′ and Ran-
dom walk symmetrization fail in this regard as they retain
the exact same set of edges as in the original graph; only
the directionality is dropped and, in the case of the Ran-
dom walk symmetrization, weights are added to the existing
edges.

The bibliographic coupling matrix (AA′) and the co-citation
strength matrix (A′A) are both symmetric matrices that
help us satisfy this desideratum. Recall that AA′ measures
the number of common out-links between each pair of nodes,
where as A′A measures the number of common in-links. As
there does not seem to be any obvious reason for leaving
out either in-links or out-links, it is natural to take the sum
of both matrices so as to account for both. In this case
U = AA′ + A′A, and we refer to this as bibliometric sym-
metrization.

Note that not only will new edges be added to the resulting
symmetrized graph, but existing edges may also be removed.
This is actually beneficial because in a directed graph, the
mere presence of an edge does not actually indicate affinity
between the two vertices, as we have argued in Section 1.
However, if the user does not wish for the removal of edges
that exist in the original graph, this can be accomplished by
simply setting A := A + I prior to the symmetrization.

3.4 Degree-discounted symmetrization
As a consequence of the well-known fact that the degree

distributions of many real world graphs follow a power law
distribution [5, 2], nodes with degrees in the tens as well as
in the thousands co-exist in the same graph. (This is true
for both in-degrees and out-degrees.) This wide disparity in
the degrees of nodes has implications for the Bibliometric
symmetrization; nodes with high degrees will share a lot
of common (in- or out-) links with other nodes purely by
virtue of their higher degrees. This is the motivation for
our proposed Degree-discounted symmetrization approach,
where we take into account the in- and out-degrees of each
node in the symmetrization process.

Another motivation for our proposed symmetrization is
defining a useful similarity measure between vertices in a
directed graph. As noted earlier in Section 3, a meaning-
ful similarity measure will also serve to induce an effective
symmetrization of the directed graph; ideally, we want our
symmetrized graph to place edges of high weight between
nodes of the same cluster and edges of low weight between
nodes in different clusters.

How exactly should the degree of nodes enter into the com-
putation of similarity between pairs of nodes in the graph?
First we will consider how the computation of out-link simi-
larity (i.e. the bibliographic coupling) should be changed to
incorporate the degrees of nodes.

Consider the following two scenarios (see Figure 3(a)):

1. Nodes i and j both point to the node h, which has
in-coming edges from many nodes apart from i and j.
In other words, the in-degree of h, Di(h) is high.

2. Nodes i and j both point to the node k, but which
has in-coming edges only from a few other nodes apart
from i and j.

Intuition suggests that case 1 above is a more frequent (hence

less informative) event than case 2, and hence the former
event should contribute less towards the similarity between
i and j than the latter event. In other words, when two

nodes i and j commonly point to a third node, say l, the

contribution of this event to the similarity between i and j

should be inversely related to the in-degree of l.
Next we consider how the degree of two nodes should fac-

tor into the similarity computation of those two nodes them-
selves. Figure 3(b) illustrates the intuition here: sharing a
common out-link k counts for less when one of the two nodes
that are doing the sharing is a node with many out-links. In
other words, the out-link similarity between i and j should

be inversely related to the out-degrees of i and j.

We have determined qualitatively how we should take the
in- and the out-degrees of the nodes into account, but the
exact form of the relationship remains to be specified. We
have found experimentally that discounting the similarity by
the square root of the degree yields the best results; mak-
ing the similarity inversely proportional to the degree itself
turned out to be an excessive penalty.

Pulling all of the above insights together, we modify the
expression for the bibliographic coupling or the out-link sim-
ilarity Bd(i, j) between the nodes i and j as follows: (recall
that Do is the diagonal matrix of out-degrees, and Do(i) is
short-hand for Do(i, i). Similarly Di is the diagonal matrix
of in-degrees.)

Bd(i, j) =
1

p

Do(i)
p

Do(j)

X

k

A(i, k)A(j, k)
p

Di(k)

=
1

p

Do(i)
p

Do(j)

X

k

A(i, k)AT (k, j)
p

Di(k)

We refer to this as the degree-discounted bibliographic cou-

pling and denote it by Bd. Note that the above expression is
symmetric in i and j, as any meaningful similarity measure
should be.

It can be verified that the entire matrix Bd with its (i, j)
entries specified as above can be expressed as:

Bd = D
−1/2

o AD
−1/2

i A
T
D

−1/2

o (6)

Our modification for the co-citation (in-link similarity)
matrix is exactly analogous to the above discussion; we pro-
ceed to directly give the expression for the matrix Cd con-
taining the degree-discounted co-citation or in-link similari-
ties between all pairs of nodes.

Cd = D
−1/2

i A
T
D

−1/2

o AD
−1/2

i (7)

The final degree discounted similarity matrix Ud is simply
the sum of Bd and Cd.

Ud = Bd + Cd

= D
−1/2

o AD
−1/2

i A
T
D

−1/2

o + D
−1/2

i A
T
D

−1/2

o AD
−1/2

i

3.5 Pruning the symmetrized matrix
One of the main advantages of Degree-discounted sym-

metrization over Bibliometric symmetriation (AA′ +A′A) is
that it is much easier to prune the resulting matrix. AA′ +
A′A and the Degree-discounted similarity matrix Ud share
the same non-zero structure, but the actual values are, of
course, different. For big real world graphs, the full sim-
ilarity matrix has far too many non-zero entries and clus-
tering the entire resulting undirected graph is very time-



(a) If the nodes i and j both point to a hub node h with many in-
coming edges (left), that should contribue lesser to their similarity
than if they commonly point to a non-hub node k (right)

(b) All else equal, the node i should be less similar to the
hub node h which has many out-going edges (left) when
compared to the non-hub node j (right).

Figure 3: Scenarios illustrating the intuition behind degree-discounting.

consuming. For this reason, it is critical that it be possible
for us to pick a threshold so as to be able to retain only those
entries in the matrix which pertain to sufficiently similar
pairs of nodes. However, picking a threshold for AAT +AT A

can be very hard; as the degrees of nodes are not taken into
account, the hub nodes in the graph generate a large number
of non-zero entries with high non-zero values (this is because
hubs will tend to share a lot of out-links and in-links with
a lot of nodes just by virtue of their having high degrees).
When we set a high threshold so as to keep the matrix sparse
enough to be able to cluster in a reasonable amount of time,
many of the rows corresponding to the other nodes become
empty. When we lower the threshold in response, the matrix
becomes very dense and it becomes impractical to cluster
such a dense matrix.

This problem is considerably reduced when applying Degree-
discounted symmetrization. This is because the matrix en-
tries involving hub nodes no longer are the largest; this lets
us choose a threshold such that when we retain only matrix
entries above the threshold, we have a matrix that is suffi-
ciently sparse and at the same time covers the majority of
nodes in the graph.

We discuss this issue in the context of real datasets in
Section 5.1

4. EXPERIMENTAL SETUP

4.1 Datasets
We perform experiments using four real datasets, detailed

below. Also see Table 4.1.
1. Wikipedia: This is a directed graph of hyperlinks be-
tween Wikipedia articles. We downloaded a snapshot of the
entire Wikipedia corpus from the Wikimedia foundation 1

(Jan–2008 version). The corpus has nearly 12 million arti-
cles, but a lot of these were insignificant or noisy articles
that we removed as follows. First, we retained only those
articles with an abstract, which cut the number of articles
down to around 2.1 million. We then constructed the di-
rected graph from the hyperlinks among these pages and
retained only those nodes with out-degree greater than 15.
We finally obtained a directed graph with 1,129,060 nodes
and 67,178,092 edges, of which 42.1% are bi-directional.

Pages in Wikipedia are assigned to one or more categories
by the editors (visible at the bottom of a page), which we
used to prepare ground truth assignments for the pages in
our dataset. We removed the many categories that are

1http://download.wikimedia.org/

present in Wikipedia for housekeeping purposes (such as
“Articles of low significance”, “Mathematicians stubs”). We
further removed categories which did not have more than 20
member pages in order to remove insignificant categories.
We obtained 17950 categories after this process. Note that
these categories are not disjoint, i.e. a page may belong to
multiple categories (or none).
2. Cora: This is a directed graph of CS research papers
and their citations. It has been collected and shared by An-
drew McCallum 2. Besides just the graph of citations, the
papers have also been manually classified into 10 different
fields of CS (such as AI, Operating Systems, etc.), with each
field further sub-divided to obtain a total of 70 categories at
the lowest level. We utilize the classifications at the lowest
level (i.e. 70 categories) for the sake of evaluation. This
graph consists of 17,604 nodes with 77,171 directed edges.
Note that although symmetric links are, strictly speaking,
impossible in citation networks (two papers cannot cite one
another as one of them will need to have been written be-
fore the other), there is still a small percentage (7.7%) of
symmetric links in this graph due to noise.
3. Flickr and 4. Livejournal:These are large scale di-
rected graphs, collected by the Online Social Networks Re-
search group at The Max Planck Institute [14]. The number
of nodes and edges for these datasets can be found in Ta-
ble 4.1. We use these datasets only for scalability evaluation
as we do not have ground truth information for evaluating
effectiveness of discovered clusters.

4.2 Setup
We compare four different graph symmetrization methods

described in Section 3. For Random walk symmetrization,
the stationary distribution was calculated with a uniform
random teleport probability of 0.05 in all cases. We clustered
the symmetrized graphs using MLR-MCL [15], Metis [10]
and Graclus [4]. We are able to show the results of Graclus
only on the Cora dataset as the program did not finish exe-
cution on any of the symmetrized versions of the Wikipedia
dataset. Note that the number of output clusters in MLR-
MCL can only be indirectly controlled via changing some
other parameters of the algorithm; for this reason there is
a slight variation in the number of clusters output by this
algorithm for different symmetrizations.

We also compare against the BestWCut algorithm de-
scribed by Meila and Pentney [12], but on the Cora dataset
alone, as the algorithm did not finish execution on the Wikipedia
dataset. It bears emphasis that BestWCut is not a sym-

2http://www.cs.umass.edu/ mccallum/code-data.html



Dataset Vertices Edges Percentage of symmetric links No. of ground truth categories
Wikipedia 1,129,060 67,178,092 42.1 17950

Cora 17,604 77,171 7.7 70
Flickr 1,861,228 22,613,980 62.4 N.A.

Livejournal 5,284,457 77,402,652 73.4 N.A.

Table 1: Details of the datasets

metrization method. The directed spectral clustering of
Zhou et. al. [18] did not finish execution on any of our
datasets.

All the experiments were performed on a dual core ma-
chine (Dual 250 Opteron) with 2.4GHz of processor speed
and 8GB of main memory. However, the programs were
single-threaded so only core was utilized. The software for
each of the undirected graph clustering algorithms as well
as BestWCut [12] was obtained from the authors’ respective
webpages. We implemented the different symmetrization
methods in C, using sparse matrix representations.

4.3 Evaluation method
The clustering output by any algorithm was evaluated

with respect to the ground truth clustering as follows. Let
the output clustering be C = {C1, C2, . . . , Ci, . . . , Ck}. For
any output cluster Ci, the precision and recall of this cluster
against a given ground truth category, say Gj , are defined

as: Prec(Ci, Gj) =
|Ci∩Gj |

|Ci|
and Rec(Ci, Gj) =

|Ci∩Gj |

|Gj |
. The

F-measure F (Ci, Gj) is the harmonic mean of the precision
and the recall. We match each output cluster Ci with the
ground truth cluster Gj for which F (Ci, Gj) is the highest
among all ground truth clusters. This is the F-measure that
is subsequently associated with this cluster, and is referred
to as F (Ci); i.e.

F (Ci) = max
j

F (Ci, Gj)

The average F-measure of the entire clustering C is defined as
the average of the F-measures of all the clusters, weighted by
their sizes (i.e. we compute the micro-averaged F-measure).

Avg.F (C) =

P

i |Ci| ∗ F (Ci)
P

i |Ci|

5. RESULTS

5.1 Characteristics of symmetrized graphs
The number of edges in the resulting symmetrized graph

for each strategy, the threshold and the number of single-
tons can be found in Table 2. We do not perform any prun-
ing using a threshold for A + A′ and Random Walk sym-
metrization as the number of edges for both methods is the
same as the number of edges in the original graph. The un-
pruned graphs for Bibliometric and Degree-discounted can
be quite dense however (as mentioned in Section 3.5) and so
we pick a threshold below which edges are eliminated from
the graph, so that the graph is clusterable in a reasonable
amount of time. Doing this may result in singletons,as some
nodes may have edges only below the chosen threshold. In
fact this problem is quite severe for the Bibliometric sym-
metrization; even though the size of the thresholded graph is
comfortably more than the size of the thresholded Degree-
discounted graph, there are many more singletons in the
former rather than latter. In the Wikipedia dataset, for

Figure 4: Distributions of node degrees for different
symmetrizations of Wikipedia.

example, the Bibliometric symmetrization graph has nearly
50% of the nodes as singletons, and the relevant percentage
is 95% and 59% for Flickr and Livejournal, all of which are
million-plus node graphs.

We next analyze the distribution of node degrees of each
of the symmetrized graphs for Wikipedia, shown in Figure 4.
Note that A + A′ and Random Walk have the same distri-
butions, as they have the same set of edges. The Degree-
discounted method ensures that most nodes have medium
degrees in the range of 50-200 (which is about the size of
the average cluster), and completely eliminates hub nodes.
These properties enable subsequent graph clustering algo-
rithms to perform well. The Bibliometric graph, on the
other hand, has many nodes with both very low degrees,
as well as many hub nodes, making clustering the resulting
graph difficult. The A + A′ graph also has more hub nodes
than the Degree-discounted graph.

5.2 Results on Cora
Results pertaining to cluster quality as well as clustering

time on the Cora dataset are shown in the graphs (a)-(c) in
Figure 5.1.

Figure 5.1 (a) compares the Avg. F scores obtained us-
ing MLR-MCL with different symmetrizations. For all sym-
metrizations, the performance reaches a peak at 50-70 clus-
ters, which is close to the true number of clusters (70).
With fewer clusters, the precision is adversely impacted,
while a greater number of clusters affects the recall. Degree-
discounted symmetrization on the whole yields better F scores
than the other methods, and also achieves the best overall F-
value of 36.62. Bibliometric symmetrization also yields good
F-scores with a peak of 34.92, and marginally improves on
Degree-discounted for higher number of clusters. A + A′

and Random walk perform similarly and are relatively poor
compared to the other two methods.



Dataset
A + AT / Random Walk Bibliometric Degree-discounted

Edges Edges Threshold Num. Singletons Edges Threshold Num. Singletons
Wikipedia 53,017,527 85,035,548 25 542,403 (48%) 80,373,184 0.01 2910

Flickr 15,555,041 79,765,961 20 1,766,230 (95%) 45,167,216 0.01 181,166 (10%)
Cora 74,180 986,444 0 159 986,444 0 159

Livejournal 51,352,001 143,759,001 5 3096729 (59%) 91,624,309 0.025 111087 (2%)

Table 2: Number of edges,pruning thresholds and the number of singleton nodes in the resulting matri-
ces/graphs for various symmetrization strategies.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: The graphs (a)-(c) show results on the Cora dataset. (a) compares cluster quality of different
symmetrizations using MLR-MCL for varying number of clusters. (b) compares the cluster quality of Degree-
discounted symmetrization using MLR-MCL, Graclus and Metis, with Meila and Pentney’s BestWCut. (c)
compares the clustering times of the same methods, note that the y-axis is on log scale. The graphs (d)-(g)
show results on Wikipedia. (d) and (e) show cluster quality of different symmetrizations using MLR-MCL
and Metis, respectively. (f) and (g) show clustering times using MLR-MCL and Metis, respectively. The
graphs (h) and (i) show clustering times using MLR-MCL on Livejournal and Flickr, respectively.



Figure 5.1 (b) fixes the symmetrization to Degree dis-
counted and compares MLR-MCL, Graclus and Metis with
Meila and Pentney’s BestWCut [12]. MLR-MCL comfort-
ably outperforms the other graph clustering algorithms, with
the same peak F-value of 36.62. The peak F-values of Metis,
Graclus and BestWCut are 33.78, 31.75 and 29.94 respec-
tively. It is also noteworthy that Degree-discounted sym-
metrization combined with either of the 3 algorithms - MLR-
MCL, Metis and Graclus - outperforms BestWCut.

Figure 5.1 (c) compares cluster times of MLR-MCL, Gra-
clus and Metis with Degree-discounted symmetrization against
the time taken by BestWCut. All three are much faster than
BestWCut. The slow performance of BestWCut is because
of the need for expensive eigenvector computations, which
none of the other three algorithms involve.

5.3 Results on Wikipedia
We next turn to cluster quality and timing results on

Wikipedia, depicted in Figure 5.1(d)-(g). In general, this
dataset was harder to cluster than the Cora dataset, with
an overall peak Avg. F score of 22.79, compared to 36.62
for Cora. Note that we do not have any results from Best-
WCut [12] on this dataset as it did not finish execution.

Figure 5.1 (d) and (e) compares the Avg. F scores with
different symmetrizations using MLR-MCL and Metis. One
common trend in both cases, for all symmetrizations, is that
there is not much variation in the Avg F. scores with vary-
ing number of clusters. Degree-discounted symmetrization
yields the best Avg F scores in all instances, with a peak F
value of 22.79. A + A′ gives the next best results, with a
peak F value of 20.31. The performance of Random Walk is
slightly worse than A + A′ but is otherwise similar. We do
not report Metis combined with Random Walk symmetriza-
tion as the program crashed when run with this input. Bib-
liometric performs very poorly, with F scores barely touching
13%. This is mainly because the large number of singletons
in the symmetrized graph. This further bolsters our argu-
ment that pure Bibliometric symmetrization is particularly
ill-suited for large power-law graphs.

Figure 5.1 (f) and (g) show the time to cluster differ-
ent symmetrizations using MLR-MCL and Metis. We find
that both MLR-MCL and Metis execute faster with Degree-
discounted, than any of the other symmetrizations. The dif-
ference becomes more pronounced with increasing number
of clusters; MLR-MCL executes nearly 4.5 to 5 times faster
on Degree-discounted as compared to the other symmetriza-
tions in the high clusters range (16000-18000). We believe
that the absence of hub nodes (as can be seen in Fig 4), cou-
pled with clearer cluster structures in the Degree-discounted
graph explains its better performance. It is also interesting
to note that on this dataset MLR-MCL is on average signif-
icantly faster (2000s) than Metis on the degree-discounted
transformation.

5.3.1 Varying the prune threshold
How does the performance of Degree-discounted symmetriza-

tion change as we change the pruning threshold i.e. as more
or fewer edges are retained in the graph? We experimented
with four different thresholds and clustered the resulting
graph with MLR-MCL. The obtained Avg F scores as well
as times to cluster are given in Table 5.3.1. (Recall that the
number of output clusters can only be indirectly controlled
in MLR-MCL.) The trends depicted in the table accord very

Threshold No. of edges Clusters Avg F score Time
0.010 80,373,184 17296 22.47 4225
0.015 73,273,127 16657 22.45 3615
0.020 50,801,885 15347 22.27 1912
0.025 37,663,652 16934 21.72 1039

Table 3: Effect of varying pruning threshold

well with our intuition; as we raise the threshold, there are
fewer edges in the graph, and there is a gradual drop in the
cluster quality, but which is compensated by faster running
times. In fact, even with a threshold of 0.025, and having
only 60% as many edges as A + A′, Degree-discounted still
yields an F score of 21.72 (compared to 20.2 for A+A′) and
clusters in 1039 seconds (compared to nearly 23000 seconds
for A + A′).

5.4 Results on Livejournal and Flickr
In Figure 5.1(h) and (i), we show clustering times us-

ing MLR-MCL on the Livejournal and Flickr datasets. We
could not evaluate cluster quality for lack of ground truth
data. We do not report results on Bibliometric, since it
is clear from the number of singletons for that transforma-
tion (see Table 5.1) that it is not viable for such large scale
graphs. The trends for these datasets closely mimic the
trends in Wikipedia, with Degree-discounted symmetriza-
tion once again proving at least two times as fast to cluster
as the others at the higher range of the number of clusters.

5.5 A case study of Wikipedia clusters
Why exactly does Degree-discounted symmetrization out-

perform other methods? We give some intuition on this
question using examples of Wikipedia clusters that were suc-
cessfully extracted through this method but not with the
other symmetrizations. Note that these example clusters
were recovered by both MLR-MCL as well as Metis and is
thus independent of the clustering algorithms.

A typical example is the cluster consisting of the plant
species belonging to the genus Guzmania. The in-links and
out-links of this group is shown in Figure 6. Example cluster
consisting of plants belonging to the Guzmania family. The
first notable fact about this cluster is that none of the cluster

members links to one another, but they all point to some
common pages - e.g. “Poales”, which is the Order containing
the Guzmania genus; “Ecuador”, which is the country that
all of these plants are endemic to; and so on. All group
members are commonly pointed to by the Guzmania node
as well as point to it in return.

Note that this cluster is not an isolated example. Clusters
involving lists of objects particularly were found to satisfy
a similar pattern to the Guzmania cluster. Other examples
include Municipalities in Palencia, Irish cricketers, Lists of

birds by country etc.
These examples provide empirical validation of our hy-

pothesis - laid out in Section 3 and Figure 1 - that in-link
and out-link similarity, and not inter-linkage, are the main
clues to discovering meaningful clusters in directed graphs.

5.6 Top-weight edges in Wikipedia symmetriza-
tions

We pick the top-weighted edges in the different symmetriza-
tions of Wikipedia to gain a better understanding into their
workings. The top 5 edges from Degree-discounted, Bib-
liometric and Random Walk symmetrizations are shown in



Symmetrization method Node 1 Node 2 Edge weight

Random walk

Area Square mile 3354848
Mile Square mile 2233110

Geocode Geographic coordinate system 1788953
Degree (angle) Geographic coordinate system 1766339

Area Octagon 1457427

Bibliometric

Area Population density 2465
Record label Music genre 2423

Population density Geographic coordinate system 2301
Square mile Population density 2129

Area Time zone 2120

Degree-discounted

Cyathea Cyathea (Subgenus Cyathea) 68
Roman Catholic dioceses in England & Wales Roman Catholic dioceses in Great Britain 57

Sepiidae Sepia (genus) 55
Szabolcs-Szatmár-Bereg Szabolcs-Szatmár-Bereg-related topics 53

Canton of Lizy-sur-Ourcq Communauté de communes du Pays de l’Ourcq 52

Table 4: Edges with highest weights for different symmetrization methods on the Wikipedia dataset. Note
that the edge weights in the rightmost column are normalized by the lowest edge weight in the graph, as the
non-normalized weights are incommensurable.

Figure 6: The subgraph of Wikipedia consisting of
plant species of the genus Guzmania and their in-
links and out-links.

Table 4. Bibliometric heavily weights edges involving hub
nodes such as ’Area’, ’Population density’ etc (’Area’ has
an in-degree of 71,146, e.g.), as expected. Similarly, Ran-
dom walk heavily weights edges involving nodes with high
Page Rank, which also typically tend to be hub nodes. The
top-weighted edges of Degree-discounted, on the other hand,
involve non-hub nodes with specific meanings; the particu-
lar examples listed in Table 4 are almost duplicates of one
another.

6. CONCLUSION
In this article, we have investigated the problem of clus-

tering directed graphs through a two-stage process of sym-
metrizing the directed graph followed by clustering the sym-
metrized undirected graph using an off-the-shelf graph clus-
tering algorithm. We presented Random Walk and Biblio-
metric symmetrizations, drawing upon previous work, and
based on an analysis of their weaknesses, presented the Degree-
discounted symmetrization. We compared the different sym-
metrizations extensively on large scale real world datasets
w.r.t. both quality and scalability, and found that Degree-
discounted symmetrization yields significant improvements
in both areas. In future work, we would like to investigate
the performance of our proposals in large-scale web scenarios
involving the possibilities of spam and link fraud. Extend-
ing our approaches to bi-partite and multi-partite graphs
also seems to be a promising avenue.

7. REFERENCES
[1] R. Andersen, F. R. K. Chung, and K. J. Lang. Local

partitioning for directed graphs using pagerank. In WAW,
pages 166–178, 2007.

[2] D. Chakrabarti and C. Faloutsos. Graph mining: Laws,
generators, and algorithms. ACM Comput. Surv., 38(1):2,
2006.

[3] F. Chung. Laplacians and the Cheeger inequality for directed
graphs. Annals of Combinatorics, 9(1):1–19, 2005.

[4] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted Graph Cuts
without Eigenvectors: A Multilevel Approach. IEEE Trans.
Pattern Anal. Mach. Intell., 29(11):1944–1957, 2007.

[5] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. In Proceedings of the
conference on Applications, technologies, architectures, and
protocols for computer communication. ACM, 1999.

[6] S. Fortunato. Community detection in graphs. Physics Reports,
486:75–174, 2010.

[7] D. Gleich. Hierarchical Directed Spectral Graph Partitioning.
2006.

[8] J. Huang, T. Zhu, and D. Schuurmans. Web communities
identification from random walks. Lecture Notes in Computer
Science, 4213:187, 2006.

[9] R. Kannan, S. Vempala, and A. Veta. On clusterings-good, bad
and spectral. In FOCS ’00, page 367. IEEE Computer Society,
2000.

[10] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing, 20, 1999.

[11] M. Kessler. Bibliographic coupling between scientific papers.
American Documentation, 14:10–25, 1963.

[12] M. Meila and W. Pentney. Clustering by Weighted Cuts in
Directed Graphs. In SDM, 2007.

[13] M. Meila and J. Shi. A random walks view of spectral
segmentation. In Artificial Intelligence and Statistics
AISTATS, 2001.

[14] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and Analysis of Online Social
Networks. In Proceedings of the 5th ACM/Usenix Internet
Measurement Conference (IMC’07), San Diego, CA, October
2007.

[15] V. Satuluri and S. Parthasarathy. Scalable graph clustering
using stochastic flows: applications to community discovery. In
KDD ’09, pages 737–746, New York, NY, USA, 2009. ACM.

[16] J. Shi and J. Malik. Normalized Cuts and Image Segmentation.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2000.

[17] H. Small. Co-citation in the scientific literature: A new
measure of the relationship between documents. Journal of the
American Society for Information Science, 24:265–269, 1973.

[18] D. Zhou, J. Huang, and B. Schölkopf. Learning from labeled
and unlabeled data on a directed graph. In ICML ’05, pages
1036–1043, 2005.


