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ABSTRACT
The recent emergence of clouds is making the vision of utility comput-
ing realizable, i.e. computing resources and services can be delivered,
utilized, and paid for as utilities such as water or electricity. This,
however, creates new resource provisioning problems. Because of
the pay-as-you-go model, resource provisioning should be performed
carefully, keeping resource costs to a minimum, while meeting an ap-
plication’s needs.

In this work, we focus on the use of cloud resources for a class of
adaptive applications, where there could be application-specific flex-
ibility in the computation that may be desired. Furthermore, there
may be a fixed time-limit as well as a resource budget. Within these
constraints, such adaptive applications need to maximize their Quality
of Service (QoS), more precisely, the value of an application-specific
benefit function, by dynamically changing adaptive parameters. We
present the design, implementation, and evaluation of a framework
that can support such dynamic adaptation for applications in a cloud
computing environment. The key component of our framework is a
feedback control based dynamic resource provisioning algorithm. We
have evaluated our framework with two real-world adaptive applica-
tions, and have demonstrated that our approach is effective and causes
a very low overhead.

1. INTRODUCTION
Utility computing was a vision stated more than 40 years ago [24].

It refers to the idea that computing resources and services can be de-
livered, utilized, and paid for as utilities such as water or electricity.
The recent emergence of cloud computing is making this vision real-
izable. Examples of efforts in this area include Infrastructure as a Ser-
vice (IaaS) providers like Amazon EC2 [2] and Software as a Service
(SaaS) providers like Google AppEngine [5] and Microsoft Azure [3].
More recently, there is a growing interest in the use of cloud computing
for scientific computing, as evidenced by a large-scale funded project
like Magellan 1, and new workshops 2 3.

Dynamic provisioning of computing and storage resources is pos-
sible in cloud computing, and in fact, is often the key attraction for

1Please see http://www.cloudbook.net/doe-gov
2For example, http://dsl.cs.uchicago.edu/ScienceCloud2010/
3http://www.usenix.org/event/hotcloud10/
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its users. Because of the pay-as-you-go model, resource provisioning
should be performed carefully. The goal should be to keep the resource
budget to a minimum, while meeting an application’s needs. Current
cloud service providers have taken some steps towards supporting a
true pay-as-you-go or a utility-like pricing model. For example, in
Amazon EC2, users pay based on the number or type of the instances
they use, where an instance is characterized (and priced) on basis of
parameters like CPU family/cores, memory, and disk capacity. The
ongoing research in this area is pointing towards the likelihood of sup-
porting more fine-grained allocation and pricing of resources [19, 22].
Thus, we can expect cloud environments where CPU and/or memory
allocation for a virtual instance can be changed on-the-fly, with an as-
sociated change in price for every unit of time.

While current cloud systems are beginning to offer the utility-like
provisioning of services, provisioning of resources has to be controlled
by the end users. This, however, is a new and unfamiliar paradigm
for computer application developers and users, who are accustomed
to working with a fixed set of resources they own. Resource cost is
an important consideration while using cloud resources for scientific
computing as well [12]. We feel that it is desirable that resource al-
location in a cloud environment can be performed automatically and
dynamically, based on users’ high-level needs, i.e. based on their re-
source budget, time constraint, and/or desired quality of results.

The resource provisioning problem becomes particularly challeng-
ing for the emerging class of applications, which we refer to as the
adaptive applications [10, 11, 17, 26, 28]. In these applications, there
is typically an application-specific flexibility in the computation that
may be desired. For example, input data can be sampled at different
rates, models can be run at different spatial and temporal granularities,
or different values of an error rate or a similar accuracy parameter can
be chosen. Such adaptive applications are clearly suitable for cloud
computing. This is because a cloud environment can provide resources
on-demand for computation, memory, and storage requirements posed
by these applications, particularly when there is a time-constraint for
completing a task. When such adaptive applications are executed in a
cloud setting, there is a trade-off between resource costs incurred and
the QoS obtained.

This paper focuses on an automated and dynamic resource alloca-
tion problem associated with the execution of adaptive applications
in a cloud environment. We particularly consider the problem where
there is a fixed time-limit as well as a resource budget for a particular
task. Within these constraints, an adaptive application needs to maxi-
mize the Quality of Service (QoS) metric, more precisely, the value of
an application-specific benefit function, which captures what is most
desirable to compute within the time-limit.

We present the design, implementation, and evaluation of a frame-
work that can support adaptive applications in a cloud computing en-
vironment. The key component of the framework is a dynamic re-
source provisioning algorithm, which is based on control theory. We
have considered dynamic CPU and memory allocation based on a con-



trol model. Furthermore, a resource model is proposed to map any
given combination of values of adaptive parameters to resource re-
quirements. Our framework is not specific to any particular cloud
environment, and in the future, it can easily be integrated into exist-
ing cloud infrastructures such as EUCALYPTUS [14] and Amazon
EC2 [2].

Since we dynamically assign CPU cycles and memory to multiple
virtual machines, this work is somewhat related to the existing work on
virtualized resource scheduling [19, 27, 13]. However, our work is dis-
tinct in considering a pricing model and a fixed resource budget. Our
work is also related to the research on budget constrained scheduling
in utility and grid computing [21, 16, 29]. The work we presented is
distinct in considering adaptive applications and parameter adaptation.

We have evaluated our framework with two real adaptive applica-
tions. The main observations from our experiments are as follows.

• The CPU cycle allocation generated through the use of our re-
source model is within 5% of the actual CPU utilization. Fur-
thermore, the model can be trained on one system and then ap-
plied on a different system effectively.

• Second, our dynamic resource provisioning algorithm achieves a
benefit of up to 200% of what is possible through a static provi-
sioning scheme. At the same time, the scheme could perform
parameter adaptation to meet a number of different time and
budget constraints for the two applications.

• The overhead caused by the dynamic resource provisioning al-
gorithm is less than 10%, comparing to an optimal execution.

The rest of the paper is organized as follows. We motivate our work
by describing adaptive applications we are targeting in Section 2. The
resource provisioning problem is defined in Section 3. In Section 4,
we present the control theory based model and our dynamic resource
provisioning algorithm. Section 5 describes the design of our frame-
work, which has been developed with the goal of easy integration with
any cloud system. Results from experimental evaluation are reported
in Section 6. We compare our work with related research efforts in
Section 7 and conclude in Section 8.

2. MOTIVATING APPLICATIONS
Our work is driven by a class of applications that we can refer to as

adaptive applications. In these applications, there is some flexibility
with respect to the computing performed. For example, input data can
be sampled at different rates, models can be run at different spatial and
temporal granularities, or different values of an error rate or a similar
accuracy parameter can be chosen.

These applications have been studied in a number of different con-
texts. For example, projects have focused on operating systems, mid-
dleware, and networking support for adapting applications to meet
quality of service goals. Bhargavan et al. [11] focus on adapting frame
rate over wireless networks. SWiFT is a software feedback toolkit to
support program adaptation [33]. Adve et al. have focused on com-
piler support for adaptive applications [10]. The particular adaptive
applications they have considered include a stochastic optimization
solver and video tracking. Schwan and his group take into account
the runtime resource management issues when supporting adaptable
applications [26].

2.1 Great Lake Forecasting System (GLFS)
We now describe one such adaptive application in details. Partic-

ularly, we first show the Quality of Service (QoS) achieved can be
quantified through a benefit function. Then, we explain why GLFS ap-
plication is suitable for the cloud computing environment, but has an
associated time constraint, and likely a budget constraint as well.

This application monitors meteorological conditions of the Lake
Erie for nowcasting (for the next hour) and forecasting (for the next
day). Every second, data comes into the system from the sensors
planted along the coastal line, or from the satellites supervising this
particular coastal district. Normally, the Lake Erie is divided into mul-
tiple coarse grids, each of which is assigned available resources for
model calculation and prediction. Moreover, these models can be ex-
ecuted for various other tasks of interest to local and state authorities,
such as managing sewage disposal.
GLFS is a compute-intensive application. On a standard PC (Dual

Opteron 254 (2.4GHz) processors, with 8 GB of main memory and
500 GB local disk space), predicting meteorological information for
the next two days for an area of 1 square miles took nearly 2 hours.
The execution time could grow rapidly with need for increasing spa-
tial coverage, (for example, the total area of Lake Erie is 9, 940 square
miles), and/or better spatial granularity. While invoking these mod-
els for nowcasting, forecasting, or other requirements (such as sewage
management), there is clearly a time constraint or time limit, since the
results from a particular invocation are likely not useful beyond a cer-
tain time.

We believe that such an application is very well suited for Cloud
computing, as CPUs, memory, and storage can be requested on de-
mand to meet time constraints. Further, virtualization in the clouds
can enable easy application deployment and execution. However, ev-
ery additional resources comes with an associated cost. Local and state
authorities operate under a difficult budget environment, and will like
to impose a resource cost limit while executing these models. This is
particularly true for information that only has a non-critical or recre-
ational use, and there is no method for state and local authorities to
recover the costs associated with execution of the models.

The resource and time constraints can be met by exploiting the adap-
tivity in the application. While it is desirable to run the models with
high spatial and temporal granularity, clearly there is some flexibility
in this regard. For example, such flexibility could be in the resolu-
tion of grids assigned to the model from a spatial view, or the inter-
nal and external time steps deciding the temporal granularity of model
prediction. Furthermore, if computing resources available are limited,
running new models in certain areas may be more critical than run-
ning those at other areas. Thus, we can formalize a benefit function,
capturing a user’s priority while executing this application. The ben-
efit function clearly depends upon the specific user, but one example
function can be as follows:

BenGLFS = (w × R + Nw ×
1

4
R) ×

M
X

i=1

P (i)

C(i)
(1)

w =



1 if water level is predicted
0 otherwise

Equation 1 specifies that the water level has to be predicted by the
model within the time constraint, since it is the most important meteo-
rological information. R is a constant value for reward if this criterion
is satisfied. It also gives credits to other outputs, by stating that the
number of outputs Nw has to be maximized. Besides outputting useful
results, the user also wants the resources to be allocated to the models
with high priority. This is captured by getting the ratio of the model
priority P (i) and its cost C(i).

Given a benefit function, a user will like to maximize the value of the
benefit function, operating within a fixed resource budget and a time
constraint. We formulate this problem and present our framework in
the subsequent sections.

3. TARGET ENVIRONMENT AND PROBLEM
FORMULATION

We first describe the cloud environment we target. Next, we de-



scribe two pricing models that have been used for our current evalua-
tion.
Cloud Environment: Our work has been conducted on a synthetic
cloud environment, which has been emulated using clusters we had
access to. The cloud environment we use is similar to the existing
and emerging cloud environments in many respects. Our cloud en-
vironment allows on-demand access to resources. Like the existing
cloud environments, applications are charged for their resource usage
according to a pricing model. We also use virtualization technologies,
which enable applications to set up and deploy a customized virtual
environment suitable for their execution. Secure sharing of resources
between different applications and users is allowed.

Our work is based on the assumption that fine-grained allocation and
pricing of resources is possible for each virtual environment. This is
not true for the existing cloud environments, but is consistent with the
utility vision of computing, and recent research points to the progres-
sion of clouds in such a direction [19, 22]. Thus, we assume that CPU
cycles and memory can be shared in a fine-grained fashion between
different instances. The user of an instance can request for a differ-
ent CPU cycle percentage or memory allocation at any point during its
execution. Two pricing models we have used target a cloud environ-
ment with such a fine-grained sharing of resources. These models are
described later in this section.

In our implementation and experiments, we use virtual machines
(VMs) that run on top of the Xen hypervisor [25]. Since the adap-
tive applications we target in our work are compute-intensive, we have
considered virtual CPU and memory usage, as elaborated below.
CPU Usage: Xen provides a Simple Earliest Deadline First (SEDF)
scheduler that implements weighted fair sharing of the CPU capac-
ity among all the VMs. The share of CPU cycles for a particular
VM can be changed at runtime. The SEDF scheduler can operate in
two modes: capped and non-capped. In the capped (or non-work-
conserving) mode, a VM cannot use more than its share of the total
CPU time in any time-interval, even if there are idle CPU cycles avail-
able. In contrast, in the non-capped (or work-conserving) mode, a VM
can use extra CPU time beyond its share, if other VMs do not need
them. We particularly focus on the non-work-conserving use of VMs,
which allows a better performance isolation among multiple VMs, and
supports a fair pricing model.
Memory Usage: We use balloon driver in Xen to dynamically change
the memory allocations for the virtual machines. Each VM is con-
figured with a maximum entitled memory (maxmem). The VM starts
with an initial memory allocation, which can be later increased up to
the specified maxmem value. If one VM does not need all of its en-
titled memory, the unused memory can be transferred to another VM
that needs it. This can be done by inflating the balloon (i.e. reducing
allocation) in the first VM and deflating the balloon (i.e. increasing al-
location) in the second VM. This mechanism allows dynamic memory
repartitioning among multiple VMs as needed.
Pricing Model: Our work assumes a fine-grained pricing model where
a higher allocation of CPU cycle percentage or memory is associated
with a higher cost for each time unit. Beyond this basic assumption,
our resource allocation framework is independent of the details of the
pricing model. For our experiments, we have evaluated our framework
using two different pricing models, which we describe below. For
simplicity, we only focus on costs associated with computing cycle
allocation and memory allocation. Depending upon the application,
additional costs may be associated with storage and data transfers.

We have used a linear pricing model and an exponential pricing
model. In the linear pricing model, the resource cost charged to the
users is linearly scaled with the amount of resources that have been
assigned to the application. Let us first consider CPU cycles. As-
sume there are m phases with distinct CPU cycle percentage during
the execution of an application, i.e., allocation percentage is changed
m − 1 times. Rcpu

i is the CPU cycle percentage at the ith allocation,

ti be the duration we stay at the ith allocation. If CPUbase is the
base price charged for the smallest amount of CPU cycle allocation
and CPUtrans denotes the transfer fee charged each time we change
the CPU allocation. With a total of m changes, the cost with regard to
CPU usage can be calculated as following:

CPUcost(m) =
m

X

i

CPUbase ×Rcpu
i × ti +(m−1)×CPUtrans

We can calculate the cost of memory usage, Memcost, in a similar
fashion. Note that Rmem

i is the memory assigned at the ith allocation,
Membase is the base price charged for allocating 1GB of memory,
and Memtrans represents the transfer fee of memory change.

Memcost(m) =

m
X

i

Membase×Rmem
i ×ti+(m−1)×Memtrans

In our second pricing model, which is the exponential pricing model,
the intuition is that when a high percentage of CPU cycles and/or a
large fraction of the available total memory is dedicated to a single
VM, other VMs may have to be suspended or the applications running
on them may have to be rejected. Thus, we assume an exponential
pricing based on the reserved CPU cycle percentage. So, the cost of
CPU percentage allocation in this model will be calculated as follows:

CPUcost(m) =
m

X

i

(CPUbase × (1 − exp−0.01R
cpu

i ) × ti) +

(m − 1) × CPUtrans

Similarly, the cost of memory usage in this model can be calculated as:

Memcost(m) =
m

X

i

(Membase × (1 − exp−0.01Rmem
i ) × ti) +

(m − 1) × Memtrans

As noted above, other resources such as disk I/O and network I/O
bandwidths are not considered in our current model, though they can
be incorporated in the future. Our adaptation framework currently tar-
gets compute-intensive applications, where key factors in adapting the
resource costs and performance of the application are the CPU cy-
cle allocation and memory size. Furthermore, dynamic (on-the-fly)
changes to disk I/O and network I/O bandwidth settings are not avail-
able in Xen yet.

4. DYNAMIC RESOURCE PROVISIONING AL-
GORITHM

In this section, we present our dynamic resource provisioning algo-
rithm. In context of the overall framework design, which is illustrated
in Figure 2, in the following section, this algorithm is implemented in
the resource provisioning controller.

We first define the resource provisioning problem we want to ad-
dress in this work. Then, we give an overview of our approach. Next,
the details of our approach, which is based on an adaptive feedback-
loop, are described. Finally, we describe how resource models are
generated with the goal of converting changes in values of an adaptive
parameter into CPU cycles and memory allocation requests.

4.1 Problem Formulation
An adaptive application we target comprises a series of interact-

ing service components, which we denote as S1, S2, ..., Sn. An ap-
plication has a benefit function, denoted as B. This function takes
certain application parameters as the input, and outputs a Quality of
Service (QoS) indicator, called the benefit. An example benefit func-
tion was shown earlier in Equation 1. Note that such benefit func-
tion is application-specific and user-defined. Every processing of a
time-critical event we perform is associated with a pre-specified time



constraint, denoted as Tc. We also have a specified budget for each
application invocation, which is denoted as C0.

Our goal is to perform the processing, as to maximize the applica-
tion benefit value, within the time limit Tc and the budget C0. Im-
pacting the benefit value obtained by an execution are the adaptive pa-
rameters. Each service could have one or more such adaptive parame-
ters. Certain choices of values of these adaptive service parameters are
likely to either speedup the processing, or require fewer CPU/memory
resources. However, the resulting value of the benefit function will
also be lower. Other choices of values would increase the budget,
but would lead to an increase of the benefit. Thus, the goal of our
framework is to choose the right tradeoff between the benefit and the
resource cost, by adapting the values of the service parameters. When
the values of service parameters are modified, we may need to change
the CPU/memory allocation as well, to maintain the desired rate of
progress. We may also need to provide a certain level of QoS differen-
tiation to give higher priority to more critical services.

Note that the problem we solve in this paper involves a fixed time
limit as well as a budget limit. Within these constraints, our goal is
to maximize the application benefit. Depending upon the application,
users, and/or the organization, different formulations may be appro-
priate. For example, one formulation could involve a time constraint
and a certain benefit level, subject to which the goal is to minimize the
total resource costs. Yet another formulation could be as a bi-objective
problem [18], where we try to achieve a trade-off between resource
costs and the benefit. These variations to the problem can be easily
solved by small changes to our framework. However, for our presenta-
tion, we only focus on the original problem we have formulated, where
benefit is maximized subject to a resource budget and a time limit.

In any of the above formulations, users can take advantage of a feed-
back mechanism, which makes them aware of possible tradeoffs. For
example, they can be informed that a significantly better benefit value
can be obtained by only a small increase in their budget, or that a sig-
nificant reduction in budget is possible by reducing their benefit target
only marginally. Such feedback is currently possible within our frame-
work, though the details are not explained here.

4.2 Overview of the Approach
Our approach is based on the observation that the problem of re-

source (CPU/memory) provisioning corresponds to a feedback control
model. Feedback control model has been applied for dynamic virtual
resource provisioning [22, 27, 32]. Unlike the previous work which
optimizes a single performance metric (response time or throughput)
by directly controlling the resources allocated to the application, we
consider a more unique and complex problem. We used the feedback
control model to guide the parameter adaptation in order to maximize
the application benefit while satisfying the time constraint and resource
budget. Then virtual resources are dynamically provisioned according
to the change in the adaptive parameters.

In control theory, an object to be controlled is typically represented
as an input-output system, where the inputs are the control knobs and
the outputs are the metrics being controlled. Typically, a controller
manipulates the inputs to the system under the guidance of a perfor-
mance objective. In viewing our problem as a feedback control prob-
lem, the inputs are the set of adaptive parameters, ui, . . . , un. There
are three outputs we consider, which are the application benefit, ex-
ecution time, and the resource cost. The performance objective here
is to maximize the application benefit, i.e., values of the function B,
subject to constraints on the execution time (Tc) and the resource costs
incurred (C0). The objective of the control problem we are considering
is to find the sequence ui(1), . . . , ui(N) for each adaptive parameter
i.

Note that the resource allocation at any point during the execution is
an important parameter, but is not considered as either an input or the
output in our formulation. This is because any change in the values of

Variable Description
C0 Resource Budget
Tc Time Constraint

ui(k) ith Adaptive Service Parameter at
time step k

S(k) State at the time step k
D(k) Action taken at the time step k

W0(S(k), D(k)) Benefit value at the time step k
W1(S(k), D(k)) Total time elapsed at the time step k
W2(S(k), D(k)) Resource costs at the time step k

Perf Observed Application Performance

Table 1: Main Terms Used in Formulation

the adaptive parameters results in a corresponding change in resource
requirements for maintaining the same progress rate, and therefore,
resource allocation is changed based on any change in the value of an
adaptive parameter. This is formally captured through our resource
model, which is described towards the end of this section.

4.3 Detailed Control Model Formulation
In order to effectively utilize control theory, we need to define a sys-

tem model. The goal of the system model is to capture the relationship
between the application performance and the input parameters, to be
able to guide the adaptation process.

The first step in developing such a system model is to simplify our
performance objective. This is done by introducing the following two
components of the performance of the application.

• Processing progress: It is defined as the ratio between the cur-
rently obtained application benefit and the elapsed execution
time. This metric measures the rate at which the application
processing is gaining the benefit.

• Performance/cost ratio: It is defined as the ratio between the cur-
rently obtained application benefit and the cost of the resources
that have been assigned to the application. This metric measures
the rate of gaining the benefit for every unit of resource budget
consumption.

The main symbols used in our problem description and formula-
tion are summarized in Table 1. During the execution, Perf(k) =<
B(k)/T (k), B(k)/C(k) > is the performance vector that is observed
at time step k.

The outputs in our case are not likely to be a linear function of the
set of inputs. We assume, however, that the behavior of the system at
any point in time can be approximated locally as a linear model [27].
Specifically, by plotting two performance terms in Perf , we deter-
mined that both of them form a time-series, where the performance at
the time step k depends on performance in the previous time step(s),
and the exogenous inputs at the current time step, which are the adap-
tive parameter values. Therefore, we have chosen an auto-regressive-
moving-average with exogenous inputs (ARMAX) model to represent
the system behavior. Furthermore, we applied different ARMAX mod-
els in our experiments and found out the second-order model can pre-
dict the application performance with adequate accuracy. Formally,

Perf(k) = a1(k) ×Perf (k − 1) + a2(k) × Perf(k − 2)

+
X

i

bi
0(k) × ui(k) +

X

i

bi
1(k) × ui(k − 1) (2)

In the equation above, the model parameters a1(k) and a2(k) capture
the correlation between the application’s past and present performance.
bi
0(k) and bi

1(k) are the weights given to the current and previous val-
ues of the ith adaptive parameters in measuring the performance. Re-
call that changing such values will impact both application benefit and



execution time. The model parameters a1, a2, bi
0 and bi

1 are also func-
tions of the control interval k. These parameters are updated at the end
of every interval. This is done using SVM regression [31], after the
measurement for the performance Perf (k) is available. Alternative
system models, like Neural Networks, could have also been be applied
to model the non-linear time series.

Our controller uses the above system model to achieve our perfor-
mance objective, which is to maximize benefit, subject to time and
budget constraints. We have used the Proportional-Integral (PI) con-
trol, combining with a reinforcement learning component. Now, we
formally state our performance objective. From Table 1, the current
state of the system, which is the set of values of the adaptive parame-
ters, is captured as S(k). The controller can change one or more of the
values of adaptive parameters, which is reflected as an action in this
state. We refer it to as D(k).

We have three reward functions, as defined in Table 1. W0 is the re-
ward function to be maximized while the other two are used to specify
constraints. Each of them is calculated as follows. The relationship
between the values of the adaptive parameters and the benefit (cap-
tured as a function fB), and the relationship between the values of
the adaptive parameters and execution time (captured as the function
fT ), can both be learned online using the approach from our previous
work [28].

Recall that a change in a value of an adaptive parameter results in
a change in resource allocation, and our pricing models assume that
there is an extra cost associated with each change. In view of this, and
to achieve better stability, we want to minimize changes to adaptive
parameters. Therefore, W0(S(k), D(k)) is a combination of the ap-
plication benefit and a control cost. The benefit at the current time step
is the benefit relationship function that takes parameter values at the
next time step, i.e., fB(S(k+1)), and we use

P

i(ui(k)−ui(k−1))2

to denote the control overhead. Thus, we have:

W0(S(k), D(k)) = fB(S(k + 1)) −
X

i

(ui(k) − ui(k − 1))2

Similarly, W1(S(k), D(k)) is the execution time relationship func-
tion with S(k) as the input.

W1(S(k), D(k)) = fT (S(k))

The resource cost, W2(S(k), D(k)), is only indirectly related to
adaptive parameters. As we had mentioned before, and as we elaborate
in the next subsection. we use a resource model to map the change
of such parameter values to CPU cycle/memory requests. Thus, the
resource cost reward function is defined using the resource requests
and pricing model presented earlier in Section 3.

W2(S(k), D(k)) = CPU request × CPUcost(k) +

mem request × Memcost(k)

With the above, formally, our controller solves the following:

max
N

X

k=0

ti × W0(S(k), D(k)) (3)

subject to the constraints,

N
X

k=1

W1(S(k), D(k)) ≤ Tc

and W2(S(k), D(k)) ≤ C0 (4)

4.4 Resource Model
Whenever a change in the value of an adaptive parameter is made,

a corresponding change is needed in the CPU cycle and/or memory

allocation, if we want to maintain the same rate of progress. In our
approach, this is done by developing a resource model for each ser-
vice component. Unlike the previous efforts where control theory has
been used to guide resource allocation [27, 13], resource requests are
not directly modeled in our control formulation. Instead, we control
the adaptation of service parameters, which, in turn, requires that the
resource allocation changes to maintain the same rate of progress. We
develop the resource models with an offline training phase. Such of-
fline training could be performed on a different type of hardware than
the one that may be available in the cloud environment. Our experi-
ments will demonstrate that models developed on a different type of
hardware could still be very effective.

We now describe how these resource models are developed. A
straightforward solution would be to regress the relationship between
the adaptive parameter value and the CPU/memory requirements. How-
ever, one important factor we need to consider is that changing CPU
cycle allocation or memory partition frequently is not desirable. We
take the following approach. A tuple Di collected from the offline
training phase is of the type, < CPUi, memi, ti,xi >, where CPUi

represents a relative CPU percentage, memi is the memory usage, ti is
the execution time, which denotes the time to complete a task, and xi

is the current values of the adaptive parameters. Due to the heterogene-
ity in processor architectures, frequencies, size of L1/L2 cache across
different platforms, an absolute CPU usage percentage in one environ-
ment may not be very useful while driving adaptation on a different en-
vironment. Thus, we consider a relative value, i.e., CPU = CPU/r,
where r is used to account for the heterogeneity between two different
types of hardware, with r = 1 if there is no difference in hardware. A
reasonable initial value for r can be the ratio of the two CPU frequen-
cies. However, as the model is applied, r can be changed based on the
feedback of model prediction and real CPU usage.

Our resource modeling consists of the following three steps.
Step 1: we cluster these data points based on their execution time.
Namely, data points with execution time within t ± ∆t are grouped
into one cluster. We applied the k-means clustering algorithm for this
step [20]. As a result, data points are categorized into different clusters
where within each cluster, the parameter adaptation does not necessar-
ily require an increase or decrease in the CPU cycle percentage and/or
memory allocation.
Step 2: we apply SVM regression with a cubic kernel [31] to learn
the relationship between the values of the adaptive parameters and the
resource usage, i.e., CPU cycle percentage and memory, within each
cluster. Using the SVM regressor, dependencies among parameters in
terms of CPU and memory usage have been taken into account.
Step 3: we further study the relationship between <CPU cycle, mem-
ory> and the value of adaptive parameter along the time axis. The final
resource model is the product of models from step 2 and 3. Once the
resource model has been trained, given a value of the adaptive parame-
ter, the model will generate a CPU cycle/memory request for a service
component.
Model Optimizer: This module further optimizes the CPU cycle and
memory allocation requests generated by the resource models for the
individual services. There are two goals in performing these optimiza-
tions. First, we do not want to change CPU cycles with every change
in adaptation parameter values. The reason is that, there is a cost as-
sociated with performing such a change. In addition, resource under-
provisioning or over-provisioning from not performing such a change
is likely to be small. Similarly, memory does not have to be reparti-
tioned for each parameter adaptation. This is due to the observation
that memory usage below a certain threshold of the available memory
will not impact the application performance. Such threshold is denoted
as memthreshold and it is set to be 0.9 in our implementation. The
other goal for the optimizer is balancing global CPU cycle allocation
among multiple services. Specifically, when there is a contention for
shared CPU cycles and/or memory size, such resource requests should



Algorithm 4.1: MODELOPT(S, CPUreq, memreq)

INPUT S: set of services
<CPUreq , memreq >: CPU and memory requests
OUTPUT Actual CPU cycle and memory allocation

for each Si ∈ S
// Calculate slow down factor
di = CalculateSlowDownFactor(Si);
if di > θs

S′ = S′
∪ Si;

// Generate resource contention sets
Sc = ResourceContentionSet(S′);
for each Sj

c ∈ Sc

InitialResourceassignment(Sj
c);

while (bottleneck)
AdjustResourceallocation(Sj

c );

Figure 1: Model Optimization

be satisfied based on the priority of the service. At the same time,
because services could be inter-dependent on one another, we need to
make sure that the global decisions do not cause a bottleneck among
the services.

The outline of the model optimization strategy we use is shown in
Figure 1. The optimization procedure starts by checking a slow-down
factor for each service, i.e., by how much is the execution time slowed
if we remain at the current allocation. We mark the services for which
the slow-down factor is above a certain threshold, θs, and include these
services in the set S′. The significance of the set S′ is that if we re-
main at the current allocation, a significant overall slow-down is likely
for the entire application. We reject resource requests from the ser-
vices in two cases, i.e., they are not in the set S′, or, they only require
memory change and the changed value is still below memthreshold.
Now, the services from the set S′ are grouped into resource contention
sets. These sets reflect services that are sharing the same resource, and
thus, the only contention for CPU cycles and/or memory is from the
services within the same set. Within such a set, service priority has
to be considered, and a service with a higher priority should be more
likely to obtain the resource it is requesting. However, resource allo-
cation to a service with a lower priority may be needed to avoid the
possibility of its becoming a bottleneck. We first assign the available
CPU cycles and memory to the services within the same resource con-
tention set based on their priority. Next, a speed-up factor is calculated
for each service, given the newly assigned resources. If for a partic-
ular service, the value of this factor is much lower than that of other
services, we claim that it could potentially become a bottleneck. The
initial assignment is adjusted until we eliminate any such bottleneck.
Note that the total limit on the resources allocated is determined by the
performance/cost ratio we need, so as to not exceed the budget.

5. FRAMEWORK DESIGN
The feedback control based methodology described in the previous

section has been implemented as a framework which can be easily
incorporated as part of various cloud middleware systems. Our design
adopts the SOA concepts and the underlying functionality is provided
as services. In this section, we present the major design aspects of our
framework.
5.1 System Architecture and Design

The overall system architecture is illustrated in Figure 2. It is a flex-
ible and modular design reflecting common characteristics of adaptive
application and facilitating its execution in clouds. An application is
implemented as a set of loosely-coupled service components, with pos-
sible dependencies between them. Each service components is able to
self-describe its interface and self-optimize its contribution to the over-
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Figure 2: Overall Framework Design

all processing. This is accomplished through service wrapper and the
performance manager modules, respectively.

In order to prepare the adaptive application to be ready for deploy-
ment in the cloud computing environment, when it is submitted to the
system, the service wrapper of our framework first wraps it into a set
of service components. In our current implementation, this is done ac-
cording to the Web Service Resource Framework (WSRF) standards,
though we can support other web and cloud computing standards in
the future. Since each service component has one or more adaptive
parameters and their values need to be stored for each processing step,
our service components are stateful and such adaptive parameters are
exposed as state resources. In our design, the service wrapper is the
entry-point into the clouds for users and administrators.

The performance manager takes into account multiple factors that
relate to application QoS. It first analyzes the benefit function and as-
signs different priorities to service components based on their contri-
bution to the overall application benefit. This is a critical issue, as tun-
ing adaptive parameters from a service with a higher priority is more
important for achieving a larger benefit.

The performance manager also plays an important role in address-
ing the resource provisioning challenge, for which it works in con-
junction with the resource provisioning controller, which is the central
component in our framework. During the application execution, the
performance manager iteratively queries the processing progress and
performance/cost ratio. As presented in Section 4, in the resource pro-
visioning controller, feedback control theory is applied to help throttle
up or down the CPU cycle and memory allocation for different VMs.
Such controller is customized to the application needs, thus decoupled
from the underlying cloud platform mechanism. A more detailed de-
sign of the resource provisioning controller is shown in Figure 3, and is
elaborated later in this section. The models and the dynamic resource
provisioning algorithm have been described in the previous section.

Different service components of the adaptive application do not share
physical resources directly, but rely on virtualization technologies to
abstract them. The virtualization management module controls the
VMs. Note that a unique functionality of our framework is the ability
to dynamically change virtual CPU and memory assignment among
multiple VMs, as requested by the application services they host. As
stated previously, we believe such fine-grained control could be ex-
ported by the cloud providers in the near future. In our current imple-
mentation, we have a simple virtual machine interface for VM man-
agement. However, our framework can be easily ported to the exist-
ing cloud infrastructures, such as EUCALYPTUS [14] and Open Neb-
ula [9] for better VM management. Furthermore, integration into such
cloud systems could help control VMs hosted by a Cloud provider such
as Amazon EC2 [2].



5.2 Resource Provisioning Controller
We now describe the detailed design of the resource provisioning

controller. There are two major technical aspects to the design of this
module. First, the feedback control theory based adaptation has been
implemented in the application controller. This module relates the
values of the adaptive parameters to the rate of application processing
progress and the performance/cost ratio.
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Figure 3: Detailed Architecture of Resource Provisioning Con-
troller

For each service component in the adaptive application, its resource
model periodically polls the resource usage, the current values of adap-
tive parameters and time elapsed since the last time step. Each resource
model will compare its output (CPU/memory requests) with the actual
resource usage. Although the initial resource model for each service
is trained offline, the model will be updated based on the comparison.
These updates to the models are critical for achieving accuracy, be-
cause the original module could have been trained on a different type
of hardware. At each time step, the resource model of the service com-
ponent sends out a resource request to the application controller, which
is due to the change of its adaptive parameters.

Based on the collective requests from all resource models of the var-
ious service components, the application controller determines whether
it has enough resource of each type to satisfy all demands and gener-
ates the actual resource allocation using the model optimization method
described in Section 4.4. The generated resource allocations are fed
into the virtualization management layer in our framework for actu-
ation. Our design of the resource provisioning controller allows the
placement of resource models and application controllers in a dis-
tributed fashion. For example, each of them can be hosted in a physical
node separately, assuming high-speed network connection is available
to communicate between VMs and these physical nodes.

6. EXPERIMENTAL EVALUATION
In this section, we present results from a number of experiments

we conducted to evaluate our framework and the dynamic resource
provisioning algorithm.

6.1 Schemes Compared, Metrics, and Goals
For comparison, we used two alternative resource allocation meth-

ods. Work-conserving approach is commonly used on consoli-
dated infrastructures today. In the work-conserving mode, the services
run in the default Xen settings, where a cap of zero is specified for the
shared CPU on a node, indicating that the services can use any amount
of CPU resources. In this mode, we further assume that each VM can
request any amount of memory, within what is available on the server.
This may not be a practical scheme to use in a cloud environment,
where users have fixed resource budgets. We use this scheme to com-
pare our method against the scenario where parameter adaptation can
be performed to achieve high application benefit. This scheme is also
used to evaluate the accuracy of our resource models.

The second approach is the Static Scheduling approach. Be-
fore the execution of the algorithm, we applied a bi-objective optimiza-
tion algorithm [30] to decide the CPU cycle assignment and memory
size, respectively, where the application benefit was maximized and
resource cost was minimized. However, as this is a static method, the
decision is made before initiating the execution, and the CPU cycle
and memory assignment will remain the same during the processing.

To evaluate the performance of our dynamic resource provisioning
algorithm against Work-conserving and Static Scheduling,
we use the following two metrics:

• Benefit Percentage: This shows the benefit obtained from the
resource provisioning algorithm, as the percentage of a base-
line benefit. We take the maximum benefit achieved from the
Static Scheduling approach as the baseline benefit.

• Resource cost: This is the price charged for the CPU cycles as
well as memory used by the execution of the application.

Specifically, we have applied two pricing models that were previously
defined in Section 3. Also, we used the following pricing rates from
Amazon EC2: CPUbase = $0.0017 per compute unit per hour and
Membase = $0.05 per GB per hour. Note that in our pricing model, a
compute unit is 1% of one physical core. Additionally, we set CPUtrans

= $0.005 and Memtrans = $0.50, as they are required in our pric-
ing models. These values are chosen to reflect a case where the cloud
provider allows frequent changes in resource allocation, particularly,
the CPU percentage allocation.

Using the three resource allocation approaches and the above two
metrics, we designed the experiments with the following goals:

• Demonstrate that our proposed model is effective in CPU cy-
cle and memory allocation with high resource utilization. Also,
models trained on one type of hardware can still be effective on
another type of hardware.

• Demonstrate that the maximum benefit achieved by our dynamic
resource provisioning method is larger than that achieved by
Static Scheduling, within the time constraint. At the
same time, the resource cost always stays under the pre-specified
budget.

• Evaluate the overhead of our dynamic resource provisioning al-
gorithm.

6.2 Experimental Setup
Our experimental cloud testbed is emulated using 2 Linux clusters,

each of which consists of 64 computing nodes. One cluster has dual
Opteron 250 (2.4GHz) processors with 8MB L2 cache and 8 GB main
memory. While the other has Intel Xeon CPU E5345 (2.33 GHz),
comprising two quad-core CPUs, with 8 MB L2 cache and 6 GB main
memory. Computing nodes are interconnected with switched 1 Gb/s
Ethernet within each cluster. The two clusters are located in different
buildings, about 0.5 miles apart, within the Ohio State university cam-
pus and are connected using two 10 Gb/s optical fibers. We chose Xen
as the virtualization technology and we used Xen-enabled 3.0 SMP
Linux kernel in a stock Fedora 5 distribution. One a single consoli-
dated server, hardware resources are shared between the virtual ma-
chines that host application service components and the management
domain (dom0 in Xen terminology). Throughout our experiments, we
restrict the management domain to use one physical core, thus isolat-
ing it and avoiding performance interference. The virtual machines
hosting application services share the remaining physical cores. The
placement of VMs are decided at the start of application execution.
Placements of VMs by taking performance interference into account
could be an important factor for performance, but is beyond the scope
of this paper. Similar to Amazon EC2 VM instances, the VMs are cre-
ated and customized for each service component. However, as stated



Application Services Dataset
POM Model (2-D mode) POM Model (3-D mode)

GLFS Grid Resolution Linear Interpolation 21.0 GB
Preprocessing Rendering

Volume WSTP Tree Construction Unit Image Rendering
Rendering Temporal Tree Construction Decompression 7.5GB

Compression Image Composition (30 time steps)

Table 2: Details of GLFS and VolumeRendering

earlier, we allow fine-grained CPU cycle and memory allocation in our
cloud environment.

The experiments we report were conducted using two applications,
GLFS and Volume Rendering. The first of these applications was
described earlier in Section 2. Volume Rendering interactively
creates a 2D projection of a large time-varying 3D data set (volume
data) [15]. Under normal circumstances, the system invokes services
for processing and outputs images to the user at a certain frame-rate.
In cases where a notable event is detected in a particular portion of the
image, the user may want to obtain detailed information on that area as
soon as possible. There is typically a strict time limit, because of the
need for altering parameters of the simulation or the positioning of the
instrument. In obtaining the detailed information, there is flexibility
with respect to parameters such as the error tolerance (which is related
to image resolution), the image size, and also the number of angles at
which the new projections are done. A benefit function capturing this
aspect has been described in our earlier work [28].

Some of the key details of both applications are listed in Table 2.
The adaptable parameters for the first application are the number of
internal time steps, number of external time steps, from POM Model
service and grid resolution, from Grid Resolution service. Similarly,
there are three adaptive parameters in the second application, wavelet
coefficient from the Compression service, and both error tolerance and
image size from the Unit Image Rendering service.

6.3 Model Validation
In this subsection, we validate the resource models we use. Specif-

ically, we want to show that our model can effectively assign CPU
cycles and memory to service components, in accordance to the pa-
rameter adaptation, so as to keep the resource costs low. Furthermore,
we show that the model can be trained on one server, and then used
on a server with a different type of hardware effectively. This is an
important requirement in cloud computing, as a service provider may
use different types of hardware, with a user not having any control on
what is made available to them.

We first use the GLFS application to validate our model. Particu-
larly, two service components, i.e., POM 3D Model service (S1) and
Grid Resolution service (S2) are chosen. Recall that the first service
has the external time step and internal time step as the two adaptive
parameters. We triggered a 1 hour event to predict the meteorological
information for an area of 200 square miles in Lake Erie. Throughout
our experiments, the benefit and resource cost are reported for fixed
size area, unless explicitly stated otherwise. The CPU and memory
usage was measured for both services that are hosted on one single
server, while supporting parameter adaptation at the time interval of 2
minutes. The results of CPU usage/allocation comparison are shown
in Figure 4(a). In the charts, the legend Our Approach * refers
to our approach without using the model optimizer, whereas this op-
timization is enabled in the case of Our Approach. We compared
the CPU cycle assignment generated from our model with the Static
Scheduling and the Work-conserving approaches. The former
statically assigns a certain amount of CPU cycles to the two services,
whereas, the latter allows us to measure the actual usage of the two
services. We observe that the CPU cycle requests generated from our
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Figure 4: CPU/Memory Usage and Allocation Comparison: POM
3D Model Service(S1) and Grid Resolution Service (S2) from GLFS:
(a) CPU (b) Memory

proposed model are close to those from the Work-conserving ap-
proach, or the actual CPU usage, for both services. Specifically, the
difference is less than 3% for the POM 3D Model service and 1%
for the Grid Resolution service. These results indicate that the re-
source model we presented in Section 4.4 is effective in mapping the
service parameter adaptation to CPU cycle requests. The Static
Scheduling fixed the CPU assignment to be 90% and 20% for the
two services, respectively. As we can see, such assignment results in
under-utilization or over-utilization during the entire execution. Also,
the Work-conserving is not suitable for other applications or ser-
vices that may want to share the same CPU, while resource usage is
being changed frequently. This becomes more severe if the time-limit
is shorter. In comparison, Our Approach first accumulates certain
CPU requests before actually changing the current CPU allocation. By
doing this, we are able to reduce the number of CPU allocation changes
to 2, while Work Conservingmakes 30 changes. This is an impor-
tant factor in saving resource costs with our pricing models, as a trans-



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 25 50 75 100 125 150 175 200

C
P

U
 U

til
iz

at
io

n

Execution Time (Sec)

Work-conserving:S1 Static Scheduling:S1

Our Approach *:S1 Our Approach:S1

Work-conserving:S2 Static Scheduling:S2

Our Approach *:S2 Our Approach:S2

(a)

0

500

1000

1500

2000

2500

3000

0 25 50 75 100 125 150 175 200

Our Approach*:S1 Static Scheduling:S1
Work Conserving:S1 Our Approach:S1
Our Approach*:S2 Static Scheduling:S2
Work Conserving:S2 Our Approach:S2

Execution Time (Min)

M
em

or
y

U
til

iz
at

io
n 

(M
B

)

(b)

Figure 5: CPU/Memory Usage and Allocation Comparison: Unit
Image Rendering Service (S1) and Temporal Tree Construction Ser-
vice (S2) from VolumeRendering: (a) CPU (b) Memory

fer fee is charged each time a reallocation is performed. More broadly,
reducing frequency of resource reallocations is important for stability
of a cloud environment. It is also possible that resource reallocation
may take a significant amount of time in a real cloud environment, and
thus a scheme involving frequent reallocations may incur large delays.

One interesting observation made from Figure 4(a) is that, the CPU
usage of these two services peak around the 48th time-step. In order
to eliminate the bottleneck in the application, CPU allocation for the
POM 3D Model service was reduced to give more share to the Grid
Resolution service, as suggested by our model optimizer. However,
since our approach decides the CPU allocation based on the service
priority, CPU requests from the S1 should be satisfied first, as com-
pared to those from S2. This helps us achieve better application bene-
fit, as we will demonstrate it in the next subsection.

We compare memory usage and allocation next. The results are
demonstrated in Figure 4(b). Two observations can be made from the
figure. First, the actual memory usage always stays below 90% of the
allocated memory to each VM, which is generated from our resource
model, in spite of the varying memory demand from both services due
to parameter adaptation. Second, we compared the ideal memory size
(i.e. actual memory usage divided by 0.9) and the prediction from Our
Approach. The difference is below 0.5%. Furthermore, by applying
the model optimizer, we are able to reduce the frequency of reparti-
tioning the memory to one sixth of that of the Work Conserving
scheme.

We repeated the experiment using two services, again denoted as
S1 and S2, from the Volume Rendering application. The results
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Figure 6: Performance of GLFS with Model Trained on Homo-
geneous Hardware (M1) and Heterogeneous Hardware (M2 and
M3): (a) Benefit Percentage (b) Resource Cost

are shown in Figure 5 (a) and (b). Similar observations can be made.
The prediction accuracy in terms of CPU is 5% and 1% for S1 and S2,
respectively. The memory prediction error is below 0.05%. Further-
more, by applying the model optimizer, we are able to reduce the CPU
and memory reallocation frequencies from 40 to 6 and 5, respectively,
compared to Work Conserving.

Next, we demonstrate that the actual hardware type on which we
train our model does not restrict the effectiveness of the model, i.e. the
model can still be used on a different type of server. We used three
different servers, which were Intel Xeon quad-core CPU - 2.33 GHz,
AMD Opteron model 252 - 2.6 GHz, and Intel Xeon dual core CPU -
1.6 GHz. We trained and obtained models on these three machines in-
dependently, and we refer to these three models as Model1, Model2
and Model3, respectively. We conducted this set of experiments us-
ing the first machine, i.e., Intel Xeon quad-core CPU - 2.33 GHz. Our
goal was to compare Model2 and Model3 against the Model1, to
see how effective a model trained on a different type of hardware is.

Events with 1, 2, 3, 4 and 5 hours as time constraint were triggered
from the GLFS application. We applied the linear pricing model pre-
sented in Section 3. The resource budget can be used to process this
event is $400. The obtained benefit percentage and resource costs us-
ing the three models are shown in Figure 6(a) and (b), respectively. As
we can see, although Model1 achieved slightly better benefit with less
resource costs. The average difference of benefit percentage among
three models is 1.2% and their corresponding resource cost difference
is less than 3%. This demonstrates that models trained on a different
hardware are still very effective.
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Figure 7: Comparing Different Approaches for GLFS using Two
Pricing Models: (a) Benefit Percentage (b) Resource Cost

6.4 Performance of the Dynamic Resource Pro-
visioning Algorithm

In this subsection, we evaluate the performance of our approach
against Static Scheduling and Work-conserving approa-
ches with respect to the two metrics, i.e., benefit percentage and re-
source cost. We present results obtained with the use of both the lin-
ear pricing model and the exponential pricing model, which were pre-
sented earlier in Section 3. Our goal is to demonstrate that regardless of
the pricing model used, our proposed dynamic resource provisioning
algorithm is able to optimize the benefit, while meeting the time con-
straint and the resource budget. The overhead of different approaches
is compared in the next subsection.

First, we show how the GLFS application could benefit from our
dynamic resource provisioning. We fix the resource budget as $400.
During the processing, we invoked multiple time-critical events, with
the time constraints being 1, 2, 3, 4 and 5 hours, respectively. For
each event, we executed 10 runs and report the average values. Ben-
efit percentage, calculated as the ratio of obtained application bene-
fit over the baseline benefit, is shown in Figure 7(a). Our approach
can always perform better than Static Scheduling. Recall that
Work-conserving is a scheme that favors benefit maximization
but is unrealistic for a cloud environment. Every step in parameter
adaptation leads to a CPU and/or memory resource request with this
scheme. Since each resource request is always granted, the best ben-
efit percentage was achieved. By using the linear pricing model, our
approach is 24% worse, as compared to Work-conserving. How-
ever, the benefit achieved by Work-conserving comes with a sig-
nificant resource cost, as shown in Figure 7(b). It costs 66% higher
on the average. The following factors contribute to such a high re-
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Figure 8: Comparing Different Approaches for Volume
Rendering using Two Pricing Models: (a) Benefit Percentage (b)
Resource Cost

source cost First, repartitioning memory is expensive, especially if it
is done for each step in parameter adaptation. Second, even though
CPU change overhead is small in our models, it can add up to be a
significant factor in cost for a longer execution. Finally, service prior-
itization is not enabled for Work-conserving. Thus low priority
services could request more resources for processing.

We also calculate the resource cost using the exponential pricing
model. Similar trends are observed. In this model, a high CPU per-
centage or a large memory size costs much more, as compared to the
linear model. As a result, we achieve less benefit than the linear case.
However, we still managed to complete the task within the given $400
resource budget. In comparison, Work-conserving costs are even
higher, as expected. While the achieved benefit is lower in this case,
our approach can quantitatively estimate the tradeoff between the ben-
efit and resource cost, and through such a feedback, a user can increase
the budget if they are not satisfied with the current benefit.

We also used the Volume Rendering application for the eval-
uation. The resource budget for this application is $150. The results
are shown in Figure 8. Similar to the previous results, we observe that
the benefit percentage achieved by our approach is 16% lower than
what could be achieved by Work-conserving approach (under the
the linear pricing model). With respect to the resource costs, our ap-
proach incurs 40% lower costs than that of the Work-conserving
approach.

6.5 Overhead of Dynamic Scheduling
We have already demonstrated that our approach is much better than

a static approach we compared against. Still, one of the potential prob-
lems with a dynamic approach is a high runtime overhead. We now
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Figure 9: Scheduling Overhead (a) GLFS (b) Volume
Rendering

show that this not the case with our approach, i.e., the overhead caused
by our dynamic resource provisioning is quite small.

For demonstrating this, we compared two different executions as
follows. In the first case, we started from random initial values for
adaptive parameters and applied our model and the dynamic resource
provisioning algorithm. This version is referred to as the Adaptive
Execution. In the other case, the parameters were set to the ideal
or converged values we obtained from the first case. Similarly, both
the CPU cycle and memory allocation is set according to the ideal re-
source configuration from the first case. We refer to it as the Optimal
Execution. This is clearly unrealistic, as such parameter values or
the ideal CPU/memory allocation configuration cannot be known in
advance. Thus, this version is only used as a baseline to measure the
overhead in the execution of our algorithm.

We first conducted this experiment with the GLFS application, and
the results are shown in Figure 9(a). The overhead is around 4%, 2%,
2%, 1%, and 0.8% for the 5 cases, which correspond to time limits
of between 1 and 5 hours. The main part of the overhead is because
of the system calls to Xen hypervisor to change the maximum enti-
tled memory (maxmem) for each VM, as well as the cap value for the
Xen scheduler. Furthermore, the extra computation and communica-
tion with non-optimal values for the adaptive parameters also create
an overhead. But, overall, this overhead is quite small, and further-
more, the overhead percentage decreases as the time constraint in-
creases. This is because the actual CPU cycle allocation requested
by our approach does not change frequently, and with increasing ex-

ecution time, its relative cost becomes smaller. This is also true with
memory allocation.

This experiment was repeated with the Volume Rendering ap-
plication. The results we observed are very similar. The overhead
compared to the Optimal Execution is within 9% for all 8 cases
that we have considered.

7. RELATED WORK
We now discuss the relevant research efforts from the areas of mid-

dleware for cloud computing, virtualized resource scheduling, and sche
duling with budget constraints.
Cloud Computing Systems: Cloud computing has received much at-
tention recently in both academia and industry. Besides the efforts at
popular service providers like, Amazon [2], Google [5], Microsoft [3],
and many others, Cloud computing research testbeds and/or research
projects have been initiated at Georgia Tech [4], HP/Intel/Yahoo! [8],
CMU [1], UCSB [14], and U.C.Berkeley [23], The Eucalyptus mid-
dleware from UCSB [14] supports Infrastructure as a Service (IaaS),
with the goal being to give users the ability to run and control the entire
virtual machine instances. More recently, researchers in the scientific
community are actively examining cloud computing for scientific ap-
plications, with Nimbus [7] and Magellan [6] two representatives ef-
forts. In comparison, our focus has been on optimization of compute-
intensive adaptive applications when there is a fixed resource budget.
To the best of our knowledge, this has not been addressed by any of the
existing projects. Overall, our work can be viewed as an optimization
module that can be incorporated with any cloud infrastructures.
Virtualized Resource Scheduling: There has been much research
on the topic of virtualized resource allocation [22, 19, 27, 32, 13].
Diao [13] et al. applied MIMO control to adjust two configuration pa-
rameters within Apache to regulate CPU and memory utilization of the
Web server. However, they used static linear models. In our work, a
dynamic approach has been taken, as static models cannot perform pa-
rameter adaptation for maintaining application processing progress. A
similar control model was used by Padala [27] for virtualized resources
management, targeting web applications. They considered both CPU
and disk as resources, taking application throughput and response time
as the metrics. The distinctive aspects of our work are adaptive param-
eter adaptation, a fixed resource budget, and a time-constraint, which
make our control formulation more challenging. In addition, we de-
velop resource models through offline learning.
Scheduling with Budget Constraints: In the context of grid and util-
ity computing, many efforts have contributed to the problem of re-
source scheduling with a budget constraint [21, 16, 29]. Yu et al.
proposed a generic algorithm for scheduling workflows onto the util-
ity grids, with the goal of minimizing the execution time, within a
specific resource budget. Sakellariou et al. developed two schedul-
ing approaches, LOSS and GAIN, to adjust schedules that are gener-
ated by time-optimized and cost-optimized heuristics, to meet users’
budget constraints. Although the resource provisioning problem we
consider in this work is also budget constrained, parameter adaptation
with the goal of maximizing application benefit within a time deadline
distinguishes our work. As opposed to static resource scheduling per-
formed in most existing work, we considered two pricing model for
the cloud resources and applied a dynamic approach where CPU cy-
cle and memory assignments are changed with parameter adaptation at
application runtime. Furthermore, we also consider the problem of re-
source contention among multiple virtual machines. Shared resources
are assigned to VMs based on the priority of services running on the
VM.

8. CONCLUSION
The realization of the vision of utility computing through the emer-

gence of clouds is creating new resource provisioning problems. The



work presented in this paper has been driven by the challenge of ef-
fectively supporting a class of adaptive applications on these systems.
We have developed a feedback control based approach for maximizing
application QoS, while meeting both a time constraint and a resource
budget limit.

We have evaluated our framework with two real adaptive applica-
tions. The main observations from our experiments are as follows.
First, the CPU cycle allocation generated through the use of our re-
source model is within 5% of the actual CPU utilization. Furthermore,
the model can be trained on one type of hardware and then applied on
another type of hardware effectively. Second, our dynamic resource
provisioning algorithm achieves a benefit of up to 200% of what is
possible through a static provisioning scheme. At the same time, the
scheme could perform parameter adaptation to meet a number of dif-
ferent time and budget constraints for the two applications. Finally,
the overhead caused by the dynamic resource provisioning algorithm
is less than 10%.
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