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Abstract—High-performance scientific applications modeling
natural phenomena are pushing the boundaries of modern par-
allel computing systems. These applications are computation and
communication intensive. Continual scaling of these applications
to even larger systems is key to gaining critical insights into
natural phenomena. At the same time, performance optimization
of large real-world scientific applications is becoming increasingly
challenging due to increasing complexity of various components,
such as computer architecture, message-passing library, net-
work architecture and finally application algorithms. Effective
optimization of applications increasingly requires careful under-
standing of cross-cutting issues. AWM-Olsen is a heavily used
NSF Teragrid seismic modeling application which is communi-
cation intensive. In a previous paper we presented our design
modifications to AWM-Olsen using MPI-2 RMA semantics. In
this paper, we present a detailed performance analysis and
further optimization techniques for the updated MPI-2 version
of AWM-Olsen. We propose an improved design to increase
overlap of computation and communication using MVAPICH2, a
popular MPI-2 implementation on InfiniBand. Additionally, we
propose using application logic aware loop fusion techniques to
balance computation load within processes in a parallel job. Using
the combination of our proposed optimizations, time spent in
communication can be reduced by 72% over the previous MPI-2
version and by 89% over the unmodified MPI-1 version on 8K
processes. This results in an overall speedup in the execution time
by 8%, and 15% respectively. The experiments were carried out
on the Ranger cluster at Texas Advanced Computing Center.

I. INTRODUCTION

Computational models provide key insights into complex
natural phenomena, such as the seismic waves which lead
to earthquakes. In order to gain deeper understanding and
accuracy, these models must be run at very high resolution and
scale. Although modern computing systems provide increasing
aggregate compute power (FLOPS), inherent communication
costs in the underlying parallel algorithms usually prevent
perfect scaling. In order to scale to next generation systems, it
is extremely critical that communication costs be minimized to
the extent possible. Typically, scientists have to prove the scal-
ability of the application in order to get access to leading edge
systems such as Jaguar [1] at the OLCF and Blue Waters [2]
at NCSA. Often, one of the pre-requisites of access to such
large scale systems is that the target applications demonstrate
effective latency hiding through overlapping computation and
communication [3]. This is to ensure that applications that
operate on such large scales do not waste valuable system
time.

AWM-Olsen [4] is a community model used by researchers
at Southern California Earthquake Center (SCEC). It is a
heavily used NSF-Teragrid and DOE-INCITE application con-
suming large amount of computation cycles. AWM-Olsen has
been scaled to tens/hundreds of thousands of processor cores
of Ranger at TACC, Jaguar and Kraken at OLCF/NICS, and
BlueGene machines at IBM and ANL. Some of the most
detailed simulations to date of earthquakes along the San An-
dreas fault were carried out using this code, including the well-
known TeraShake, SCEC ShakeOut simulations. Therefore,
continued scaling of AWM-Olsen is of great interest to the
scientific community. AWM-Olsen is written using Fortran 90
and MPI-1 point-to-point communication semantics. Processes
are arranged in a 3D Cartesian grid. AWM-Olsen reports two
metrics, the average and maximum times taken. Maximum
time is recorded at the process which is last to finish (either
due to computation or communication). This is due to the
fact that processes inside the 3D cuboid have more neighbors,
hence more communication, than those on the boundary.
In addition, different computation models are employed for
interior and boundary data.

The original AWM-Olsen written using MPI-1 did not ef-
fectively overlap Communication and computation. When run
on Ranger at TACC [5] on 8K processes with a 128×128×128
data grid per process, on an average each process spent 17%
of its execution time in communication. The process which
reported maximum execution time, spent 24% of its time
in communication. Recently, we optimized AWM-Olsen by
using MPI-2 RMA semantics in [6]. Our evaluation using
MVAPICH2 [7], a popular MPI-2 implementation on Infini-
Band, showed improved performance at scale. The improved
MPI-2 version attempts to overlap communication with com-
putation and is successful to a certain extent. This version
improved average and maximum communication times to
around 7%, and 20% respectively. The motivation behind
the work presented in this paper is to analyze the recently
improved MPI-2 version in depth. The aim of our analysis is
to uncover performance bottlenecks and explore strategies to
further reduce time spent in communication routines by over-
lapping it with computation. Specifically, we aim to answer
the following questions in this paper:

1) What factors do we need to consider in order to increase
the percentage of overlapped communication?

2) Can we leverage knowledge of internal MVAPICH2



design and InfiniBand architecture to use communication
channels that improve overlap?

3) Can we optimize computation loops in such a way so
as to reduce load imbalance and minimize impact of
process skew?

To address these questions, we follow a three-pronged
approach. First, we analyze the computation pattern in AWM
to reveal data dependencies which must be unraveled in order
to expose more overlap potential. Secondly, we analyze com-
munication channels in MVAPICH2 to appropriately choose
a mode under which more communication can be overlapped,
regardless of whether it is inter-node or intra-node. Finally,
we employ loop fusion techniques in an application logic
aware manner to AWM-Olsen. The loop fusion techniques
speed up the computation functions and reduces load imbal-
ance and skew among processors, leading to more effective
overlap. These design enhancements are explained in greater
detail in Section IV. Using the combination of our proposed
optimizations, time spent in communication can be reduced
by 72% over the previous MPI-2 version and by 89% over the
unmodified MPI-1 version on 8K processes. The average and
maximum communication times of the optimized code are 2%,
and 8.9% of application run-time respectively. The proposed
designs are able to speed up the AWM-Olsen application
by 8% over the previous MPI-2 version, and 15% over the
unmodified MPI-1 version.

The remainder of this paper is organized as follows. Sec-
tion II briefly reviews AWM-Olsen, MPI-2 RMA semantics
and its underlying implementation in MVAPICH2. In Sec-
tion III, we provide a detailed performance analysis of AWM-
Olsen and identify factors which may lead to reduced overlap
in the MPI-2 version. Then in Section IV, we present our
proposed enhancements. Our results are presented in Section V
along with corresponding analysis. In Section VI we discuss
the impact of our work on the real world usage and scaling
of AWM-Olsen community model. Finally, we present the
conclusions and future work in Section VII.

II. BACKGROUND AND RELATED WORK

A. Anelastic Wave Model (AWM) and its Application

AWM-Olsen is a community model [4], [8], [9], [10], [11]
used by researchers at the Southern California Earthquake
Center (SCEC) for wave propagation simulations, dynamic
fault rupture studies, physics-based seismic hazard analysis,
and improvement of structural models. Some of the most
detailed simulations to date of earthquakes along the San
Andreas fault were carried out using this code, including
the well-known TeraShake, SCEC ShakeOut simulations. The
ShakeOut simulations, for example, modeled an M7.8 earth-
quake with 600×300×80-km3 domain at 100-m resolution for
up to four minutes. The most demanding simulation of a “wall-
to-wall” rupture scenario required 32 billion volume elements
and 86,000 time steps, ran for 20 hours on 32K processor
cores of TACC Ranger, and generated 7 terabytes of surface
output and checkpoints.

AWM-Olsen solves the 3D velocity-stress wave equation
explicitly by a staggered-grid FD method, fourth-order accu-
rate in space and 2nd-order accurate in time. The code includes
a coarse-grained implementation of the memory variables for
a constant-Q solid and Q relations validated against data. It
uses Perfectly Matched Layers (PML) to implement absorbing
boundary conditions on the sides and bottom of the grid, and
a zero-stress free surface boundary condition at the top.

The velocity equations are:
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where vx, vy and vz are the x, y and z components of the
velocity vector field, σ is the stress tensor, and ρ is density.

The stress equations are:
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where λ and µ are Lame’s elastic constants.

The PML formulation for AWM-Olsen is described in
detail by Marcinkovich and Olsen in [12]. Conventional wave
propagation based on the equations above is carried out in
the interior of the ground model. The regions on model sides
and bottom require damping in their normal directions, so
for example, the region at the minimum x boundary requires
damping in x. The edges between boundaries require damping
in the directions of both of the bounding planes and corners
require damping in all three coordinate directions.

The 3D volume representing the ground area to be modeled
is decomposed into 3D rectangular sub-grids. Each processor
is responsible for performing stress and velocity calculations
for its portion of the grid, as well as applying boundary
conditions at the external edges of the volume if its sub-
grid is on the boundary. Ghost cells, comprising a two-cell-
thick padding layer, manage the most recently updated wave-
field parameters exchanged from the edge of the neighboring
sub-grids. Communication for the Ghost cell exchange can
be overlapped with computation using either asynchronous 2-



sided send/receive calls or using MPI-2 one-sided commu-
nication as shown in [6]. Recent work by Cui, et al. [10],
[11], enhanced the application through single-processor op-
timizations, optimization of I/O handling and optimization of
TeraShake initialization. In this paper, we investigate obstacles
to achieving full communication/computation overlap and how
they can be overcome in this and other stencil-based codes.

B. Active Target Synchronization with MPI-2

Many network architectures, including InfiniBand [14], pro-
vide Remote Direct Memory Access (RDMA). Using RDMA,
remote memory locations can be written or read without
any involvement from the remote host processor. Therefore,
RDMA provides opportunities for overlapping computation
and communication. MPI-2 [15] introduced RMA semantics
at the programming model level and enables applications to
leverage the RDMA feature. It has since opened up new
opportunities for parallel scientific applications. In order to use
the RMA communication calls, each process group must define
what is called as a window. Window creation is a collective
call. Each process in the RMA access group contributes
a local memory region to the group-wide window object.
Remote processes can then access these regions via operations
on the window. The RMA model decouples communication
and synchronization, so it is non-blocking in nature and we
can utilize it to achieve communication and computation
overlap. Data transfer happens through communication calls.
MPI_Put transfers data from the caller’s (origin’s) mem-
ory to the target’s memory; MPI_Get transfers data from
the target’s memory to the caller’s (origin’s) memory; and
MPI_Accumulate atomically updates the target’s memory
with the result of an operation on data from both the origin’s
and the target’s memory. In these operations, all parameters
required for the transfer are specified at the origin and thus
intervention of the target in not required. Completion of
these put, get and accumulate operations requires explicit
synchronization calls. The MPI-2 RMA model defines two
modes for synchronization: active and passive. Active syn-
chronization involves both the origin and the target processes.
It provides greater flexibility in synchronization by allowing
the user to define sub MPI groups of a communicator and
synchronize within this group. This flexibility is key for the use
of Active Target Synchronization in AWM-Olsen. The main
technique in using this mode for overlapping computation and
communication is shown in Figure 1(b).

C. Underlying Implementation of MPI-2 RMA Communica-
tion Semantics

MPI-2 RMA semantics were introduced in the late 1990s.
However, very few applications have been optimized to lever-
age RMA to the fullest extent. The reason for this is a cyclic
dependency. MPI designers do not prioritize optimization of
features that are not heavily used by end applications, at the
same time, application developers tend to avoid features that
are not very well optimized across a wide variety of MPI
libraries. MVAPICH2 [7] is a popular MPI-2 library that has

been specifically designed for InfiniBand and other RDMA
capable networks. MVAPICH and MVAPICH2 are used world-
wide (in 56 countries) by over 1,075 organizations. This soft-
ware is distributed by major Linux distributors such as RedHat
and SuSE. In addition, the software is available through Open-
Fabrics Enterprise Stack distributed by OpenFabrics Industry
consortium [16]. Over the years, the MVAPICH/MVAPICH2
software stack has empowered many production InfiniBand
clusters to obtain high ranking in the Top500 list; for example,
top-ranking clusters from the most recent list (November 2009)
using MVAPICH/MVAPICH2 include the 5th-ranked Tianhe-1
system [17] at NUDT in China with 71,680 cores; 9th-ranked
Ranger system [5] at TACC with 62,976 cores; 27th-ranked
Juno system [18] at LLNL with 18,224 cores; and 48th-ranked
Chinook system [19] at PNNL with 18,176 cores.

MVAPICH2 has been specifically optimized for MPI-2
RMA semantics on InfiniBand, leveraging RDMA fea-
tures [20], [21], [22]. Inter-node transfers initiated by
MPI_Put, MPI_Get and MPI_Accumulate are carried out
directly over RDMA for the Active Target synchronization
semantics. For intra-node transfers (i.e. when origin and tar-
get processes are on the same physical node), the message
transfer is done over a shared memory channel. The shared
memory channel transfers messages using processor based
copy operations. Although this provides fast transfers by
avoiding network transactions, this consumes CPU cycles and
thus, reduced overlapping capabilities. Recently, a new mode
has been designed for intra-node transfers specifically for
MPI-2 RMA communication in [23] which leverages Intel’s
I/O Acceleration Technology [24]. This exploits the presence
of an on-board DMA engine to overlap memory transfers
with computation. However, this depends on whether such a
hardware feature is available on the target platform. We note
that our target platform, Ranger cluster at TACC does not offer
this feature.

III. PERFORMANCE ANALYSIS OF AWM OLSEN

In this section we provide a detailed analysis of the MPI-2
version of AWM-Olsen. We first analyze the computation
routines and then computation aspects of the application. The
focus of our analysis is to uncover behavior that may be
reducing achieved overlap, as well as to detect dependencies
that must be unraveled to increase chances of overlap.

A. Computation Performance Analysis

The main loop of the AWM Olsen consists of updating the
velocity and stress variables for the sub-grid, applying PML
boundary conditions for sub-grids containing boundary and
exchanging ghost-cell data. The velocity values are updated
for the interior and the boundary of the volume. Then velocity
values are exchanged with processors containing the neighbor-
ing sub-grids in the directions of north, south, east, west, up
and down as shown in Figure 2. This is followed by stress
calculations and updates which are done in a similar manner.
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MPI Win post(group, 0, window) ! pre-posting the window to all
neighbors
MAIN LOOP IN AWM-OLSEN

. . .
Compute velocity component u
Start exchanging velocity component u
Compute velocity component v
Start exchanging velocity component v
Compute velocity component w
Start exchanging velocity component w
Complete Exchanges of u,v and w
MPI Win post(group, 0, window) ! For the next iteration
. . .

START EXCHANGE
MPI Win start(group, 0, window)
s2n(u1,north-mpirank, south-mpirank) ! put to north window
n2s(u1, south-mpirank, north-mpirank) ! put to south window
. . . repeat for east-west and up-down

COMPLETE EXCHANGE
MPI Win complete(window)
MPI Win wait(window)
s2nfill(u1, window buffer, south-mpirank) ! ghost data from south
n2sfill(u1, window buffer, north-mpirank) ! ghost data from north
. . . repeat for east-west and up-down

S2N
Copy data of north face of subgrid for (u,v or w) variable to buffer
MPI Put(buffer, north-mpirank)

S2NFILL
Copy data from window to (u,v, or w) variable south ghost cells

Fig. 2. Velocity update and ghost-cell exchange with 1-sided communication
and Post-Wait/Start-Complete synchronization

1) Data Dependencies: The primary data values maintained
for each grid point are the velocity vector field components:
vx, vy and vz and the stress tensor components: σxx, σyy , σzz ,
σxy , σxz and σyz , as given in the velocity and stress equations
in Section II-A. From these equations it is clear to see that
there are data dependencies between the velocity and stress
variables. To meet these dependencies the velocity updates
(including PML and sub-grid boundaries) must be complete
before the stress calculations begin. Likewise the stress up-

dates (including PML and sub-grid boundaries) must complete
before the velocity updates for the subsequent time step of the
main loop begin. The placement of communication initiation
and completion are constrained by these dependencies.

2) Load Imbalance: At first glance this application looks to
be well balanced, the grid is a structured rectangular grid split
into equal sized rectangular sub-grids which are distributed
among processors. However, the PML boundary conditions
provide a source of imbalance. The computations correspond-
ing to the equations for the PML boundary condition are
applied to a 10 plane layer on the sides and bottom of the
grid. Although the PML equations are similar to the interior
equations, they can cause variations in computational load
across processors in two ways: i) increased computational re-
quirement per grid point, and ii) different data access patterns.
The computation requirements of PML equations are higher,
requiring more floating point operations. In addition, these
equations are currently implemented in separate subroutines
and loop nests from the main calculation. Further, the exe-
cution of PML equations is conditional (whether a particular
block is on the boundary) and that the PML and interior field
equations bounds are not compile time constants. This makes
it very hard for compilers to automatically fuse portions of
these loops. This leads to increased cache misses for the PML
calculations and has a significant impact in creating a load
imbalance amongst processors.

B. Communication Performance Analysis
In this section, we focus on the communication aspects

of AWM-Olsen. We have further divided our analysis of
communication based on inter-node communication and intra-
node communication.

1) Inter-node Communication: The MPI-2 version of
AWM-Olsen uses active target synchronization semantics. As
mentioned in Section II-B, this synchronization mode allows
synchronization in sub-groups. For example, in AWM-Olsen,
processes need only to synchronize in their neighborhood, not



across all process in the communicator. This provides very low
overhead synchronization. As mentioned in Section III-A1,
the velocity vector fields must be computed before the stress
tensor components. The key observation in [6] is that the
computation of each component is independent of the other,
and they can be overlapped. For example, transfer of vx can
be overlapped with computation of vy , transfer of vy can be
overlapped with computation of vw. However, the transfer of
vw cannot be overlapped, as it must finish before we start
computation of stress tensor component σxx. Assume that
Tcv is the time to transfer all components of velocity and
Tcs is the time to transfer all components of stress. Since all
velocity exchanges must complete before stress computation
begins and all stress exchanges must complete before the next
velocity computations begin, we can not overlap the transfer
of the last component of both velocity and stress. Therefore,
1/3Tcv+1/6Tcs are not overlapped due to these dependencies.

2) Intra-node Communication: As mentioned in Sec-
tion II-A, the AWM-Olsen application uses a 3D Cartesian
grid of processes. The Ranger cluster has 16 cores on each
node. AWM-Olsen assigns a linear mapping of contiguous
ranks of the z dimension. Due to the node allocation strategy,
contiguous ranks are placed on the same node in a “blocked”
fashion. The processes communicate in a near-neighbor pat-
tern. Therefore, two neighbors of each process are on the same
node, leading to 1/3rd of the total communication being intra-
node.

MPI libraries often employ shared memory message passing
techniques to implement communication within one node.
Typical shared memory message passing schemes are imple-
mented as follows: the origin processor P1 copies message
M into a shared memory buffer S. The target processor P2

regularly polls queues in S to detect incoming messages. When
an incoming message M is detected, it copies the message
M to its destination receive buffer. Therefore, each message
transfer typically incurs two memory copies. There are some
mechanisms which can take help of a OS-privileged mode
agent to reduce one copy, such as in [25]. However, there
still exists one copy and the fact remains that the CPU is
involved in message transfer and progress. As mentioned in
Section II-C, a new I/OAT technology can be exploited to
alleviate CPU involvement for intra-node message transfers.
However, this feature is not widely deployed and is not
accessible on our target platform, Ranger at TACC.

Yet another method to achieve intra-node message passing
is to use the loop-back feature of the InfiniBand Host channel
adapters (HCAs). The HCA can optimize message transfers
between processes on the same node and which are connected
via the same HCA. When such a situation is detected, the
HCA simply DMAs the message from origin buffer to the
target buffer. The message never leaves the node and all the
communication is node-local. Typically, I/O bus bandwidth
is lower than memory bandwidth, especially when a node
architecture like Ranger is considered. There are 16 cores,
all connected to a single HCA (SDR - 10Gigabits/s) through
a single PCI-express (Gen1) bus. However, this method has a

significant advantage, i.e. it does not require the involvement
of the CPU to copy message from origin to destination buffer,
leading to improved overlap.

In order to investigate the benefits of this approach,
we designed a micro-benchmark to mimic the AWM-Olsen
communication pattern. We extend the “ping-pong” bench-
mark to also include computation cycles. In our micro-
benchmark, the origin process issues a MPI_Put followed
by a pre-defined amount of computation. Then the origin
process calls MPI_Win_complete. The target executes a
MPI_Win_wait and replies back with MPI_Put of the same
size of message it received. Meanwhile the origin is busy
in the same pre-defined amount of computation. We see the
results of this micro-benchmark in Figure 3(b) as compared to
the normal ping-pong latency test. We observe that although
the shared memory channel achieves best latency in the “no
computation” scenario, network loop-back excels in the case
of computation, adding very little overhead. Therefore, the net-
work loop-back channel can completely overlap computation
and communication.

IV. PROPOSED ENHANCEMENTS TO AWM OLSEN

A. Redesign using N, S, E, W, B boundaries

As presented in III-B1, the earlier design to separate and
overlap the different components in velocity and stress has a
limitation that the last components cannot be overlapped. This
is due to the data dependencies explained in III-A1. Here,
we alleviate this limitation by improving the earlier design to
preferentially compute the boundary data of each component
data grid and transfer it while computing the interior data grid
of the same component.

Each component of velocity and stress corresponds to a 3-
dimensional grid of data. In each communication step, every
process exchanges the boundary data of these data grids
with its neighbors in all directions. The computation of each
component in velocity depends on the stress values computed
in the previous iteration. A similar dependency exists for the
computation of stress components. However, computation of
different components within velocity/stress is independent of
one-another. We had exploited this property in our earlier
design. Similarly, the computation of different elements of
a given component data grid is independent of one another.
Using this behavior we can first compute the boundary data
that is exchanged between the processes and then overlap
this exchange with computation of the interior data. We can
also achieve finer overlap by initiating the transfer of each
boundary as it is computed and then move on to compute
the other boundaries. For boundary processes, such a split
is naturally allowed by the PML functions which compute
the boundary planes. But for interior processes, this involves
splitting the main computation loop.

Splitting the boundary and interior computation of a 3D data
grid in this way, can have a significant impact on the cache
behavior especially along the dimensions that result in unit-
stride accesses in memory. For example, consider a system
with a cache-line size of 64 bytes and a 2-way associative 64
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Fig. 3. Performance of different Intra-node Communication Channels

KB L1 cache. Splitting the accesses to a 3D single-precision
data grid, C(x=1:128,y=1:128,z=1:28), along the x dimension
into boundaries : B1(1:2,1:128,1:28), B2(127:128,1:128,1:28)
and interior I(3:126,1:128,1:28) can increase the L1 cache
misses by 25 percent from 131,072 to 163,840. This will also
incur cache misses at the higher level caches. To avoid this,
we split the boundaries along the z and y axes and compute
boundaries along the x axis along with the interior grid. We
do not incur an increase in misses along the y and z axes as
we still maintain the unit-stride access.

One disadvantage of this approach is that, exchange of
boundaries along the x dimension, for the last component,
cannot be overlapped with computation. However, we overlap
these transfers with the copy-back (staging buffers to data
grid) of completed transfers from the earlier components. [6]
explains the staging buffers in more detail.

The positioning of window posts, completes and waits is
crucial for achieving overlap with the Post-wait/Start-complete
semantics. The windows should be posted in advance so that
the they are available when the origin side issues the puts. The
complete calls should be called as soon as the communication
is expected to complete on the origin side and waits should
be delayed as late as possible, placed just before the data is
required for computation. This placement of the completes
reduces wait time and ensures good overlap and delaying
the waits helps in hiding process skew. Similar observations
regarding best practices for placement of these calls are made
in [26]. In the design in [6], all of the components (for example
in velocity) are computed, exchanged and then completes are
called for all the transfers. Waits immediately follow. Any
process that is slow in reaching its complete calls will cause
a delay in the wait calls of its neighbors. Therefore, in our
new design, we issue the completes as soon as the transfers
of each component are expected to complete, usually after a
few boundaries of the next component are computed and their
transfers are initiated. We delay the waits as long as possible
as in our earlier version.

B. Reducing Load Imbalance using Loop Fusion

The new design to preferentially compute the boundaries is
expected to improve communication hiding and thus reduce
the time spent in MPI_Win_complete. However, we see
that a notable amount of time is spent in MPI_Win_wait
calls. Analysis in III-A2 shows there is a computation
imbalance between the boundary and interior processes. For
example, in the case of velocity, the boundary processes spend
longer in computation as they need to do both the boundary
PML computation and interior computation. In the contrary,
for stress, the interior computation is more complex than the
boundary computation and so the interior processes spend
more time in computation. Though these two imbalances
appear to get evened out, the data dependencies between
velocity and stress require that some interior sub-grids wait
for data from neighboring boundary sub-grids, delaying their
start of the stress computation. Likewise, the boundary sub-
grids will then have to wait for the stress results of neighboring
interior sub-grids. These two add up to the time seen in
MPI_Win_wait. Additionally, these delays propagate from
sub-grid to sub-grid effectively limiting progress of all of the
sub-grids. We believe, the solution to this is to individually
reduce the computation imbalance in velocity and stress. In
this work, we reduce the computation imbalance in velocity
using the loop-fusion technique and demonstrate that this
reduces the time seen in MPI_Win_wait.

As mentioned earlier, the main source for the computation
imbalance in the current velocity computation design is that
the boundary processes call two functions: pmlvel, to compute
the boundary data and dvel, to compute the interior data, while
the interior processes call just the dvel. The pmlvel and dvel
functions access adjacent elements in each dimension of the
data grid. These elements fall on the same cache-line in x
dimension due to unit-stride access in memory. For example,
the east boundary and interior in figure 1(a). However, as the
east boundary and interior are computed by two independent
functions, the boundary is fully computed before moving onto
the interior. This results in duplicate misses of the shared



cache lines. Both pmlvel and dvel use all the data grids in
stress while computing elements in velocity and this kind of
access/miss pattern is true for all these grids.

Exploiting the match in access patterns, we fuse the loops
from the two pmlvel functions in the unit-stride dimension(x
or east-west) with the loops of the dvel function. Figure 4
shows an example for a process on the west boundary where
the pml computation loop for component u is fused into its
interior computation loop. This results in better cache behavior
and lower computation time at the boundary processes. Such
an optimization cannot be automatically done by a compiler as
the loops exist in two different functions and the loop extents
do not exactly match. The pmlvel loops include update of
the corner blocks which have to be separated out before the
pmlvel loops can be fused with the dvel loops.

Existing computation of Velocity Component U at a Process on the
West Boundary
PMLVELU

for 10 k = 1,nz
for 10 j = 1,ny
for 10 i = 1,10

compute u1(i,j,k)
10 continue

DVELU
for 20 k = 11,nz-10
for 20 j = 11,ny-10
for 20 i = 11,nx

compute u1(i,j,k)
20 continue

New fused-loop to Compute Velocity Component U at a Process on
the West Boundary
PMLVELU CORNERS

for 30 k = 1,10
for 30 j = 1,ny
for 30 i = 1,10

compute u1(i,j,k)
30 continue
for 40 k = nz-10,nz
for 40 j = 1,ny
for 40 i = 1,10

compute u1(i,j,k)
40 continue
for 50 k = 11,nz-10
for 50 j = 1,10
for 50 i = 1,10

compute u1(i,j,k)
50 continue
for 60 k = 11,nz-10
for 60 j = ny-10,ny
for 60 i = 1,10

compute u1(i,j,k)
60 continue

VELOCITYU FUSED
for 70 k = 11,nz-10
for 70 j = 11,ny-10
for 80 i = 1,10

compute u1(i,j,k) using pml equations for boundaries
80 continue
for 90 i = 11,128

compute u1(i,j,k) using equations for interior data
90 continue
70 continue

Fig. 4. Velocity computation using pmlvel and dvel functions and their fusion

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We have run all of our experiments on the TACC Ranger
system. Ranger is a blade-based system. Each node is a
SunBlade x6420 running a 2.6.18.8 Linux kernel. Each node
contains four AMD Opteron Quad-Core 64-bit processors (16
cores in all) on a single board, as an SMP unit and has 32 GB
of memory. The nodes are connected to an InfiniBand inter-
connect with Mellanox SDR adapters. In our experiments, we
use MVAPICH2 1.4.1 as the underlying MPI implementation.
We use a weak scaling model for our experiments to simulate
real world application use. We increase the size of the data
set as the process count increases such that data grid size per
process remains at 128×128×128 elements. Unless otherwise
stated, the performance measurements presented are for 100
iterations of the main time-step loop in AWM-Olsen.

B. Evaluation

In the following sections, we refer to the existing version of
the AWM-Olsen as AWM-MPI2-current. The version modified
for preferential boundary computation, described in IV-A,
is referred to as AWM-MCI2-ver1. AWM-MPI2-ver2 is the
version re-designed with loop-fusion described in IV-A. The
original MPI-1 based version is referred to as AWM-MPI1.

1) Minimizing Communication Overhead: In this section,
we compare the communication performance of the current
version of AWM-Olsen application with that of our new design
for preferential boundary computation. AWM-MPI2-current is
the existing version of the application as in [6] and AWM-
MPI2-ver1 is the version with the optimization described in
IV-A. In our experiments, we observed that using loop-back
operations for communication in AWM-MPI2-current did not
show any improvement in overlap because of the component-
level overlap design. This confirms our understanding that
the major part of the communication time is due to the
non-overlapped last component and the computational skew
which were not addressed in the earlier design. For all of
the experiments, we have used shared-memory intra-node
communication for AWM-MPI2-current and used loop-back
communication for the new designs.

Figure 5(a) shows the average communication time while
Figure 5(b) shows the communication time at the slow-
est process. Figure 5(c) shows the average communica-
tion time as a split between MPI_Win_complete and
MPI_Win_wait times. We see that, at 8,192 Processes, the
MPI_Win_complete time has reduced by close to 75%
in AWM-MPI2-ver1 when compared to the current version.
The gains here can be attributed to the finer grained overlap
of the last components in velocity and stress, achieved by
preferentially computing the boundaries and the use of loop-
back operations for intra-node communication. At the same
process count, the MPI_Win_wait times have been reduced
by 64%. Posting the complete calls immediately after the
transfers are expected to finish helped hide part of the compu-
tation skew between processes, thus resulting in the reduction



in wait times we observe here. The average communication
time of the application has reduced by 67% and the maximum
communication time at any process has reduced by 47%.
We performed four runs for each of the experiments and we
observed only a 0.2% deviation in the numbers which shows
the consistency in gains. Figure 5(d) depicts these numbers.

As mentioned earlier, our main experimental platform,
TACC Ranger, does not have I/OAT like features to enable
asynchronous communication progress of intra-node commu-
nication. However, to confirm that our designs can be effec-
tively use such features when available, we ran 64 process (8
processes per node) experiments on a smaller Intel Clovertown
cluster enabled with the I/OAT feature. We use the intra-node
communication design for MPI-2 RMA presented by Ping,
et al. in [23]. Figure 9(b) shows that we achieve similar
improvements in performance due to overlap using I/OAT and
loop-back techniques.

2) Reducing Computation Imbalance: Figure 7(a) shows
the skew in velocity computation between processes for a 4K
run using AWM-MPI2-current and figure 7(b) shows the skew
after loop-fusion has been applied, in AWM-MPI2-ver2. We
see that the skew has been reduced by 39% from 5.42 secs to
3.26 secs. We have used cachegrind to confirm that the new
design using loop-fusion results in a better cache behavior than
the earlier design. We observed a 14% reduction in L1 read
misses for velocity computation and an 9% reduction in L2
Read misses. The L1 and L2 write misses have dropped by
33%. These results are summarized in Figure 6. We also see a
corresponding reduction in MPI Win wait times in figure 5(c).
The overall average communication time has improved by
15%, when compared to AWM-MPI2-ver1 and by 72.5%,
when compared to AWM-MPI2-current on 8K processes.

3) Application run-time: Figures 8(a) and 8(b) compare the
total run-time of the current version of AWM-Olsen with the
two new versions. We see that AWM-MPI2-ver1 runs faster
by 4% and AWM-MPI2-ver2 runs faster by 8%, compared to
the current version on 8K cores. Figure 8(d) shows that the
performance gains remain stable as we scale from 1K to 8K
processes.

VI. IMPACT ON FIELD OF RESEARCH

Next-generation exascale systems are expected to provide a
massive increase in aggregate compute power (FLOPS). Inher-
ent communication costs in the underlying parallel algorithms
usually prevent perfect scaling. In order to scale to next gener-
ation systems, it is extremely critical that communication costs
be minimized to the extent possible. Efficient communication
design is the key to achieve such scalability. For example,
the original AWM-Olsen application written using MPI-1
blocking mode communication calls spends around 24% of
its execution time in MPI_Waitall calls (at the slowest
process) for data grid size of 128× 128× 128 at 8K process
count. Such large times spent in communication routines are
unacceptable on very large scale system. This leads to waste of
valuable system time. Many of the upcoming systems require
application to be able to exploit features like RDMA and have

designs for computation-communication overlap. Our work
enables AWM-Olsen to meet this requirement. Our MPI-2
RMA based designs proposed in [6] reduce the average
and maximum times spent in communication progress to 7%
and 20% respectively. Work presented in this paper enhances
these designs further to reduce the times to 2% and 8.9%
respectively. Total communication time has been reduced by
72% over the previous MPI-2 version and by 89% over the
unmodified MPI-1 version on 8K processes. Figure 9(a) shows
that our best version improves the application run-time by 15%
when compared to the original application.

It is expected that in the near future, nodes will contain
many cores, may be up to 64 or 128. Therefore, “fatter” nodes
will become common and efficient intra-node communication
will become more important. Typical shared memory imple-
mentations in MPI burn CPU cycles for memory copies. This
results in reduced overlap. On the other hand, technologies
like I/OAT [24] are emerging with a promise of offloading
data-transfer duties to on-board DMA engines. Ping, et al.
have leveraged I/OAT and designed truly one-sided commu-
nication primitives for MPI-2 RMA in [23]. Although our
target cluster, Ranger, does not have this hardware feature, we
explored the viability of I/OAT for AWM-Olsen. We ran the
various versions of AWM-Olsen on a smaller Intel Clovertown
cluster which has hardware I/OAT. The results are shown in
Figure 9(b). We observe that the schemes developed in this
paper (AWM-MPI2-ver2), is able to achieve best performance
with both I/OAT and Network loop-back. This demonstrates
the effectiveness of our optimizations and the I/OAT feature.

As mentioned in II-C, not many state-of-the-art MPI
libraries have efficient implementations for MPI-2 RMA se-
mantics. Lack of applications that demand these features is
a key reason for this lapse. On the other hand, application
developers have little incentive and literature to their aid, on
how to efficiently use these semantics for their applications.
Lack of good implementations is also a hindrance, making
the dependency reciprocal. Through our work, we hope to
influence and help more application developers to effectively
use MPI-2 RMA semantics to enhance their applications
with MPI-2 RMA based designs for better communication-
computation overlap.

VII. CONCLUSION AND FUTURE WORK

AWM-Olsen is a widely used earthquake-induced ground
wave-propagation simulation code which consumes several
million CPU hours every year on the TeraGrid clusters. Effi-
cient communication design is paramount for such large scale,
heavily used applications to best utilize the available system
time and resources. For the same reason, modern systems
require applications to have designs that exploit features like
RDMA for communication-computation overlap. Our work in
[6] had modified the communication design in AWM-Olsen to
use MPI-2 RMA semantics. In this paper, we first analyzed
the limitations of the earlier design and enhanced it further to
significantly reduce the time spent in communication progress.
Using the combination of our proposed optimizations, time
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Fig. 5. Performance improvement and reduction in communication time for AWM-Olsen at scale

Version Reads L1 Read Misses L2 Read Misses Writes L1 Write Misses L2 Write misses
AWM-MPI2-current 58,362,427 4,016,665 3,449,979 4,783,794 213,070 211,203

AWM-MPI2-ver2 51,748,613 3,454,385 3,140,644 4,544,882 143,264 140,586

Fig. 6. Cache Analysis (per iteration) using Valgrind on Velocity Compute Functions with and without Loop-Fusion

(a) Skew Regular (b) Skew Loop Fused

Fig. 7. Impact of Reduction of Process Skew using Loop Fusion

spent in communication can be reduced by 72% over the
previous MPI-2 version and by 89% over the unmodified
MPI-1 version on 8K processes. This results in an overall
speedup in the execution time by 8% and 15% respectively.

In the near future, we would like to extend this work to
achieve near-perfect computation balance using different load-
balancing techniques. We would like to explore the angle
of developing parallel programming patterns which can be
used by application writers to achieve similar overlap benefits
without requiring a deep understanding of the MPI-2 one-sided
semantics.
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