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ABSTRACT
Scaling up the sparse matrix-vector multiplication kernel on
modern Graphics Processing Units (GPU) has been at the
heart of numerous studies in both academia and industry.
In this article we present a novel approach to data repre-
sentation for computing this kernel, particularly targeting
sparse matrices representing power-law graphs. Using real
data, we show how our representation scheme, coupled with
a novel tiling algorithm, can yield significant benefits over
the current state of the art GPU and CPU efforts on a num-
ber of core data mining algorithms such as PageRank, HITS
and Random Walk with Restart.

1. INTRODUCTION
Over the last decade we have witnessed a revolutionary change
in the way commodity processor architectures are being de-
signed and implemented. CPUs with superscalar out-of-
order execution, vector processing capabilities, and simul-
taneous multithreading, chip multiprocessing (CMP), and
high end graphics processor units (GPU) have all entered the
mainstream commodity market. Data mining algorithms
often require significant computational resources, and thus
stand to benefit significantly from such innovations if appro-
priately leveraged.

In this article we develop a novel approach to facilitate the
efficient processing of key graph-based data mining algo-
rithms such as PageRank [7, 25], HITS [15] and Random
Walk with Restart[26] on modern GPUs. A common feature
of these algorithms is that they rely on a core sparse ma-
trix vector multiplication kernel (SpMV). Implementations
of this kernel on GPUs has received much attention recently
from the broader scientific and high performance computing
communities [8, 2, 9] including an industrial strengthened
effort from NVIDIA research [3, 4] – arguably the leader in
the development of GPU technology.

The key difference between past work and ours is that here
we are interested in the processing of sparse matrices that
represent large graphs – typically with power-law [20] char-
acteristics. This difference is also central to the specific
architecture-conscious approach we propose for processing
the SpMV kernel. We transform and represent the matrix
in such a way so as to facilitate tiling – a key strategy used
to enhance temporal locality. Additionally we rely on a com-
posite storage algorithm that leverages the skew in the de-
gree distribution afforded by the fact that these matrices
represent power-law graphs. Architectural features of the
GPU such as the texture cache are also effectively leveraged
in the processing of the kernel.

We present a comprehensive empirical evaluation of the pro-
posed approach on three data mining algorithms and the
base SpMV kernel on a range of real datasets including sev-
eral moderately large graph datasets. We also provide a
detailed comparison with other leading efforts – both aca-
demic and industrial – on this problem. On the core SpMV
kernel we find that our approach is typically a factor of 2
faster than the next best GPU competitor on matrices rep-
resenting graphs with power law characteristics. This is a
significant result especially in light of the industrial strength
efforts spent on this problem. On the data mining kernels –
HITS, PageRank and Random Walk with Restart - operat-
ing on datasets drawn from Flickr, LiveJournal, Wikipedia
and Youtube we find that our approach is anywhere from
1.5 to 2 times faster than the next best GPU competitor.
To put these results in context, our best results are 13 to 37
times faster than similarly structured and optimized imple-
mentations on state of the art CPUs.

2. BACKGROUND
GPUs were fixed-function devices for accelerating graphics
rendering pipelines before NVIDIA introduced the CUDA
general purpose parallel computing architecture [17, 21].
CUDA enables developers to program the devices for com-
putation and data intensive applications. In this section, we
discuss the hardware architecture and programming model
of CUDA GPUs. Figure 1 illustrates the organization of
computing hardwares and memory hierarchy in CUDA GPUs.

A CUDA device consists of a set of streaming multiproces-
sors (SMs), each one equipped with one instruction unit
and a cluster of 8 streaming processors (SPs). The paral-



lel region of a CUDA program is partitioned into a grid of
thread blocks that run logically in parallel. The program-
mer can decide the dimensions of grid and block. Thread
blocks are distributed evenly on multiprocessors. A warp is
a group of 32 threads that actually run concurrently on a
multiprocessor. The execution of the threads follows a sin-
gle instruction multiple threads (SIMT) model [17, 21]. The
instruction unit on a multiprocessor issues one instruction
for all the threads in a warp at each time [23]. The stream-
ing processors executes this instruction for all the threads
in a warp. Different warps within a block are time-shared
on the actual hardware resources. A kernel is the actual
code in the parallel region to be executed by each thread.
Conditional instructions cause divergence in the execution
if threads in a warp take different conditional paths. The
threads are serialized in this situation.

There are various memory units on a CUDA device. The
device memory, also called global memory is a large mem-
ory which is visible to all threads on the device [23]. The
access latency of global memory is high. Memory requests
of a half warp (16 threads) are served together at a time.
When accessing a 4- or 8-byte word, the global memory is
organized into 128-byte segments [23]. The number of mem-
ory transactions executed for a half warp is the number of
memory segments requested by this half warp.1 The re-
quests from threads in a half warp are coalesced into one
memory transaction if they are accessing addresses in the
same segment. When the addresses accessed by a half warp
are all in one segment, we call this request fully coalesced.
Each multiprocessor is equipped with an on-chip scratchpad
memory [23], called shared memory. The shared memory
has very low access latency. It is only visible to threads
within one block and has the same lifetime as the block [23].
The shared memory is organized into banks. If multiple ad-
dresses in the same bank are accessed at the same time, it
leads to bank conflicts and the accesses are serialized. There
are also a set of registers shared by threads in a block. The
constant and texture memories are read-only regions in the
global memory space with on-chip caches. The programmer
can bind a region of global memory to constant or texture
memory before the kernel starts.

2.1 Related Work
The Sparse Matrix-Vector Multiplication (SpMV) kernel com-
putes a vector y as the product of a n by m sparse matrix A
and a dense vector x. Since the SpMV kernel is widely used
in scientific computing, several existing efforts have targeted
optimizing this kernel for the GPU [3, 4, 2, 9]. However,
none of the above take into account the skew of the non-
zero distribution present in matrices representing power-law
graphs.

Bell and Garland [3, 4] propose several representations of
sparse matrices on the CUDA platform for SpMV kernels in
NVIDIA’s SpMV library. The compressed sparse row (CSR)
format is widely used to represent sparse matrices. In the
CSR format, the non-zeros in the same row are stored con-
tiguously in memory, and all rows are stored in one data
array, with another array holding the column indices of the

1Devices with Compute Capability lower than 1.2 have
stricter requirements.

Figure 1: Hardware Organization and Memory Hi-
erarchy of a CUDA Device [23]

non-zeros. A third array of row pointers marks the boundary
of each row. The corresponding CSR kernel assigns the com-
putation of each row to a thread. With power-law graphs,
it is possible to balance the workload among thread blocks,
but it is hard to balance among threads within one block. So
all the threads in one block will wait for the thread which
is assigned to the longest row in this block. To optimize
this method, Bell and Garland [3, 4] developd the CSR-
vector format, in which a warp of 32 threads are assigned to
work on each row. This strategy only helps the rows with
more than 32 non-zeros, but most of the nodes in power-law
graphs have degree lower than 32. The computation re-
sources of the warps assigned to such rows will therefore be
wasted. Baskaran and Bordawekar [2] further optimized the
CSR-vector format by using a half warp for each row to im-
prove global memory accesses, and also a padding technique
is used to ensure the memory requests are fully coalesced.

Besides the CSR format, the coordinate (COO) and ell-pack
(ELL) formats are also used in Bell’s SpMV kernel. In COO
format, all the non-zeros in matrix A are combined in a long
vector grouped by row index, and the kernel first computes
the multiplication of each non-zeros with the corresponding
elements of vector x in the first pass; then the segmented
reduction of the rows is done on this long vector by thread
warps. In the reduction phase, because the length of each
row is not necessary a multiple of warp size, synchroniza-
tion points are heavily used and warp thread divergence is
frequent. However, the COO kernel is the most insensitive
to variable row length in the matrix according to a previous
study [3]. The ELL format requires the number of non-zeros
on each row is bounded by some small number k, so that the
matrix A can be represented by a dense n by k matrix M , in
which only non-zeros in A are stored, and the correspond-
ing column indices of these non-zeros are also stored in a
separate matrix. In the ELL kernel, M is stored in column
major, and the thread assigned to each row can access global
memory very efficiently. In M , zeros are added to rows with
fewer than k non-zeros, so k cannot be large, otherwise it will



introduce large overhead to access these zeros. The ELL for-
mat cannot be directly applied to graph mining algorithms,
where the node degree in the graph cannot be bounded by
a small number k. However, ELL and COO format can be
mixed together to represent a matrix, where the first k non-
zeros of each row are stored in ELL format and the others
are stored in COO format. This is the hybrid (HYB) ker-
nel of NVIDIA’s SpMV Library [3, 4]. The diagonal (DIA)
format is only applicable to matrices in which all non-zeros
fall into a band around the diagonal. The packet (PKT)
format first uses Metis [14] to cluster non-zeros into dense
sub-blocks, then a sub-block is loaded into shared memory
and processed by a thread block as a dense sub-matrix. Choi
et al [9] propose blocked ell-pack format in which the non-
zeros are stored in fixed size blocks first and the blocks are
indexed with similar method in ELL format. Blocking tech-
niques [27, 28] will gain locality when accessing vector x and
reduce loop overhead when computing matrix indices; but
it will also introduce memory overhead if the small blocks
cannot be filled with enough non-zero elements.

Because of the importance of the SpMV kernel, researchers
have put substantial efforts on optimization techniques over
various architectures and platforms. Vuduc et al [31, 30, 16]
study optimizations and performance auto-tuning in single
core CPUs over the Sparsity framework [12]; Nishtala [22]
provides detailed research about how blocking can benefit
SpMV kernel over CPU. Williams [32] compares SpMV ker-
nels on emerging multicore platforms, including multicore
CPUs and the Cell Broadband platform. Blelloch [5, 6]
studies sparse matrix computation on vector machines. Sen-
gupta [29] develops efficient segmented scan primitives for
GPUs, which can be used in the reduction step of COO ker-
nel. NVIDIA’s SpMV library implements a more efficient
segmented reduction than segmented scan.

A large class of graph mining algorithms leverage the SpMV
kernel iteratively to perform computation until the algo-
rithms converge, e.g. PageRank [7, 25], HITS [15] and Ran-
dom Walk with Restart [26]. These algorithms first trans-
form the adjacency matrix of a graph and then operate on
the transformed matrix. The graph dataset used by these
algorithms usually have strong power-law properties, hence
the number of non-zeros on each row or column of the cor-
responding matrix will follow a power-law distribution. The
skewness of the distribution leads to poor load balancing
and low memory access efficiency in GPU. Recent work by
Kang et. al. [13] employs the MapReduce [11] framework
to implement iterative SpMV kernel based on Hadoop, an
open source version of MapReduce, and performs large-scale
graph mining over this platform.

3. METHODS
In this section we present our optimization techniques for
SpMV kernel on matrices representing power-law graphs.
Our optimizations are based on a serie of observations from
benchmarking results which reveal the limitations of previ-
ous work on matrices representing power-law graphs. We
propose corresponding solutions which target these limita-
tions and improve the performance.

The SpMV kernel is a bandwidth limited problem since the
floating point operations per memory access is low. When

computing a vector y as the product of a sparse matrix A
and a vector x, the global memory accesses to matrix A has
been optimized to be fully coalesced in NVIDIA’s SpMV
library. But the accesses to vector x have never been ad-
dressed in previous work. Also the only reuse possibility in
SpMV problem comes from the reuse of vector x.

Observation 1: Each row accesses random elements
in vector x.

In the adjacency matrix of a power-law graph, the column
indices of the non-zeros on each row are not continuous, and
are relatively random. This leads to non-coalesced memory
addresses when accessing x. Previous work [3, 4, 2] binds
the entire vector x to the texture memory and utilize the
cache of texture memory to improve the locality when ac-
cessing x. But the dimension of matrix A is much larger
than the size of the texture cache. When a cache miss hap-
pens, the pre-fetched cache content will be kicked out of
the cache. A cahce miss will reduce the memory bandwidth
utilization due to the long latency of non-coalesced global
memory accesses.

Solution 1: Tiling matrix A and vector x with tex-
ture cache.

Tiling is a cache-based optimization for matrix and vector
multiplications [12]. Suppose we divide matrix A into fixed
width tiles by column index and segment vector x corre-
spondingly, so that each tile of A only needs to access one
segment of x. If one segment of x can fit in the texture
cache, once the elements are fetched into cache, none of
them will be kicked out until the computation of this tile
finishes. Therefore, we can get maximum reuse of x.

The texture cache size is a key factor in determining the
width of a tile. We conduct a benchmarking experiment
to estimate the texture cache size (since this is not pro-
vided to us by the manufacturer) on our Tesla C1060 GPU.
We use a large sparse matrix and multiply it with a vec-
tor. The column indices are mod -ed by tile width, so all ac-
cesses to vector x are mapped into one tile. We change the
tile width from 100, 000 to 1000 and run this multiplication
with NVIDIA’s SpMV library. The performance improves
most significantly when tile width = 64, 000, corresponding
to 250 KB of cache size. So our tile width is fixed to 64, 000
columns.

The performance of tiling the entire matrix A and vector x
is still low. The reason is if we divide all the columns of
matrix A into tiles, there could be too many tiles when the
matrix is large. Each tile needs to add its partial result to
the final result y. Rows in each tile may become empty after
tiling partition, this leads to non-coalesced memory access
to y because we only need to write the result of non-empty
rows back. To make things worse, the write-back result of
one tile has to be visible to the next tile before it can start,
otherwise memory read-after-write conflicts could happen.
To avoid memory conflicts, we restart a CUDA kernel for
each tile. This also causes an overhead.

Observation 2: Column lengths are power-law dis-
tribution.



Based on this observation, we want to tile the matrix more
efficiently and effectively. Suppose a matrix is the adjacency
matrix of a power-law graph, the number of non-zeros in
columns of the matrix will follow a power-law distribution.
So there are large number of columns with few non-zeros in
them. In tiles containing such columns, we cannot get much
reuse of vector x, but we still need to restart large number
of kernels to compute them and afford the overheads.

Solution 2: Reorder columns by column lengths and
partially tile A.

Our idea is to first reorder the matrix columns by decreas-
ing order of number of non-zeros in each column. We can
divide the reordered matrix into two sub-matrices by set-
ting a threshold of column length. One denser sub-matrix
formed by long columns contains more non-zero elements
and fewer columns; the other sparser sub-matrix formed by
short columns contains fewer non-zero elements and more
columns. According to Amdahl’s law [1], the overall perfor-
mance of the SpMV kernel will be improved if the compu-
tation in the denser matrix can be finished efficiently. Now
we can tile the denser sub-matrix with texture cache. The
non-zero elements are concentrated in small number of tiles
so that we can still gain the benefits from x vector caching
as well as avoid the overhead of initializing too many tiles.

Figure 2 illustrates the above transformation procedure on
a small sparse matrix. Figure 2(a) is the original matrix;
Figure 2(b) reorders the columns of the matrix in decreasing
order of column length. In this example, we set the column
length threshold to 2. Columns with more than or equal
to 2 non-zero elements will be placed in the denser sub-
matrix; the other columns with only 1 non-zero elements
will be placed together in the sparser sub-matrix. Suppose
the texture cache can only hold 2 floating point numbers in
this small example, the denser sub-matrix with 4 columns
will be partitioned into 2 tiles as shown in Figure 2(c).

Amongst all the kernels in NVIDIA’s SpMV library, HYB
and COO perform best on matrix with power-law property.
The computation in the sparser matrix is run under the HYB
kernel in NVIDIA’s SpMV library, because HYB achieves
best performance. The computation within each tile of the
denser matrix will be performed using NVIDIA’s COO ker-
nel. The resulting vector y from the denser and sparser
sub-matrix will be combined to compute the final result.

Observation 3: Within each tile, performance of
COO kernel is limited by thread divergence and se-
rialization.

When computing each tile, the COO kernel cannot utilize
the massive thread level parallelism in CUDA efficiently al-
though it is more efficient than the CSR-vector and ELL
kernel on such data. In the COO kernel, the inputs are
three arrays storing the row indices, column indices and val-
ues of non-zero elements in the matrix. These three arrays
are all divided into equal length intervals. Each interval is
assigned to one warp. Note that this partition only equally
distributes workload to warps, it does not consider that a
row may cross the boundary between two warps. A warp of
threads iterate over an interval in a strided fashion. Here

stride size equals warp size, a thread within a warp only
works on one non-zero element in one stride. A thread first
fetches the value in the x vector based on the column index,
and then multiplies the x value with the non-zero element
in matrix A and stores the result in a shared memory space
reserved for it. The next step is the sum reduction of the
multiplication results within one stride. A binary reduction
operation is performed within a thread warp. But one stride
can contain non-zeros from more than one rows. When the
reduction operation tries to add two operands, it has to first
check whether the two operands are from the same row in
the original matrix. If not, this warp of threads will be se-
rialized due to thread divergence. This leads to low thread
level parallelism in the COO kernel.

Observation 4: Within each tile, performances of
CSR-verctor and ELL kernel are limited by imbal-
anced workload.

The CSR-vector kernel performs best when the rows of a ma-
trix are long and with similar length. Non-zeros are stored
in row major in CSR format. CSR-vector kernel assigns one
thread warp on one row. The thread warp iterates on the
row with stride size the same as warp size, and performs
multiplication and summation operations. After the last it-
eration on this row, the threads in a warp perform a binary
reduction to obtain the final result of this row. In all the
summation and reduction operations in CSR-vector kernel,
the threads within a warp do not need to check whether two
operands are from the same row. However, CSR-vector ker-
nel is the most efficient only when rows have more than a
warp of non-zeros and the number of non-zeros is an integer
multiple of warp size.

The ELL kernel achieves best performance if there are large
number of rows in the sparse matrix and they have similar
length. In the ELL format, all rows have the same length
and 0 are padded to rows shorter than this length. The
non-zeros are stored in column major. A warp of threads
are assigned to work on 32 consecutive rows, each thread
works on the multiplication and reduction of one row. The
threads within one warp iterate over the columns efficiently
with hardware synchronization.

Observation 5: Row lengths in each tile follow power-
law.

Due to the scale-free property of power-law graphs, we ob-
serve that after tiling, the row length within a tile also fol-
lows a power-law distribution. We propose to leverage this
fact via a novel storage format of matrix A within one tile
to further improve the efficiency of SpMV kernel.

Solution 3: Composite tile storage scheme.

Our composite row and column storage scheme combines
the CSR and ELL packing scheme as follows. Our algo-
rithm starts with the ranking of the row length from high to
low. A workload size is defined as the total number of non-
zeros in the longest row or several long rows at the top of the
ranking, depending on the dataset. Then rows in a tile will
be partitioned into approximately balanced workload. This
can be implemented by traversing the row length ranking



(a) The original sparse matrix and col-
umn length. X – non-zero element.

(b) Reorder columns by decreasing or-
der of column length

(c) Tiling the first 4 columns.

Figure 2: Illustrative example of tiling

from top to bottom. A new row is packed into a workload
until it exceeds the workload size, then a new workload is
initialized. Each workload can be viewed as a rectangle area
in the tile, where the width w is defined as the length of the
first row (the longest row in this workload) in the rectangle
and the height h is defined as the number of rows in this
workload. If w ≥ h, this workload will be stored in row ma-
jor in global memory and computed by CSR-vector kernel;
otherwise, it will be stored in column major and computed
by ELL kernel. Note that if a workload is stored in row
major, all rows will be padded to the same length as w with
0; and 0 will also be padded to ensure that w (or h) is an
integer multiple of warp size when a workload is stored in
row (or column) major. After the above partition and trans-
formation of storage format, each workload is assigned to a
warp of threads and computed with the most suitable kernel.

Figure 3: Composite storage of one matrix tile

Figure 3 illustrates how tile 0 from Figure 2(c) is trans-
formed in our composite storage scheme on a fictitious ar-
chitecture with two threads per warp. The rows in tile 0
are first reordered by row length. Suppose we set the work-
load size to be 4. The first two rows are packed into the
first workload, stored in row major and assigned to warp 0
for computation. The two threads in warp 0 first do mul-
tiplication and reduction on row 0 using CSR-vector kernel
and move to row 1 together. The next two rows are packed
together, stored and computed in the same way by warp 1.
The remaining four single element rows are stored in column
major and computed by warp 2. The two threads in warp
2 start from the first two rows vertically using ELL kernel

and then move to the last two rows.

Sorting Cost: In our tiling and composite storage opti-
mizations, sorting is used to re-construct the original matrix
to improve memory access locality and kernel efficiency. The
cost of sorting columns, and the cost of sorting rows within a
tile is relatively cheap when the corresponding distributions
follow a power law. Because of the power law distribution,
large number of the row and column lengths can be bounded
by some small number k. They correspond to the long tail
of the power law distribution. These rows or columns can
be sorted by counting sort in linear time [10]. The number
of remaining rows or columns is very small. They can be
sorted very quickly. We only need to perform sorting once
as data preprocessing. In power method where the SpMV
kernel is called iteratively until the result converges, the cost
of sorting can be amortized by the iterations.

4. EXPERIMENTS
In this section we begin by describing the datasets used in
our evaluation and the configuration of our hardware plat-
form.

Datasets: In our experiments, we use four web-based graph
datasets.

The four graph datasets are user link relationship graphs
from Flickr, LiveJournal and Youtube and a webpage link re-
lationship graph from Wikipedia [19, 18]. All graphs exhibit
power law properties. In addition to the graph datasets we
also include results on six popular unstructured matrix data,
representing various scientific kernels, used in previous stud-
ies [3, 4]. Among these, one is a 2000 by 2000 dense matrix,
which while not sparse, is a useful benchmark to show the
maximum bandwidth that each kernel can achieve. Details
of these graphs (represented in an adjacency matrix) and
matrices are shown in Table 1. In the four graph datasets,
the number of non-zeros (NNZ) is the number of directed
links and the number of rows (or columns) is the number of
nodes in the graphs.

Hardware configuration: All CPU results are reported
on a single processor of a dual core Opteron X2 2218 system
running at 2.6 GHz and with 8 GB of 667 MHz DDR2 main
memory. The machine is also equipped with two NVIDIA
Tesla C1060 GPUs. Each GPU has 30 multiprocessors with



Matrix Rows Columns NNZ NNZ/Row Power-law?
Dense 2,000 2,000 4,000,000 2000.0 No
Circuit 170,998 170,998 958,936 5.6 No
FEM/Harbor 46,835 46,835 2,374,001 50.6 No
LP 4,284 1,092,610 11,279,748 2632.9 No
Protein 36,417 36,417 4,334,765 119.3 No
Webbase 1,000,005 1,000,005 3,105,536 3.1 No
Flickr 1,715,255 1,715,255 22,613,981 13.2 Yes
LiveJournal 5,204,176 5,204,176 77,402,652 14.9 Yes
Wikipedia 1,870,709 1,870,709 39,953,145 21.4 Yes
Youtube 1,138,499 1,138,499 4,945,382 4.3 Yes

Table 1: Matrix and Graph Datasets

240 processing cores and 4 GB of global memory. All GPU
experiments are reported on a single GPU. The host code
is complied with the gcc compiler version 4.1.2. The device
code is compiled with CUDA version 2.3.

4.1 Sparse Matrix and Vector Multiplication
kernel

In this section, we compare a CPU-based implementation of
the CSR kernel, all six kernels from NVIDIA’s SpMV library,
Baskaran and Bordawekar’s optimized CSR kernel(BSK &
BDW CSR) and our two optimized kernels (TILE-COO and
TILE-COMPOSITE) on the matrix datasets in Table 1. We
report the speed of execution in GFLOPS determined by di-
viding the number of arithmetic operations, which is twice
the number of non-zeros in the matrix, by the running time.
The running time is averaged over 500 iterations. Since the
SpMV kernel is a bandwidth limited problem, we also re-
port the effective bandwidth utilization of each kernel in
GB/s, which is the total number of bytes read and written
by the kernel divided by the running time. Note that differ-
ent storage formats have their own auxiliary indices and data
structures. These data structures are counted into the effec-
tive memory accesses. All kernels are run in single precision
(32-bit). Binding the entire vector x to texture cache per-
forms consistently better than not binding in all NVIDIA’s
SpMV kernels [3, 4] and Baskaran and Bordawekar’s CSR
kernel [2]. So we only report the performance of these ker-
nels with texture cache binding. We use 256 threads per
thread block. This setting is default in NVIDIA’s SpMV li-
brary. Under this setting, there are enough number of warps
in each thread block to hide the memory latency and the
multiprocessors can be fully utilized by thread blocks. In
our tiling method, we had to decide a threshold to decide
how many columns are placed in the denser sub-matrix to
be tiled (the width of each tile is predetermined by the size
of the texture cache and corresponded to 64K columns). We
typically found for the larger graphs 9 or 10 tiles were ben-
eficial while for the smaller unstructured matrix and for the
Youtube dataset 1 or 2 tiles were optimal.

The performance of the SpMV kernels on matrices represent-
ing power-law graphs are shown in Figure 4. The results on
the other matrices are presented in Figure 5.

Performance on power-law matrices: We do not re-
port performance on the PKT kernel on these datasets since
the partition step within this kernel does not produce bal-
anced enough packets and leads to kernel failure. Our tiling
and tiling with composite storage methods clearly domi-

nate the other kernels on the Flickr, LiveJournal, Wikipedia
datasets. Our tiling with composite kernel has an average
1.75x speedup over NVIDIA’s best kernel – the HYB kernel
on these datasets. On the Youtube dataset, the smallest of
our graph datasets, NVIDIA’s COO and HYB kernel per-
form close to our optimizations, tiling with composite stor-
age runs marginally (4.5%) faster than HYB kernel. From
Table 1, we can see the numbers of rows and columns are
low in the Youtube matrices, and also the numbers of non-
zeros per row and column are low. These properties of the
Youtube matrix hide the advantages of our optimizations
for the following reasons. First, there is little reuse of vector
x if non-zeros per column is low. This leads to low benefit
from our tiling optimization. Second, when the number of
columns is small, COO and HYB kernel have better prob-
ability of cache hits when they bind the entire vector x to
texture cache. Third, the total number of non-zeros in a tile
is low so our composite storage scheme will pad more zeros
and cause memory access overhead.

Performance on Unstructured Matrix Data: The PKT
kernel for similar reasons noted above cannot run over the
LP and Webbase matrices, so that performance number is
not included. The speed and bandwidth performance of dif-
ferent kernels on these datasets are shown in Figure 5. We
immediately observe that our methods while comparing fa-
vorably on some of the kernels do not always perform as
strongly as the best. In fact on these datasets, interestingly,
there is no single kernel outperforms all others.

Our tiling with composite storage kernel performs the best
on the 2000 by 2000 dense matrix with 17.57 GFLOPS speed
and 105.5 GB/s bandwidth. This bandwidth utilization is
higher than the peak bandwidth of 102 GB/s in the official
hardware specification from NVIDIA website. This some-
what surprising result is due to the effect of texture binding
of vector x allowing for elements in x to be directly fetched
from the cache. Our tiling with composite storage kernel
runs 30% faster than CSR-vector kernel on the dense ma-
trix. This is because we pad the storage of the matrix in
global memory to ensure that all global memory accesses
are fully coalesced. The CSR-vector format concatenates all
rows together. If one row is not padded to an integer multi-
ple of the warp size, all global memory accesses after this row
will not be fully coalesced resulting in a loss in performance.

Comparison with CPU SpMV: We also implemented
the SpMV kernel with CSR format on the CPU. CSR for-
mat is the most efficient on CPU among different sparse
matrix formats. We ran experiments with the CPU kernel



(a) Performance

(b) Bandwidth

Figure 4: SpMV kernels comparison on matrices representing power-law graphs.

(a) Performance
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Figure 5: SpMV kernels comparison on unstructured matrices from NVIDIA’s SpMV Library [3, 4].



on all datasets in Table 1. The GPU kernels significantly
outperform the CPU kernel in almost all settings. GPU
CSR kernel is the slowest kernel on GPU. It is slower than
CPU kernel on the Webbase dataset due to poor load bal-
ancing and in the Dense matrix data because the clock rate
of one GPU processor is lower than CPU. The GPU kernels
perform dominantly faster than CPU kernel in all the other
formats with speedups ranging from 2.05x to 37.31x.

We also compared the performance of SpMV kernels from
Bell and Garland [3, 4], Baskaran and Bordawekar [2] and
our methods on all matrices used in their paper and our
matrices representing power law graphs. The details of these
datasets and the performance numbers are presented in the
Appendix.

4.2 Data Mining Applications on Graph Datasets
In this section, we describe the three data mining algorithms
which can be written in the form of matrix-vector multi-
plication. These algorithms essentially compute the power
method for different matrices related to the link structure
of the graphs. Within one iteration of the power method,
the running time is dominated by the time required to com-
pute the matrix-vector product. These algorithms usually
operate on large power-law graphs. Hence they can be sped
up using our sparse matrix representation and computed by
our SpMV kernels.

In the following sections, we show how we can use SpMV ker-
nel as a key subroutine to implement three important graph
mining algorithms: PageRank, Random Walk with Restart
(RWR) and HITS. We implement these algorithms using 4
GPU SpMV kernels: COO, HYB, TILE-COO, and TILE-
Composite kernels. These 4 kernels are generally the top
four kernels from the experimental results in previous sec-
tion. At the end of each iteration in PageRank, RWR and
HITS, a convergence criterion needs to be checked. CUDA
SDK [24] provides a convenient parallel reduction primitive
to perform this task. We choose the fastest parallel reduc-
tion kernel from CUDA SDK in our implementation of all
the algorithms.

PageRank: The PageRank algorithm models the link struc-
ture of web graphs by the random walk behavior of a random
surfer [7, 25]. The web graph can be represented by a di-
rected graph G = (V, E), where V is a set of n vertices
and E is the set of directed edges. The adjacency matrix
A is defined as A(u, v) = 1 if edge (u, v) ∈ E; otherwise,
A(u, v) = 0. Matrix W denotes the row normalized matrix
of A. The PageRank vector p is computed iterative using
the following equation until it converges:

p = (cW T + (1 − c)U)p (1)

where c is a damping factor (set to 0.85 in our experiment),
U is a n by n matrix with all elements set to 1/|V |. We
preprocess each graph dataset in Table 1 to a matrix M =
cW T + (1 − c)U , and initialize the PageRank vector p with
all elements equal to 1/|V |. We run M times p iteratively
with the corresponding SpMV kernel and check whether p
converges at the end of each iteration. The speed and band-
width performance of PageRank implementations based on
the four kernels are shown in Figure 6(a) and Figure 7(a).
The total running time on each graph is shown in Table 2

Graph CPU COO HYB TILE-COO TILE-Comp
Flickr 239.94 16.65 15.99 9.05 8.30
LiveJournal 822.89 61.94 55.69 37.46 34.42
Wikipedia 5211.91 299.86 283.40 176.08 163.41
Youtube 11.81 0.72 0.66 0.68 0.65

Table 2: Total running time of PageRank (in sec-
onds)

in comparison to a corresponding CPU implementation of
PageRank. Our optimized TILE-COO and TILE-Composite
kernel achieves about 2x speedup over COO and HYB kernel
on Flickr, LiveJournal and Wikipedia graphs. The four ker-
nels perform roughly the same on Youtube graph (reasons
noted earlier). Compared with the CPU PageRank, all GPU
implementations achieve between 13x and 31x speedup. The
performance improvement comes from two parts: the fast
SpMV kernel and the fast reduction operation for checking
convergence.

Random Walk with Restart: Random Walk with Restart
(RWR) is a algorithm that tries to measure the relevance be-
tween two nodes in a undirected graph [26]. Given a query
node i in the graph, the relevance score from all other nodes
to node i forms a vector −→ri . In RWR, vector −→ri is computed
by the following equation:

−→ri = cW−→ri + (1 − c)−→ei (2)

where c is a restart probability parameter (set to 0.9 in our
experiment), W is the column normalized adjacency matrix
and −→ei is a vector whose ith element is 1 and all the other
elements are 0. Vector −→ri can be computed using the power
method. In each iteration, there is a matrix-vector multipli-
cation followed by vector addition and convergence check-
ing operations. In our implementation, we use the GPU
SpMV kernels for matrix-vector multiplication, and GPU
parallel reduction for checking convergence in the same way
as PageRank. An efficient vector addition kernel is also im-
plemented by assigning one GPU thread to compute one
element in the resulting vector. Note that RWR is an in-
teractive application, we randomly select 25 query nodes
in our experiment and the performance is reported by av-
eraging (arithmetic mean) the result of each query. Since
RWR operates on undirected graphs, we treat each link in
our directed graph datasets as an undirected link in our ex-
periments. The speed and bandwidth performance of RWR
implementations on four graph datasets based on four GPU
SpMV kernels are shown in Figure 6(b) and Figure 7(b).
The total running time is listed in Table 3. We observe sim-
ilar performance results as in the case of PageRank. Our
optimized TILE-COO and Tile-Composite kernels are 1.5x
to 2.0x as fast as COO and HYB kernels on Flickr, Live-
Journal and Wikipedia graphs. The four kernels perform
about the same on Youtube graph. All GPU implementa-
tions are 13x to 37x faster than CPU implementation. The
best speedup is achieved by our TILE-Composite kernel on
Wikipedia graph.

HITS: HITS is a link analysis algorithm of web pages [15].
It gives each web page two attributes: authority and hub. It
rates web pages by assigning authority score and hub score
to each web page. Let matrix A be the adjacency matrix of
a directed graph G = (V, E) or G may be a query specific



(a) PageRank (b) Random Walk with Restart (c) HITS

Figure 6: Performance of Data Mining kernels on graph datasets.
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Figure 7: Bandwidth of Data Mining kernels on graph datasets.

subgraph of the whole web graph. Then the authority score

vector −→a and hub score vector
−→
h are recursively defined as

−→a = AT−→h
−→
h = A−→a (3)

This recursive definition with two matrix-vector products
can be rewritten as one matrix and vector multiplication by

» −→a
−→
h

–

=

»

0 AT

A 0

– » −→a
−→
h

–

(4)

The power method can be used to solve this eigen vector

problem. Elements in −→a and
−→
h vectors are all initialized

to 1/|V |. In each iteration, a 2|V | by 2|V | matrix in equa-

tion 4 is multiplied by a vector combined with −→a and
−→
h .

Then the first and second half of the resulting vector are
normalized to sum to 1 separately. Each normalization re-
quires a reduction operation on the vector and a division
of the vector by a constant. A convergence check is also
needed at the end of each iteration. Each iteration of our
HITS implementation involves one SpMV kernel, three par-
allel reduction kernels (two for normalization and one for
convergence check) and two vector division by constant ker-
nels. The vector division by constant kernel can be im-
plemented very efficiently in the same way as vector addi-
tion. On our implementation of the HITS algorithm we com-
pare the performance of our four GPU SpMV kernels on the
four graph datasets. The speed and bandwidth performance
are shown in Figure 6(c) and Figure 7(c). Our TILE-COO
and TILE-Composite kernels perform better than COO and
HYB kernels in all four datasets. On Flickr, LiveJournal
and Wikipedia, the speedups are similar to those observed
in PageRank and RWR algorithms. On Youtube, our op-

timizations are actually a bit faster when compared to the
NVIDIA kernels inspite of the relatively small size of the
dataset. Combining the two matrices into one in the HITS
algorithm results in a larger and sparser matrix making it
more amenable to our optimizations. The total running time
compared with CPU implementation is listed in Table 4. We
observe a 11x to 28x speedup of the GPU implementations
over the corresponding CPU implementation.

5. CONCLUSIONS
In this paper, we proposed architecture conscious optimiza-
tions for the sparse matrix-vector multiply kernel on GPUs
and studied the implications of this effort for graph min-
ing algorithms. Our optimizations take into account both
the architecture features of GPUs and the characteristic of
graph mining applications. Our tiling approach utilizes the
texture cache on GPUs in a more efficient way than previ-
ous work and provides much better memory locality. Our
tiling with composite representation leverages the power-
law characteristics of large graphs in graph mining problems.
We have obtained significant performance improvement over
the state-of-the-art on such graph based datasets. We also
present empirical evaluations of applying our optimizations
to PageRank, Random Walk with Restart and HITS algo-
rithms.

We plan to propose auto-tuning method to provide opti-
mal performance based on the distribution of non-zeros in
the dataset. We also intend to leverage blocking and loop
unrolling techniques to improve the performance further.
Our approaches can also be extended to distributed systems
where GPUs are installed on multiple machines.



Graph CPU COO HYB TILE-COO TILE-Comp
Flickr 8.25 0.59 0.56 0.33 0.29
LiveJournal 36.99 2.85 2.60 1.73 1.52
Wikipedia 23.23 1.46 1.35 0.71 0.62
Youtube 2.32 0.14 0.13 0.14 0.13

Table 3: Average running time of Random Walk
with Restart (in seconds) on 25 random query nodes

Graph CPU COO HYB TILE-COO TILE-Comp
Flickr 4.97 0.40 0.38 0.23 0.21
LiveJournal 44.88 3.82 3.33 2.41 2.24
Wikipedia 39.36 2.73 2.45 1.52 1.37
Youtube 4.35 0.33 0.30 0.26 0.25

Table 4: Total running time of HITS (in seconds)
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Matrix Rows Columns NNZ NNZ/Row Power-law?
Dense 2,000 2,000 4,000,000 2000.0 No
Circuit 170,998 170,998 958,936 5.6 No
Economics 206,500 206,500 2,633,278 12.8 No
Epidemiology 525,825 525,825 3,674,625 7.0 No
FEM/Accelerator 99,843 99,843 2,624,331 26.3 No
FEM/Cantilever 62,451 62,451 4,007,383 64.2 No
FEM/Harbor 46,835 46,835 2,374,001 50.6 No
FEM/Ship 140,874 140,874 7,813,404 55.5 No
FEM/Spheres 83,334 83,334 6,010,480 72.1 No
LP 4,284 1,092,610 11,279,748 2632.9 No
Protein 36,417 36,417 4,334,765 119.3 No
QCD 49,152 49,152 2,113,536 43.0 No
Webbase 1,000,005 1,000,005 3,105,536 3.1 No
Wind Tunnel 217,918 217,918 11,634,424 53.4 No
Flickr 1,715,255 1,715,255 22,613,981 13.2 Yes
LiveJournal 5,204,176 5,204,176 77,402,652 14.9 Yes
Wikipedia 1,870,709 1,870,709 39,953,145 21.4 Yes
Youtube 1,138,499 1,138,499 4,945,382 4.3 Yes

Table 5: Full Datasets

Matrix CPU CSR CSR-vec COO HYB PKT BSK&BDW TILE-COO TILE-COMP
Dense 0.74 0.67 13.52 6.37 6.28 2.99 8.95 6.9 17.57
Circuit 0.35 1.45 2.12 4.04 5.98 3.55 2.40 4.14 5.35
Economics 0.51 1.74 4.68 4.07 7.75 8.7 5.83 4.49 3.08
Epidemiology 0.62 2.76 2.68 4.15 16.1 10.13 3.57 5.31 2.24
FEM/Accelerator 0.47 1.58 5.51 5.11 8.61 10.46 8.02 3.29 4.58
FEM/Cantilever 0.73 1.73 9.12 6.16 13.46 9.66 14.6 6.73 7.53
FEM/Harbor 0.71 1.56 8.27 5.88 10.34 9.42 12.76 6.49 8.63
FEM/Ship 0.71 1.74 9.15 6.04 15.27 13.31 14.11 6.11 5.74
FEM/Spheres 0.72 1.79 9.21 6.13 18.01 10.88 14.32 5.42 8.20
LP 0.41 0.52 3.06 5.09 8.45 n/a 3.91 3.68 3.89
Protein 0.75 1.59 10.00 6.20 12.04 10.93 15.74 6.74 10.85
QCD 0.69 1.90 8.13 6.01 18.60 8.88 13.06 6.57 5.85
Webbase 0.39 0.19 1.62 3.85 5.27 n/a 0.80 2.93 2.31
Wind Tunnel 0.58 1.90 8.69 5.88 18.35 15.03 14.39 6.21 6.89
Flickr 0.20 0.30 1.84 2.80 2.96 n/a 0.94 5.32 5.41
LiveJournal 0.13 0.55 1.41 1.70 1.90 n/a n/a 2.70 2.94
Wikipedia 0.13 0.17 1.71 2.02 2.21 n/a 0.79 4.46 4.85
Youtube 0.17 0.19 1.27 2.72 3.28 n/a 0.80 3.43 3.81

Table 6: Performance results on full datasets (in GFLOPS)



Matrix CPU CSR CSR-vec COO HYB PKT BSK&BDW TILE-COO TILE-COMP
Dense 4.5 4.0 81.2 51.0 50.2 23.9 53.7 55.2 105.5
Circuit 2.6 10.8 15.7 35.2 45.4 20.1 17.8 42.0 55.0
Economics 3.4 11.5 31.0 33.8 56.2 46.4 38.7 41.5 24.3
Epidemiology 4.4 19.7 19.2 35.5 105.8 55.0 25.5 51.6 21.1
FEM/Accelerator 2.9 10.0 34.8 41.7 57.1 53.6 50.5 27.3 30.3
FEM/Cantilever 4.5 10.6 55.8 49.6 86.5 48.0 89.3 54.2 46.1
FEM/Harbor 4.4 9.6 50.9 47.5 72.6 42.7 78.6 52.4 53.2
FEM/Ship 4.4 10.7 56.2 48.7 96.3 65.7 86.7 50.2 36.9
FEM/Spheres 4.4 10.9 56.3 49.4 113.5 60.0 87.5 44.0 51.0
LP 2.6 3.3 19.5 41.6 61.6 n/a 24.9 39.6 27.7
Protein 4.6 9.7 60.7 49.8 78.5 56.0 95.5 54.1 65.8
QCD 4.3 11.7 50.3 48.6 113.4 60.6 80.8 53.2 36.2
Webbase 2.9 1.5 12.3 33.9 43.0 n/a 6.1 25.8 25.0
Wind Tunnel 3.5 11.7 55.1 47.5 112.3 71.9 88.5 51.5 45.4
Flickr 1.3 1.9 11.8 23.0 24.0 n/a 6.1 59.3 39.3
LiveJournal 0.8 3.5 9.1 13.9 15.3 n/a n/a 29.8 35.5
Wikipedia 0.8 1.1 10.6 16.4 17.2 n/a 4.9 42.3 41.7
Youtube 1.3 1.4 9.2 23.5 26.9 n/a 5.8 36.2 37.5

Table 7: Bandwidth utilization on full datasets (in GB/s)


