
Automatic Full Functional Verification of Clients
of User-Defined Abstract Data Types

Jason Kirschenbaum, Bruce Adcock, Derek Bronish, Bruce W. Weide

The Ohio State University, Columbus OH 43210, USA
{kirschen,adcockb,bronish,weide}@cse.ohio-state.edu

http://www.cse.ohio-state.edu/rsrg

Abstract. A scalable approach to addressing the verifying compiler
grand challenge must handle the following four categories of programs
that arise from modern programming language constructs for modern
software engineering tasks: (1) code that uses only built-in data types
(e.g., integers, records, arrays, some uses of pointers) to provide new
functionality; (2) code that represents new user-defined abstract data
types (ADTs) by using only built-in data types; (3) code that uses exist-
ing user-defined ADTs to provide new functionality, but no new types;
and (4) code that represents new user-defined ADTs by layering them on
existing user-defined ADTs. Progress has been reported on verifying—
sometimes automatically—the first two kinds of programs. In contrast,
progress on applying automated reasoning to the latter two kinds of pro-
grams has been elusive. Yet this is a critical piece of the verified software
puzzle because such layering enables both vertical scaling of software
and modular verification thereof. The OSU RESOLVE verification sys-
tem can automatically prove full functional correctness of imperative
code in category (3), by using a combination of carefully designed im-
perative language features, a sound and relatively complete proof system
with an associated verification-condition generator, and both off-the-shelf
and special-purpose theorem-proving tools.

1 Introduction

The long-term vision guiding our work is that of a future in which no production
software is considered properly engineered unless it has been fully specified and
automatically verified as satisfying these specifications, a “grand challenge” [1].
Based on a collection of benchmarks [2] along any plausible path toward a
verifying compiler, we can identify various categories of code (summarized in
the abstract above) that such a tool must be able to reason about. Signifi-
cant progress has been reported by a number of projects, including Spark [3],
Spec#/Boogie [4], and Jahob [5, 6], in automatically verifying code in category
(1), and to some extent in category (2). The contribution of this paper is its
demonstration of progress for category (3).

Why has progress been slow for code in categories (3) and (4)? The most
recent Jahob paper [6] helps illustrate the answer. It reports experience with

automated verification of several Java classes, all in category (2). A critical
difference in going from this kind of Java code, to the kind of code immediately
encountered in categories (3) and (4), is the impact of aliasing [7]. In Jahob’s
verified category (2) Java code, all aliasing considered lies inside an encapsulation
boundary, and is intentional and controlled. It is possible to model exactly what
is going on with respect to such internal aliasing as it is used in the data structure
representation in a class defining a new ADT. For code in categories (3) and (4),
however, the potential for aliasing extends into the client program to be verified.
Aliases can be unintentional, unanticipated, and external to previously verified
classes that define the ADTs used by the client. Among other disasters, a client
program might keep an alias to an object reference stored in some separately
verified collection class, and it might change the value of the object through that
alias—without the collection class knowing about it. Representation invariants
of the collection class that involve object values rather than object references can
thereby be broken, rendering any purported verification of the collection class
unsound. For example, consider the BinarySearchTree class verified by Jahob.
The entries in the tree are ints, not objects. This hamstringing of generality
is absolutely essential for the Jahob verification to succeed. If the entries were
object references and the search-tree ordering were defined on object values (as
it must be for the class to be useful), then a client could hold an alias to an
object reference in the tree and—without detection by the BinarySearchTree
class—change that object’s value through the alias in a way that falsifies the
representation invariant that makes binary search trees work.

In short, the aliasing permitted by Java effectively prevents Jahob from
soundly and modularly verifying Java code in categories (3) and (4). This is
not Jahob’s fault. It is instead the price to be paid for trying to verify code
written in a language with unrestricted aliasing, i.e., a language that was not
intended to support modular verification. Such verification is not impossible in
principle, but it is far more difficult to specify and model situations such as
these without massively higher complexity [7] than one encounters in category
(2) code. Scalability of automated verification depends on the ability to layer
code arbitrarily deeply as in categories (3) and (4), i.e., to handle code that is
“above the ground floor” of using only built-in types. This is the entire point
of “abstraction.” So, while the projects mentioned above provide a great start
toward addressing the verifying compiler grand challenge, it is folly to imagine
that they have even addressed (let alone solved) the full problem.

2 The OSU RESOLVE Language and Proof System

2.1 Tool Architecture

RESOLVE [8] is a tool-supported component-based software discipline, designed
to permit automated verification without sacrificing run-time efficiency of the
resulting code. It consists of a formal mathematical language used for expressing
program specifications, and an imperative programming language for developing
implementations. RESOLVE includes syntactic slots in code for mathematical

annotations, e.g., loop invariants, and progress metrics for loops and recursive
operations.

Fig. 1: Component Organization Screen

RESOLVE is promising as
an approach to modular ver-
ification of code in categories
(3) and (4) because of its ap-
proach to aliasing, the bane
of modular automated veri-
fication: there is none. The
language has value seman-
tics. Reference-like behavior,
where it is needed, is provided
by software components that
control and manage aliasing
internally; it is not a client-
exposed feature of the lan-
guage, and hence does not pervade all specifications and proofs. Data move-
ment in RESOLVE is achieved via swapping [9], not traditional assignment.
This leads to a slightly different programming style, offering the efficiency of
standard imperative languages while also supporting easier specification and
modular automated verification of code in categories (3) and (4).

contract SetTemplate (type Item)

uses UnboundedIntegerFacility

math subtype SET_MODEL
is finite set of Item

type Set is modeled by SET_MODEL
exemplar s
initialization ensures

s = empty_set

procedure Add (updates s: Set ,
clears x: Item)

requires
x is not in s

ensures
s = #s union {#x}

procedure RemoveAny (updates s: Set ,
replaces x: Item)

requires
s /= empty_set

ensures
x is in #s and s = #s \ {x}

function IsEmpty (restores s: Set)
: control

ensures
IsEmpty = (s = empty_set)

...

end SetTemplate

Fig. 2: Partial SetTemplate Contract

Given code purporting to imple-
ment a particular specification, the
RESOLVE tool suite first gener-
ates verification conditions (VCs) —
mathematical formulae whose truth
corresponds to the correctness of the
code. It then appeals to one or more
back-end provers to establish the va-
lidity of these VCs. Finally, the results
of the prover’s work are reported to
the user.

There are two groups working
on qualitatively different RESOLVE
tools—one at Clemson University,
and ours at Ohio State University.
This paper discusses the work of the
latter.

The prototype verification system
is demonstrated via a web interface.
Fig. 1 shows a screen shot of the com-
ponent selection process, in which the
user chooses the code to verify. The
list of known ADT interface contracts
is shown in the “Kernel Contracts”

box, with the SetTemplate ADT selected. Once an ADT’s contract has been
selected, possible enhancements to it are populated in the “Enhancement Con-
tracts” box. Since the UniteAndIntersect enhancement has been selected, the
bottom-right box, “Enhancement Realizations,” is populated with all its cur-
rent purported implementations. In this box, the Iterative1 version has been
selected.

Aside from demonstrating the appearance of the tool’s interface, this figure
also illustrates the highly component-oriented separation of concerns that the
RESOLVE discipline encourages. The core functionality of a ADT is specified
in its contract and implemented by a “Kernel Realization”; new features are
layered on top via enhancements. Note that Iterative1 is exactly the kind of
code that a client commonly writes in category (3): it takes a black-box view of
existing user-defined ADTs to implement new functionality.

contract UniteAndIntersect
enhances SetTemplate

procedure UniteAndIntersect
(updates s: Set ,
updates t: Set)

ensures
s = #s union #t and
t = #s intersection #t

end UniteAndIntersect

Fig. 3: UniteAndIntersect Contract

The web interface allows contract
specifications to be viewed, as is
shown for SetTemplate in Fig. 2. A
kernel contract includes a mathemat-
ical model of each new type: the math-
ematical model of a Set is a finite
mathematical set. Each operation’s
effect on its parameters is described
in terms of their mathematical models
via operation contracts, which state
pre- and post-conditions in requires
and ensures clauses, respectively (where # means “old”). An enhancement con-
tract specifying an operation that computes Set union and intersection is shown
in Fig. 3.

procedure UniteAndIntersect
(updates s: Set ,
updates t: Set)

variable tmp: Set
loop

maintains
s union t = #s union #t and
(s intersection t) union tmp =
(#s intersection #t) union #tmp
and t intersection tmp = {}

decreases |t|
while not IsEmpty (t) do

variable x: Item
RemoveAny (t, x)
if not IsMember (s, x) then

Add (s, x)
else

Add (tmp , x)
end if

end loop
t :=: tmp

end UniteAndIntersect

Fig. 4: UniteAndIntersect Code

The main element of the realiza-
tion Iterative1 is shown in Fig. 4.
Since implementations of enhance-
ments are written from a client’s point
of view, their verification can be con-
ducted in a fully modular fashion,
making use only of the contract(s) of
the component(s) they live on top of.
In this example, the implementation
of UniteAndIntersect is verified us-
ing SetTemplate contract.

As stated earlier, the RESOLVE
language includes syntactic slots for
certain types of code annotations,
as is evident by the loop invariant
(maintains keyword) and the termi-
nation metric (decreases). The :=:
operator swaps the values of two variables.

2.2 VC Generation

We generate VCs automatically in accordance with the RESOLVE proof system
defined formally in [10] and informally in [11]. This method begins by construct-
ing a “symbolic tracing table” [11], which indicates, in terms of the program’s
abstract state, the assumptions and proof obligations at each observable state
in the client program. Roughly speaking, assumptions are obtained from the
ensures clauses of operations invoked in foregoing lines of code, whereas proof
obligations are imposed by requires clauses of operations about to be invoked.
Verification conditions are generated purely syntactically, and simplified by the
VC generator only as described below; everything else required to prove a VC is
carried out by a back-end automated proof engine.

Fig. 5: Example of a typical VC

The example VC shown in Fig. 5 corre-
sponds to the point in Iterative1 imme-
diately prior to the line Add(tmp, x). The
“Givens” all represent assumptions at this
point in the code, for example due to post-
conditions of preceding code, or based on the
particular branch of the if we are in. For ex-
ample, the 8th given, x4 ∈ s2, arises from the
negation of the if condition, since we are in
the else branch. Note that program variable
values appear in VCs as subscripted mathe-
matical variables, the subscripts being neces-
sary to denote different values the variable may hold at different program lo-
cations. We do simple substitution of equals-for-equals prior to displaying VCs
or sending them to a prover, which markedly reduces the number of extraneous
subscripted variables.

Since there is a loop invariant present in this code, its clauses are “Givens”
for this VC because the state is inside the loop body; but these also appear
elsewhere as proof obligations, i.e., when considering the code points just before
the loop and at the end of the loop body.

2.3 Provers

We attempt to prove or disprove VCs by appealing to two automated proving
tools: Isabelle and SplitDecision. Isabelle [12] is a proof assistant that is capable
of checking a proof that a user directs. While Isabelle is nominally an interactive
proof assistant, it is possible to use it in an automated manner by augmenting
each VC with a small, automatically generated Isabelle proof script to guide its
actions. We do not use most of the theories available in Isabelle for the automatic
proofs of VCs, but rather use Isabelle’s proof engine along with fixed theories
(integers, finite sets, finite strings) and mathematical units (e.g., trees) developed
for use in RESOLVE specifications [13]. By doing this, we can translate the VCs
syntactically into input expected by other provers, e.g., SplitDecision.

SplitDecision is a custom-built tool designed specifically for the simplification
of RESOLVE VCs. SplitDecision leverages domain-specific mathematical knowl-
edge along with general-purpose strategies for reducing logical formulae in order
to simplify RESOLVE VCs in a truth-preserving manner. The simplifications
SplitDecision performs are guided by specialized decision procedures tuned to
handle the mathematical theories defined in RESOLVE and used in RESOLVE
specifications. Thus far, SplitDecision performs simplifications that make use of
simple arithmetic, and also implements a decision procedure for a substantial
(decidable) fragment of string theory [14].

Fig. 6: Iterative1 Results

The result of a proof attempt for the
Iterative1 code is shown in Fig. 6. In its
current state, the tool suite appeals to two
different proving tools, and indicates success
or failure for each prover on each individual
VC, with timing information. We can see that
for this example, both Isabelle and SplitDeci-
sion prove the nineteen VCs fairly quickly, but
there is no direct pattern of correspondence
between their execution times on the individ-
ual VCs. It is not unusual, for code where ev-
ery VC is not proved by both, to find that
Isabelle is capable of proving some and Split-
Decision others. For some statistics about VC
proof success over hundreds of VCs from client
code in category (3), see [15].

3 Current and Future Work

Currently, our VC generation supports only client usage of ADTs, not the con-
struction of new ADTs. We are currently adding support for proof of correctness
of data representations. This work will proceed in stages towards more and more
sophisticated representation techniques. For example, the first version supports
only abstraction functions rather than abstraction relations [16]. As we increase
the sophistication of the tool support, we will also expand the mathematical
theories used in the specification of components.

4 Acknowledgments

The authors are extremely grateful for the help of Jeremy Avigad, Paolo Bucci,
Harvey M. Friedman, Wayne Heym, Bill Ogden, Murali Sitaraman, and Hamp-
ton Smith. This material is based upon work supported by the National Science
Foundation under Grants No. DMS-0701260 and CCF-0811737.

References

1. Hoare, C.A.R.: The verifying compiler: A grand challenge for computing research.
J. ACM 50(1) (2003) 63–69

2. Weide, B.W., Sitaraman, M., Harton, H.K., Adcock, B., Bucci, P., Bronish, D.,
Heym, W.D., Kirschenbaum, J., Frazier, D.: Incremental benchmarks for soft-
ware verification tools and techniques. In: Proceedings of VSTTE 2008 (Verified
Software: Theories, Tools, and Experiments), Springer-Verlag (2008) 84–98

3. Barnes, J.: High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2003)

4. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.P., eds.: FMCO. Volume 4111 of Lecture
Notes in Computer Science., Springer (2005) 364–387

5. Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data struc-
tures. PLDI 43(6) (2008) 349–361

6. Zee, K., Kuncak, V., Rinard, M.C.: An integrated proof language for imperative
programs. In: PLDI ’09: Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation, New York, NY, USA, ACM
(2009) 338–351

7. Weide, B.W., Heym, W.D.: Specification and verification with references. In:
Proceedings SAVCBS. (2001) 50–59

8. Sitaraman, M., Weide, B.: Component-based software using RESOLVE. SIGSOFT
Softw. Eng. Notes 19(4) (1994) 21–63

9. Harms, D., Weide, B.: Copying and swapping: Influences on the design of reusable
software components. IEEE Transactions on Software Engineering 17(5) (May
1991) 424–435

10. Heym, W.D.: Computer Program Verification: Improvements for Human Reason-
ing. PhD thesis, Department of Computer and Information Science, The Ohio
State University, Columbus, OH (December 1995)

11. Sitaraman, M., Atkinson, S., Kulczycki, G., Weide, B.W., Long, T.J., Bucci,
P., Heym, W.D., Pike, S.M., Hollingsworth, J.E.: Reasoning about software-
component behavior. In: ICSR-6: Proceedings of the 6th International Conference
on Software Reuse, Springer-Verlag (2000) 266–283

12. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)

13. Heym, W.D., Long, T.J., Ogden, W.F., Weide, B.W.: Mathematical foundations
and notation of RESOLVE. Technical Report OSU-CISRC-8/94-TR45, The Ohio
State University (August 1994)

14. Friedman, H.: Some algorithms for strings with applications to program verifica-
tion. Technical Report OSU-CISRC-8/09-TR42, Department of Computer Science,
Ohio State University (August 2009)

15. Kirschenbaum, J., Adcock, B.M., Bronish, D., Smith, H., Harton, H.K., Sitara-
man, M., Weide, B.W.: Verifying component-based software: Deep mathematics
or simple bookkeeping? In Edwards, S.H., Kulczycki, G., eds.: ICSR. Volume 5791
of Lecture Notes in Computer Science., Springer (2009) 31–40

16. Sitaraman, M., Weide, B.W., Ogden, W.F.: On the practical need for abstraction
relations to verify abstract data type representations. IEEE Trans. Softw. Eng.
23(3) (1997) 157–170

