
Quantifying Performance Benefits of Overlap using
MPI-2 in a Seismic Modeling Application

S. Potluri1, P. Lai1, K. Tomko2, S. Sur1, Y. Cui3

M. Tatineni3, K. Schulz4, W. Barth4, A. Majumdar3 and D. K. Panda1

1 Department of Computer Science and Engineering, The Ohio State University

{potluri,laipi,surs,,panda}@cse.ohio-state.edu
2 Ohio Supercomputer Center

ktomko@osc.edu
3 San Diego Supercomputer Center
{mahidhar,yfcui,majumdar}@sdsc.edu

4 Texas Advanced Computing Center
{bbarth,karl}@tacc.utexas.edu

Abstract

AWM-Olsen is a widely used ground motion simulation code based on a parallel finite
difference solution of the wave-propagation equations. This application runs on tens of thou-
sands of cores and consumes several million CPU hours on the TeraGrid Clusters every year.
A significant portion of its run-time (37% in a 4,096 process run), is spent in MPI commu-
nication routines. Hence, it demands an optimized communication design coupled with a
low-latency, high-bandwidth network and an efficient communication subsystem for good
performance. In this paper, we analyze the performance bottlenecks of the application as
regards to the time spent in MPI communication calls. We find that much of this time can
be overlapped with computation using MPI non-blocking calls. We use both Two-sided and
MPI-2 One-sided communication semantics to re-design the communication in AWM-Olsen.
We find that with our new design using MPI-2 one-sided communication semantics, the en-
tire application can be sped up by 12% at 4K processes and by 10% at 8K processes on a
state-of-the-art InfiniBand cluster, Ranger at the Texas Advanced Computing Center (TACC).

1 Introduction
Modern computing systems have enabled HEC applications to run on tens of thousands of pro-
cessor cores. At such scale, the communication design of applications becomes crucial for their
overall performance and scaling. In this work, we choose one such commonly used earthquake
modeling application, AWM-Olsen [16, 17], and enhance its communication design to improve

1



its overall performance at large scale. AWM-Olsen, like most commonly used HEC codes, uses
the Message Passing Interface (MPI) for managing parallel processes and the communication
among them. It has a nearest neighbor communication pattern implemented using point-to-point
semantics. As a first step to improve the communication design of the application we analyze the
run time of the application to see how much time is spent in communication as it scales to large
number of processes. Then we dissect the time spent in MPI calls and evaluate the potential for
improvement by redesigning the communication. The analysis in Section 3, Figure 5(b) reveals
that, on 4096 processors, the application spends 31% of its time in MPI Waitall calls waiting
on progress of communication. This shows the potential for improvement by overlapping com-
munication with computation. So we investigate designs to hide latency in the nearest-neighbor
communication pattern of this highly parallel ground motion code. We explore the following
questions in the process.

• How much overlap can we achieve in non-blocking communication designs?

• What are the design alternatives to consider when writing an efficient non-blocking com-
munication exchange?

• Can MPI-2 one-sided communication primitives provide better performance than the fre-
quently used two-sided primitives?

In exploring the one-sided approach, some additional questions arise as examples are scarce
and the calls have not been heavily used.

• How well do MPI-2 one-sided communications work at very large scale?

• How does one write an efficient one-sided nearest-neighbor exchange? What semantics
should one use?

To address these questions, we develop multiple non-blocking implementations using the
asynchronous two-sided and the active synchronization-based one-sided communication mech-
anisms made available in MPI-1 and MPI-2, respectively. We compare our one-sided Post/Wait
-Start/Complete-based version with equivalently restructured Isend/Irecv/Waitall-based versions.
These designs are presented in-depth to illustrate how an MPI application can effectively hide
communication latency utilizing either MPI-1 two-sided asynchronous communication seman-
tics or MPI-2 one-sided semantics. The proposed designs have been evaluated on the TACC
Ranger system using several thousands of cores. Our experiments show that the one-sided se-
mantics provide better performance gains from overlap, 12% of the application run time, than the
non-blocking two-sided semantics.

The remainder of this paper is organized as follows. Section 2 gives a brief review of the
petascale AWM-Olsen, related work and provides an overview of techniques used to overlap
computation and communication using MPI-2. In Section 3, we present a detailed performance
analysis of the AWM-Olsen application and provide a model of the theoretical bound for perfor-
mance improvement. This is followed in Section 4 by new communication designs for reducing
synchronization and achieving overlap using asynchronous two-sided and MPI-2 one-sided com-
munication mechanisms. In Section 5, we present a detailed performance evaluation. Finally, we
present the conclusions and future work in section 6.



P x
y z

(a) Velocity and
Stress Update Data
Dependencies

x

y
z

(b) Three Di-
mensional Data
Decomposition

y

x

(c) Receiving Data
into Ghost Cells

x

y

(d) Sending Computed
Data to Neighbors

Figure 1: Data Transfer Patterns in AWM-Olsen

2 Background and Related Work

2.1 Anelastic Wave Model (AWM) and its Application
AWM-Olsen is a community model [16, 17, 7] used by researchers at the Southern Califor-
nia Earthquake Center (SCEC) for wave propagation simulations, dynamic fault rupture studies,
physics-based seismic hazard analysis, and improvement of the structural models. The AWM-
Olsen code has been scaled to more than a hundred thousand processor cores, and consumed
more than twenty millions allocation hours in 2009 on the NSF TeraGrid Ranger system at TACC,
the Kraken XT5 at NICS, and the DOE INCITE Intrepid Blue Gene/P at ANL. The media has
widely covered work using this code, including the TeraShake and SCEC ShakeOut-D exercises,
and recent Wall-to-Wall simulations which are some of the most detailed simulations to date of
earthquakes along the San Andreas fault in recent years. The ShakeOut-D simulations, for exam-
ple, were part of the Great California ShakeOut Exercise which attracted ten millions participants
in 2009 to prepare for “The Big One”. The most demanding simulation of a wall-to-wall rupture
scenario modeled an M8.0 earthquake with an 800x400x100-km3 domain at 100-m resolution
for up to four minutes. It required 32 billion volume elements and 86,000 time steps, taking 20
hours on 32K Ranger processor cores, generating 7 terabytes of surface output and checkpoints.
Recent work by Cui et al. [6, 5], enhanced the application through single-processor optimiza-
tions, optimization of I/O handling and optimization of TeraShake initialization. In this work,
we improve the application performance further by optimizing communication through latency
hiding techniques.

AWM-Olsen solves the 3D velocity-stress wave equation explicitly by a staggered-grid FD
method, fourth-order accurate in space and 2nd-order accurate in time. The code includes a
coarse-grained implementation of the memory variables for a constant-Q solid and Q relations
validated against data. The code uses Perfectly Matched Layers to implement absorbing boundary
conditions on the sides and bottom of the grid, and a zero-stress free surface boundary condition
at the top. The 3D volume representing the ground area to be modeled is decomposed into 3D
sub-grids. Each processor is responsible for performing stress and velocity calculations for its
assigned sub-grid, as well as applying boundary conditions at any external edges of the volume
contained within its sub-grid. Ghost cells, comprising a two-cell-thick padding layer, manage the



most recently updated wavefield parameters exchanged from the edge of the neighboring sub-
grids, see Figure 1 for a 2D schematic of these cells. The Ghost cell update presents a promising
scenario to use one-sided communication for accelerated performance.

The main loop of the AWM Olsen is outlined in Figure 2. The velocity values are updated for
the interior and the boundary of the volume. Then velocity values are exchanged with processors
containing the neighboring sub-grids in the directions of north, south, east, west, up and down.
This is followed by stress calculations and updates which are done in a similar manner. As
the data grids are 3-dimensional, the boundary data along the non-major axes is a large number
of small non-contiguous chunks. So, intermediate staging buffers are used to accumulate and
disseminate data at the source and destination, respectively.

MAIN LOOP IN AWM-OLSEN
do i = timestep0, timestepN

Compute Velocities - Tv

Swap Velocity data with neighboring sub-grids - Tcv

Compute Stresses - Ts

Swap Stress data with neighboring sub-grids - Tcs

enddo
SWAP VELOCITY DATA
North and South Exchange

s2n(u1,north-mpirank, south-mpirank) ! recv from south, send to north
n2s(u1, south-mpirank, north-mpirank) ! send to south, recv from north
. . . repeat for velocity components v1,w1

East and West Exchange
w2e(u1,west-mpirank, east-mpirank) ! recv from west, send to east
e2w(u1, east-mpirank, west-mpirank) ! send to west, recv from east
. . . repeat for velocity components v1,w1

Up and Down Exchange
. . .

S2N
Copy 2 planes of data from variable to send buffer !north face excluding ghost cells
MPI Isend(sendbuffer, north-mpirank)
MPI Irecv(recvbuffer, south-mpirank)
MPI Waitall()
Copy 2 planes of data from recvbuffer to variable ! south ghost cells

Figure 2: AWM-Olsen Application Pseudo-Code

2.2 Overlapping Computation and Communication with MPI
Improving the communication and computation overlap is an important goal in parallel applica-
tions and there are different methods to achieve this.

Many applications are written with MPI blocking send-receive semantics due to its simplicity.
However, the blocking primitives require the communication must complete before the process
can proceed, so it cannot provide any overlap. Traditionally, MPI non-blocking primitives have



been used to alleviate this. Particularly, there is a good chance to have the computation and
communication overlap by issuing multiple non-blocking send-receive calls followed by com-
putation on independent data. Furthermore, if receive calls are posted before the correspond-
ing send calls are posted, more overlap can be obtained. This is an active area of research,
and several researchers have explored application-level re-design, impact of overlap coupled
with re-designed protocols within the MPI library and improved designs of networking archi-
tectures [4, 18, 20, 11, 14, 23].

One-sided communication was introduced in MPI-2 [12], providing new opportunities for
overlapping communication with computation. In the one-sided communication model, each
process defines a memory region called a window, in its local address space for other processes
to access. Data transfer happens through communication calls: MPI Put copies data from the
caller’s (origin’s) memory to the target’s memory; MPI Get transfers data from the target’s mem-
ory to the caller’s (origin’s) memory; and MPI Accumulate atomically updates the target’s mem-
ory with the result of an operation on data from origin’s and target’s memory. In these operations,
all parameters required for the transfer are specified at the origin and thus no involvement of the
target is required. However, completion of the operations requires explicit synchronization calls.

The MPI one-sided model defines two modes for synchronization: active and passive. Ac-
tive synchronization involves both the origin and the target processes and offers both collec-
tive and more restrictive semantics. MPI Win fence is an example of active synchronization
with collective semantics which requires the participation of all processes in the communicator.
MPI Win post-MPI Win wait/MPI Win start-MPI Win complete provides a restrictive mode of
active synchronization which allows coordination among a subset of processes in the commu-
nicator. Passive synchronization involves locking and unlocking of remote windows requiring
participation of only the origin process. Both shared and exclusive lock semantics are provided.
Multiple communication operations (to distinct locations in a window) can be issued between
processes before they synchronize to amortize the overhead of synchronization. The commu-
nication and synchronization operations provided in the MPI one-sided model are summarized
in Figure 3. The one-sided model decouples the communication and synchronization, so it is
non-blocking in nature and we can utilize it to achieve communication and computation over-
lap. For example, if the target can post MPI Win post beforehand, one-sided operations issued
by the origin can go simultaneously with the following computation. This scenario is shown in
Figure 4. Of course, this requires the support from network hardware which can move the data
without interrupting the host processors using Remote Direct Memory Access (RDMA). Our
target platform, TACC Ranger [22], has InfiniBand [1] which provides RDMA features.

Recently, there has been some work by application scientists to exploit the relatively newer
MPI-2 semantics. Mirin, et al. [13] explore the use of MPI one-sided semantics coupled with
multi-threading to optimize the Community Atmosphere Model. Hermmans et al. investigate
the performance of one-sided communication alternatives in the NAS Parallel Benchmark BT
application running on 256 cores of a Blue Gene/P in [8].

AWM-Olsen is characterized by nearest-neighbor communication. Each process exchanges
velocity and stress boundary values and needs to synchronize with only its neighbors in the pro-
cess grid. In such a scenario, MPI Win fence, because of its collective semantics, will result in an
unnecessary synchronization of all processes, when only localized synchronization is required by
the application. The Post-Wait/Start-Complete semantics suits this application because each pro-



MPI-2 One-Sided
Model

Communication Synchronization

Put Get Accumulate Active Passive

Lock-
UnlockCollective Restrictive

(sub-group)

Fence Post-Wait/
Start-Complete

Figure 3: An Overview of MPI-2 Communication Model

cess can create a group including only its neighbors and post/access window based on this group.
We note that passive lock-unlock provides point-to-point semantics, and can be potentially be
used in this application scenario. In this work, we have chosen to use Post-Wait/Start-Complete
semantics. Our justification is presented in Section 4.1. The MPI-2 one-sided calls utilized in our
designs are highlighted in the grey boxes in Figure 3.

SOURCE - PROCESS 0
MPI Win start(group, 0, window)
MPI Put(sendbuffer1, 1)
MPI Put(sendbuffer2, 1)
. . .
Overlapped Computation
MPI Win complete(window)

TARGET - PROCESS 1
MPI Win post(group, 0, window)
Overlapped Computation
MPI Win wait(window)

(a) MPI Pseudo-code for overlapping computation

Process 0 Process 1

MPI_Win_post

MPI_Win_start

MPI_Put (...)

Overlapped
Computation

Overlapped
Computation

MPI_Win_complete

MPI_Win_wait

(b) Timing Diagram

Figure 4: MPI-2 One-Sided communication using Post-Wait/Start-Complete Model



0%

25%

50%

75%

100%

25 100 400 1600

96%
89%

68%

43%

Main Loop Iterations

Time spent in Main Loop
Time spent in rest of the Application

(a) Percentage of application time spent in the
main loop

63% 6%

31%

Time spent in MPI_Waitall
Time spent in other MPI calls
Time spent in rest of the Application

(b) Percentage of application time spent in
MPI calls

Figure 5: Analysis of AWM-Olsen run-time

3 Performance Analysis of AWM-Olsen
In this section, we present an analysis of the AWM-Olsen application execution time and present
our case that improving the communication design can considerably improve the application run-
time. As discussed in Section 2, the AWM-Olsen application has a main loop where velocity and
stress values are computed on each process and exchanged with its neighbors. As the complexity
of the input data grid and the required accuracy increases, the number of iterations of the main
loop increases. Figure 5(a) shows the time spent in the main loop as a percentage of the total ap-
plication run-time on 4,096 processes. With 1,600 iterations, the main loop constitutes 96% of the
total runtime. We used the mpiP profiling library [3] for this analysis. Real-world AWM-Olsen
runs generally involve several thousands of main loop iterations with the largest ever involving
80,000 iterations. So the performance of the main loop code determines the overall application
performance. In this paper, we aim at improving the performance of the data exchange in the
main loop to improve overall application performance and scalability for large-scale runs.

3.1 Computation and Communication Breakdown
The main loop of the AWM-Olsen involves computation and exchange of velocity and stress.
As shown in Figure 2, we refer to the time for velocity computation as Tv and velocity ex-
change/communication as Tcv. Similarly, the time for stress computation is referred to as Ts and
the time for stress exchange is called Tcs. The total run-time of the main loop in the case of ideal
overlap would be : max(Tv, Tcv) + max(Ts, Tcs). However, there are components in the commu-
nication times, such as the data copies from and to the staging buffers, that cannot be overlapped
in reality. A detailed analysis of overlap with the actual times is presented in 5.4.



3.2 Communication Breakdown for Various MPI Calls
Figure 5(b) shows that AWM-Olsen spends 37% of its run time in MPI calls. The MPI Waitall
call, during which the communication progresses, contributes to 84% of the MPI time. This
progress of communication can be overlapped with computation using RDMA capabilities of the
underlying network thus improving the application performance.

4 Proposed Optimizations

4.1 Re-design Using Two-sided Non-blocking Primitives
The velocity and stress exchange routines account for most of the MPI time in the AWM-Olsen.
Both velocity and stress have multiple components in them and each of these components corre-
sponds to a data grid. During the exchange, each process sends the boundaries of these data grids
to its neighbors in all directions and similarly receives boundary data from them. As each data
grid is 3-dimensional, the boundaries along the non-major axes will be a large number of small
non-contiguous chunks in memory. Each process accumulates these chunks into contiguous stag-
ing buffers before sending them to its neighbors. A corresponding dissemination happens at the
receiving process.

In the original implementation, each of these exchanges is done in a blocking fashion i.e.
one exchange is initiated only after the previous exchange has completed. Such an approach is
required when there are data dependencies between the exchanges. We observe that the applica-
tion does not require such strict synchronization. Both the velocity and stress computations are
split in three and six independent components. Thus, there is an opportunity for an asynchronous
design that overlaps computation of components and their communication.

Design enhancement #1: In our first design, we use non-blocking two-sided calls to initiate
exchange of all components of velocity and then wait on the completion of all transfers at once
using a MPI Waitall. The high level organization of code is shown in figure 6. This allows
for asynchronous progress. However enabling concurrent transfers requires additional staging
buffers as one staging buffer can be tied to only one transfer. This does not cause any additional
overhead in the critical execution path as these buffers are created only once and exist throughout
the application run.

Design enhancement #2: The computation of the different components in velocity and stress
is also independent of one another. Leveraging this, we overlap the exchange of a component
with the calculation of the next thus creating computation-communication overlap. To enable
this, at a higher level, we split the velocity computation and swap functions into component level
granularity and interleaved them as follows: Computation and exchange of velocity are split
into three parts based on its three components u, v and w. The value of u is computed and the
exchange of u is overlapped with the computation of v. Similarly the exchange of v is overlapped
with computation of w. For each component, we group the transfers to all neighbors to retain the
advantage of concurrent progress explained above.

Though non-blocking two-sided semantics provide overlap with their underlying RDMA-
based implementations, the skew created by the rendezvous handshake minimizes these benefits



VELOCITY EXCHANGE
s2n(u1,north-mpirank, south-mpirank) ! recv from south, send to north
n2s(u1, south-mpirank, north-mpirank) ! send to south, recv from north
. . . repeat for east-west, up-down directions and other velocity components v1,w1
wait onedirection()
s2nfill(u1, recvbuffer, south-mpirank)
n2sfill(u1, recvbuffer, north-mpirank)
. . . repeat for east-west, up-down directions and other velocity components v1,w1

S2N
Copy 2 planes of data from variable to sendbuffer !north face excluding ghost cells
MPI Isend(sendbuffer, north-mpirank)
MPI Irecv(recvbuffer, south-mpirank)

WAIT ONEDIRECTION
MPI Waitall(list of receive requests)

S2NFILL
Copy 2 planes of data from recvbuffer to variable ! south ghost cells

Figure 6: Velocity Exchange with Reduced Synchronization using Non-blocking Two-Sided Se-
mantics

(since these are larger messages, typically of size 64K based on our problem size). To over-
come this limitation, we explored the use of one-sided semantics to further improve overlap. We
describe our design using one-sided semantics in the next sub-section.

4.2 Re-design Using MPI-2 One-sided Primitives

MPI-2 one-sided semantics are closely aligned with the network-level RDMA operations, thus,
are expected to provide better communication-computation overlap. MPI-2 provides three differ-
ent kinds of synchronization operations in its one-sided model and choosing the one that suites
the target application is crucial for good performance. As described earlier, AWM-Olsen has a
very localized communication, requiring each process to synchronize with only its nearest neigh-
bors. A collective synchronization like that provided in MPI Win fence will lead to unnecessary
overhead that increases with the number of processes. The Lock-Unlock semantics require pro-
cesses to lock and unlock windows of each of its neighbors independently causing an overhead
and reducing promise for concurrent communication progress.

We use the MVAPICH2 [15] MPI library available on our target platform (TACC Ranger) for
the experiments. MVAPICH2 implements several different modes and mechanisms for high-
performance one-sided communication as described in [10, 9, 19]. However, to the best of
our knowledge, at the time of our design and implementation, MVAPICH2 did not implement
Lock/Unlock semantics using RDMA primitives. The lack of direct one-sided implementation
of Lock-Unlock make it less suitable for overlap. Thus, in this paper we design our overlapping



mechanisms using Post-Wait/Start-Complete semantics. The Post-Wait/Start-Complete model,
with its group based semantics fits well with the nearest-neighbor communication pattern. The
neighbors of each process form its Post and Start group. The MPI-2 one-sided calls utilized in
our designs are highlighted in the grey boxes in Figure 3.

The receive staging buffers form the windows at each process. As window registration is
an expensive collective operation, we remove this from the critical execution path by registering
windows only once at the start of the application and retaining them until the end. With Post-
Wait/Start-Complete semantics, the timing of posting the window for one-sided operations is
crucial to achieve maximum performance and overlap. For example, if an MPI Put is issued at
a process before the window is posted by the target, the actual transfer is delayed until the first
MPI call after the window is posted or even until the following synchronization where there are
no following MPI Put calls. This can reduce or totally negate the opportunity for overlap. This
issue becomes more prevalent due to skew as the process count increases. To avoid this, in the
AWM-Olsen code, we post the windows before the main loop for the first iteration and at the end
of each iteration for the following one.

The high-level organization of code is similar to our Isend/Irecv based implementations and
is given in Figure 7. The computation and communication of different components in stress and
velocity are overlapped. Transfers to all neighbors are grouped into one synchronization epoch
for each component thus allowing concurrent communication progress.

5 Experimental Results

5.1 Experimental Setup
We have run all of our experiments on the TACC Ranger system. Ranger is a blade-based sys-
tem. Each node is a SunBlade x6420 running a 2.6.18.8 Linux kernel. Each node contains four
AMD Opteron Quad-Core 64-bit processors (16 cores in all) on a single board, as an SMP unit.
Each node has 32 GB of memory. The nodes are connected with InfiniBand SDR adapter from
Mellanox [2]. In our experiments, we used MVAPICH2 1.4 [15] MPI library installed on the
Ranger. We use a weak scaling model for our experiments to simulate the real world application
use. We increase the size of the data set as the process count increases such that the data grid size
per process remains at 64x64x64 elements. The message size, which is the size of the ghost cells
in each direction, will be 64x64x2 real values i.e. 64K.

5.2 Reduced synchronization using two-sided non-blocking
In this section we compare the performance of the original AWM-Olsen application with the
Async-2sided-basic and Async-2sided-advanced versions. Async-2sided-basic is the version de-
scribed in Section 4.1 as design enhancement 1 and Async-2sided-advanced is the version re-
designed for communication-computation overlap (design enhancement 2). Figure 8(L) shows
the main-loop execution times of a 25 time-step application run for all the versions. Figure 8(R)
shows the percentage improvements of the enhanced versions over the original version. In the
performance analysis, we skip the first iteration from the timing to avoid the impact of startup



MPI Win post(group, 0, window) ! pre-posting the window to all neighbors
MAIN LOOP IN AWM-OLSEN

Compute velocity component u
Start exchanging velocity component u
Compute velocity component v
Start exchanging velocity component v
Compute velocity component w
Start exchanging velocity component w
Complete Exchanges of u,v and w
MPI Win post(group, 0, window) ! For the next iteration

START EXCHANGE
MPI Win start(group, 0, window)
s2n(u1,north-mpirank, south-mpirank) ! recv from south, send to north
n2s(u1, south-mpirank, north-mpirank) ! send to south, recv from north
. . . repeat for east-west and up-down

COMPLETE EXCHANGE
MPI Win wait(window)
MPI Win complete(window)
s2nfill(u1, window buffer, south-mpirank)
n2sfill(u1, window buffer, north-mpirank)
. . . repeat for east-west and up-down

S2N
Copy 2 planes of data from variable to sendbuffer !north face excluding ghost cells
MPI Put(sendbuffer, north-mpirank)

S2NFILL
Copy 2 planes of data from window buffer to variable ! south ghost cells

Figure 7: Velocity Exchange with Reduced Synchronization using Post-Wait/Start-Complete



costs. We see an 8% improvement with the Async-2sided-basic version over the original version
on 4,096 processor cores. With the Async-2sided-advanced version, we see an improvement of
11% on 4,096 processors cores and 6% improvement on 8,192 cores.

5.3 Maximized overlap using MPI2 one-sided primitives
We refer to our design of AWM-Olsen based on the MPI-2 one-sided semantics as Async-1sided
(Section 4.2). The high-level design of overlap is similar to the Async-2sided-advanced version
but we see better performance because of the closer alignment of one-sided semantics with the
underlying network RDMA operations. The advantage of overlap in Isend/Irecv model is ham-
pered by the rendezvous handshake for large messages. With the async-1sided version we see
upto 12% improvement over the original version on 4,096 processor cores and 10% improvement
on 8,192 cores. The results are charted in Figure 8.

0

0.86

1.72

2.58

3.44

4.30

1K 2K 4K 8K

Ti
m

e 
(s

)

Processes

Original Async-2sided-basic Async-2sided-advanced Async-1sided

0

3

6

9

12

15

1K 2K 4K 8K

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t (
%

)

Processes

Figure 8: AWM-Olsen main loop optimizations (L) actual numbers (R) percentage improvement

5.4 Analysis of Achieved Overlap
In this section we analyze the run-time of AWM-Olsen in depth to better understand how much
percentage of application time was actually overlapped using our designs. Velocity computation
(Tv), velocity exchange (Tcv), stress computation (Ts) and stress exchange (Tcs) form the major
part of the main loop in AWM-Olsen. In case of ideal overlap, the total cost of the main loop
would be max(Tv, Tcv) + max(Ts, Tcs). As shown in the table below, this time for a 25 iteration,
4,096 process run should be 3.00s. There are parts in Tcv and Tcs that cannot be overlapped for
practical reasons. First, the copy of data from and to the staging buffers involves the CPU and
cannot be overlapped. This copy time was measured as 0.11s during this run. Also, due to data-
dependencies in the application, the communication of the last components in velocity and stress
cannot be overlapped. We need to synchronize, i.e. call MPI Win complete for the transfers
to complete. This is due to data-dependency in the application. As velocity has 3 components
and stress has 6 components, these times in velocity and stress would be 1/3Tcv and 1/6Tcs,
respectively. We have run our experiments on the TACC Ranger system which is the cluster used



for many of the very large real world AWM-Olsen runs. Due to the limitations of setup on the
cluster, intra-node transfers cannot use IOAT [21] or similar techniques and hence do not provide
an opportunity for computation-communication overlap. In the 4,096(16x16x16) process grid
with 16 cores per node on Ranger, each process has its neighbors along the z-axis within the
same node. This results in (Tcv + Tcs)/3 being intra-node communication. Accounting for these
components, the expected main loop time computes to 3.76s. Our actual runtime for the main
loop, 3.75s, matches this expected value, getting 100% of the achievable overlap.

Timings from Original Main Loop
Tv Tcv Ts Tcs Total Loop Time

0.40s 0.55s 2.45s 0.76s 4.16s
Theoretical Min Loop Time [100% overlap] (max(Tv, Tcv) + max(Ts, Tcs)) = 3.00s

Practically Non-overlappable Communication Components
Last velocity component (Tlv = 1/3Tcv) 0.18s

Last stress component (Tls = 1/6Tcs) 0.13s
Intra-node communication ((Tcv + Tcs)/3− (Tlv + Tls)/3) 0.34s
Copy costs for non-contiguous communication (measured) 0.11s

Total non-overlappable part 0.76s
Expected Main Loop Time Overlapping all Network Communication 3.00s + 0.76s = 3.76s

Measured Main Loop Time 3.75s

6 Conclusion and Future work
AWM-Olsen is a widely used earthquake-induced ground wave-propagation simulation code
which consumes several million CPU hours every year on the TeraGrid clusters. Efficient com-
munication design is paramount for such large scale, heavily used applications to best utilize the
available system time and resources. In this paper, we first analyzed the communication in AWM-
Olsen, showing the potential for communication-computation overlap. Then we re-designed the
application using MPI-2 one-sided semantics to achieve the expected overlap. We see a 12%
improvement in overall application performance on 4,096 cores.

As future work, we would like to the explore the use of asynchronous progress for non-
blocking two-sided operations and its impact on communication-computation overlap. We also
plan to evaluate the potential for application-level overlap with use of IOAT-like technologies
for intra-node communication. Based on our experience with AWM-Olsen, we aim to develop
parallel programming patterns which can be used by application writers to achieve similar overlap
benefits without requiring a deep understanding of the MPI-2 one-sided semantics.

References
[1] InfiniBand Trade Association. http://www.infinibandta.org.

[2] Mellanox Technologies. http://www.mellanox.com.



[3] mpiP: Lightweight, Scalable MPI Profiling. http://mpip.sourceforge.net/.

[4] Ron Brightwell and Keith D. Underwood. An Analysis of the Impact of MPI Overlap
and Independent Progress. In Proceedings of the 18th annual international conference on
Supercomputing, March 2004.

[5] Yifeng Cui, Reagan Moore, Kim Olsen, Amit Chourasia, Philip Maechling, Bernard Min-
ster, Steven Day, Yuanfang Hu, Jing Zhu, and Thomas Jordan. Toward Petascale Earthquake
Simulations. In Acta Geotechnica, pages 79–93, 2009.

[6] Yifeng Cui, Reagan Moore, Kim Olsen, Amit Chourasia, Philip Maechling, Bernard Min-
ster, Steven Day, Yuanfang Hu, Jing Zhu, Amitava Majumdar, and Thomas Jordan. Enabling
Very-Large Scale Earthquake Simulations on Parallel Machines. In ICCS ’07: Proceedings
of the 7th international conference on Computational Science, Part I, pages 46–53, Berlin,
Heidelberg, 2007. Springer-Verlag.

[7] Yifeng Cui, Kim Olsen, Yuanfang Hu, Steven Day, Luis Dalguer, Bernard Minster, Reagan
Moore, Jing Zhu, Philip Maechling, and Thomas Jordan. Optimization and Scalability of
an Large-scale Earthquake Simulation Application. In American Geophysical Union, Fall
Meeting, 2006.

[8] Marc-André Hermanns, Markus Geimer, Bernd Mohr, and Felix Wolf. Scalable Detection
of MPI-2 Remote Memory Access Inefficiency Patterns. In 16th Euro PVM/MPI, Lecture
Notes in Computer Science. Springer-Verlag, 2009.

[9] Wei Huang, Gopalakrishnan Santhanaraman, Hyun-Wook Jin, and Dhabaleswar K. Panda.
Scheduling of MPI-2 One Sided Operations over InfiniBand. In IPDPS ’05: Proceedings of
the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) -
Workshop 9, page 215.1, Washington, DC, USA, 2005. IEEE Computer Society.

[10] Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin, K. Dhabaleswar Panda, William Gropp, and
Rajeev Thakur. High Performance MPI-2 One-sided Communication over InfiniBand. In
CCGRID ’04: Proceedings of the 2004 IEEE International Symposium on Cluster Comput-
ing and the Grid, pages 531–538, Washington, DC, USA, 2004. IEEE Computer Society.

[11] Rahul Kumar, Amith R. Mamidala, Matthew J. Koop, Gopal Santhanaraman, and Dha-
baleswar K. Panda. Lock-free Asynchronous Rendezvous Design for MPI Point-to-point
communication. In EuroPVM ’08, 2008.

[12] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface,
Jul 1997.

[13] Arthur A. Mirin and William B. Sawyer. A Scalable Implementation of a Finite-Volume
Dynamical Core in the Community Atmosphere Model. Intl. Journal of High Performance
Computing Applications, 19(3):203–212, 2005.

[14] Myricom. Myrinet overview. http://www.myri.com/myrinet/overview/.



[15] Network-Based Computing Laboratory. MVAPICH/MVAPICH2: MPI over InfiniBand and
10GigE/iWARP. http://mvapich.cse.ohio-state.edu/.

[16] Kim Olsen. Simulation of three-dimensional wave propagation in the Salt Lake Basin.
Technical report, University of Utah, Salt Lake City, Utah, 1994.

[17] Kim Olsen, Steven Day, Bernard Minster, Yifeng Cui, Amit Chourasia, Marcio Faerman,
Reagan Moore, Philip Maechling, and Thomas Jordan. Strong Shaking in Los Angeles
Expected from Southern San Andreas Earthquake. In Geophysical Research Letters, Vol 3,
pages 1–4, 2006.

[18] José Carlos Sancho, Kevin J. Barker, Darren J. Kerbyson, and Kei Davis. Quantifying the
Potential Benefit of Overlapping Communication and Computation in Large-Scale Scien-
tific Applications. In SC ’06: Proceedings of ACM/IEEE Super Computing, 2006.

[19] Gopalakrishnan Santhanaraman, Pavan Balaji, Karthik Gopalakrishnan, Rajeev Thakur,
William Gropp, and Dhabaleswar K. Panda. Natively Supporting True One-Sided Com-
munication in MPI on Multi-core Systems with InfiniBand. In CCGRID ’09: Proceedings
of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid,
pages 380–387, Washington, DC, USA, 2009. IEEE Computer Society.

[20] Sayantan Sur, Hyun-Wook Jin, Lei Chai, and Dhabaleswar K. Panda. RDMA Read Based
Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits. In Sym-
posium on PPOPP , March 2006.

[21] Intel I/O Acceleration Technology. http://www.intel.com/technology/ioacceleration/index.

[22] Texas Advanced Computing Center. 62,976-core Ranger Cluster.
http://www.tacc.utexas.edu/resources/hpcsystems/ .

[23] Francois Trahay, Elisabeth Brunet, Alexandre Denis, and Raymond Namyst. A Multi-
threaded Communication Engine for Multicore Architectures. In International Parallel and
Distributed Processing (IPDPS), 2008.


