
Enhancing Checkpoint Performance with

Staging IO and SSD

Xiangyong Ouyang, Sonya Marcarelli, Dhabaleswar K. Panda

Dec 5, 2009

Technical Report
OSU-CISRC-1/10-TR01



Enhancing Checkpoint Performance with Staging IO and SSD ∗

Xiangyong Ouyang Sonya Marcarelli
Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University

{ouyangx, smarcare, panda}@cse.ohio-state.edu

Abstract

With the ever-growing size of computer clusters and
applications, system failures are becoming inevitable.
Checkpointing, a strategy to ensure fault tolerance,
has become imperative in such an environment. How-
ever existing mechanism of checkpoint writing to par-
allel filesystems doesn’t perform well with increasing
job size.

Solid State Disk(SSD) is attracting more and more
attention due to its technical merits such as good
random access performance, low power consumption
and shock resistance. However, how to apply SSDs
into a parallel storage system to improve checkpoint
writing still remains an open question.

In this paper we propose a new strategy to en-
hance checkpoint writing performance by aggregating
checkpoint writing at client side, and utilizing staging
IO on data servers. We also explore the potentials to
substitute traditional hard disks with SSDs on data
server to achieve better write bandwidth. Our strat-
egy achieves up to 6.3 times higher write bandwidth
than a popular parallel filesystem PVFS2 [6] with 8
client nodes and 4 data servers. In experiments with
real applications using 64 application processes and 4
data servers, our strategy can accelerate checkpoint
writing by up to 9.9 times compared to PVFS2.

1 Introduction

The trend in the High Performance Computing com-
munity over the past couple of years has been to use a
large number of distributed processing elements, con-
nected together using a high performance network in-

∗This research is supported in part by DOE grants
DE-FC02-06ER25755 and DE-FC02-06ER25749, NSF Grants
CNS-0403342 and CCF-0702675; grants from Intel, Sun Mi-
croSystems, Cisco Systems, and Linux Networks; and equip-
ment donations from Intel, AMD, Apple, IBM, Microway,
PathScale, SilverStorm, Sun MicroSystems.

terconnect. With the increasingly large scale clusters,
a significant challenge is raised for a parallel storage
system to quickly absorb huge amount of data from
multiple data streams produced by large scale parallel
applications.

As a computer cluster grows larger in its size,
the Mean Time Between Failures (MTBF) for to-
day’s clusters has reduced from days to a couple of
hours [17, 22]. As a result, it has become vital for
such clusters to be equipped with fault tolerance ca-
pabilities. From an application’s point of view, fault
tolerance can be achieved by periodically saving its
state to a persistent storage, so that in the event of
a failure, the application can be restored to the most
recent checkpoint[23, 16, 20].

Checkpointing generates simultaneous access to
the storage system when multiple processes of a par-
allel job write their process images to a shared filesys-
tem. The shared filesystem has to intermix these data
streams and store them to backend storage. If not
properly managed, the interference between many
data streams at the data servers can easily result in
pathologically poor write performance [12, 28, 19].

A lot of techniques have been proposed to improve
the performance of concurrent write to shared storage
media [13, 14, 15, 12]. However, we still observe very
poor write bandwidth when checkpointing a parallel
application to PVFS2 [6] parallel filesystem in our
experiments. The under-utilization of storage write
bandwidth at checkpoint writing can be ascribed to
two reasons:

• The pure cost to write the data to storage.

• Multiple write streams interfere with each other
at data servers, which causes variances in a data
stream’s writing completion time. This variance
in turn delays the completion of writing for all
parallel data streams as a whole.

Solid State Disk(SSD) is attracting more and more
attention due to its technical merits such as good

1



random access performance, low power consumption
and shock resistance. SSD provides higher read/write
bandwidth than hard disks. Some research has been
carried out to explore the possibility of adopting SSD
into general computing [18]. However, little work has
been done to explore the possibility of applying SSD
to a parallel storage system to improve checkpoint
writing

In order to improve checkpoint writing perfor-
mance, we want to address several questions in this
paper:

• What are the checkpoint writing patterns in a
parallel storage system?

• What are the potentials to apply SSD into a
parallel storage system to improve storage band-
width?

• How to utilize the techniques such as Write Ag-
gregation, Staging IO and SSD, to design a par-
allel storage to enhance checkpoint writing per-
formance?

In this paper we propose a new strategy to use
Write Aggregation [26, 27] and Staging IO [10] to
effectively utilize storage system bandwidth to ac-
celerate checkpoint writing. Our strategy aggregates
multiple data streams from processes on a compute
node into a single stream. This single data stream is
then stripped through all data servers by Remote Di-
rect Memory Access(RDMA). On data servers, data
chunks are buffered in a small staging area. Mean-
while a set of IO threads asynchronously flush the
data to persistent storage. This effectively overlaps
the data receiving with data writing at data server
side. SSDs are adopted on data servers to improve
storage bandwidth. By aggregating multiple data
streams into one stream at client side, and overlap-
ping data receiving into staging area with data write
at server side, our approach is able to improve the
achieved write bandwidth by up to 6.3 times com-
pared to PVFS2. In experiment with parallel appli-
cations using 64 processes, our approach can accel-
erate the checkpoint writing by upto 9.9 times when
checkpointing a parallel application.

The rest of paper is organized as follows. In sec-
tion 2, we describe the background of Checkpointing
and Staging IO. In section 3, we analyze the profil-
ing information collected for the NAS Parallel Bench-
mark to characterize checkpoint writing. In section
4, we present our detailed designs and discuss our de-
sign choices. In section 5, we conduct experiments to
evaluate our designs and present results that indicate
improvement. In section 6, we discuss the related

work. Finally we provide our conclusion and state
the direction of the research we intend to conduct in
future.

2 Background

2.1 Application Level and System
Level Checkpointing

There are two basic techniques for checkpointing.
The first approach requires the application to write
its own user data to a checkpoint. The advantages
includes a smaller checkpoint size since not all data
in an application need to be saved. But the downside
is the complexity to develop and maintain a check-
point component. The other approach is system-
level checkpointing, where the checkpointing is im-
plemented transparently to the application, usually
through the kernel module such as Berkeley Lab
Checkpoint/Restart(BLCR)[16]. Our work in this
paper is based on system-level checkpointing.

2.2 InfiniBand

InfiniBand [3] is an open standard for next generation
high speed interconnect. In addition to send/receive
semantics, it also provides the memory semantics
communication, called Remote Direct Memory Ac-
cess(RDMA) for high performance interprocess com-
munications. By directly accessing the contents of
remote memory, RDMA can provide both high band-
width and low latency. Both RDMA Read and
RDMA Write are supported. Many parallel filesys-
tems like PVFS2 [6] and Lustre [4] have incorporated
InfiniBand support to provide high-throughput low-
latency communication channels. In this paper, we
take the advantage of RDMA Read to improve the
data transfer bandwidth between client nodes and
data servers.

2.3 Checkpoint in MVAPICH2

MVAPICH2 is a MPI library with native support for
InfiniBand and 10GigE/iWARP [5]. It supports ap-
plication initiated and system initiated checkpoint-
ing [25, 24] using the BLCR Library for Check-
point/Restart [21]. Checkpointing in MVAPICH2
involves the following 3 phases.

• Phase 1: Draining the communication channels
of all pending messages and tearing down the
communication endpoints on each process.

2



• Phase 2: Using the BLCR Library to indepen-
dently request the checkpoint of every process
that is part of the MPI job. The checkpoint is
taken by BLCR in a blocking manner with the
data being written to one file per process.

• Phase 3: Re-establishing the communication
endpoints on every process.

The application continues its execution after the
checkpoint is taken. Of the 3 phases, both Phase 1
and Phase 3 are relatively constant in terms of time
cost for a given application size. Phase 2 usually ex-
hibits large variations for different applications, and
it constitutes the majority part of the time cost. In
this paper, we will design a new strategy to improve
write bandwidth in Phase 2 so as to accelerate a par-
allel checkpointing.

3 Characteristics of Check-
point Writing to Parallel
Filesystem

In our previous work [26, 27], we have profiled check-
point writing characteristics to local disk filesystem.
In this section we extend our previous work to pro-
file the checkpoint writing to a parallel filesystem.
we run NAS parallel benchmarks LU and BT using
the MVAPICH2 [5] with BLCR 0.8.0, and checkpoint
the applications to PVFS2. We choose LU/BT Class
C with 64 processes. The applications are run on a
InfiniBand cluster. All nodes in the cluster are con-
nected with DDR InfiniBand HCAs. Each node has
8 processor cores on 2 Intel Xeon 2.33 GHz Quad-
core CPUs. The application runs on 8 nodes with
one process per core. Each application process writes
its checkpoint data to a separate file on a shared
PVFS 2.8.1 filesystem. IB transport is chosen for
this PVFS filesysetm. 4 data servers and used both
as data server and metadata servers.

Table 1 lists some basic information of one check-
point with NAS benchmark LU/BT of class C using
64 processes on 8 compute nodes. As indicated in sec-
tion 2.3, checkpointing a parallel application consists
of 3 phases. The cost of Phase 1 and Phase 3 is rela-
tively constant given the application size. The cost of
Phase 2 depends on both size of checkpoint data and
storage system write bandwidth. In our experiments
we find that phase 2 consumes the majority part of
the checkpoint time. The first row in table 1 indi-
cates the time cost in phase 2 to write the checkpoint
data to a PVFS2 filesystem. From now on we only
focus on Phase 2 in a checkpoint.

Table 1: Basic Checkpoint Information(Class C, 64
processes, 8 processes per compute node)

LU BT

Time to Write One Check-
point(seconds)

12.43 19.68

Checkpoint Data Size(MB) per
Node

184.0 320.0

Number of VFS Write per Pro-
cess

975 1057

Total Number of VFS Writes per
Node

7800 8456

We profiled the checkpoint writing for these appli-
cations to understand the checkpoint file write pat-
terns. Table 2 gives an example of the application
LU of class C and 64 processes. It decomposes the
checkpoint writing into different categories according
to the size of writes. The first column is the size of
write belonging to that category. The second column
is percentage of writes within that range. The third
column is percentage of data amount written by that
type of write. The fourth column is percentage of
time spent by VFS writes belonging to that category.
The basic trends we observe here is similar to our
previous observations in [26, 27].

Table 2: Checkpoint Writing Profile of LU.C.64
% of Writes % of Data % of Time

0-64 50.86 0.04 0.12

64-256 0.61 0.00 0.00

256-1K 0.25 0.01 0.02

1K-4K 9.46 1.53 0.02

4K-16K 36.49 11.36 46.12

16K-64K 0.74 0.77 10.35

64K-256K 0.49 3.79 9.47

256K-512K 0.25 3.58 0.95

512K-1M 0.61 17.72 11.92

> 1M 0.25 61.21 21.06

(1) Most of the file writes only write small amount
of data (smaller than 4KB per write). These small
writes make up over 60% of all file writes, but they
only write about 1.5% of total amount of data be-
ing dumped. It costs less than 0.2% of total time
to perform these small writes. These small writes
are primarily storing CPU registers, signal handler
table, timers, open-file tables, process/group/session
ids, and various other of BLCR data structures nec-
essary to restore a process. Although large in num-
bers, all these small writes are buffered in VFS buffer
cache. Therefore they only consumes a tiny fraction
of all write time.

3



(2) There are a few large writes (greater then or
equal to 512 KB per write). These writes constitute
only about 0.8% of all writes, but they contribute
about 79% of all data dumped. These writes consume
about 34% of total write time.

(3) In between small and large writes are medium
writes, which make up about 38% of all writes. They
contribute about 20% of all data, but consume about
65% of all time. The medium and large writes ac-
tually store the virtual memory area (VMA) of a
process. BLCR scans all VMAs of a process, and
saves non-zero contiguous data pages to the check-
point file. An application process usually has many
VMAs. Many VMAs contain a handful contiguous
pages that need to be dumped to file, which become
a medium write. A few VMAs contain large block of
contiguous pages to dump. They are the source of
large writes.

During checkpoint writing, all application pro-
cesses in a compute node perform a lot of VFS writes
to the shared filesystem. What a data server sees is
a lot of intermixed data streams coming from many
processes. This inevitably causes frequent disk head
seeks which can severely deteriorate the storage write
bandwidth. In the following section, we propose a
new design that can greatly improve checkpoint write
bandwidth achieved by a parallel application.

4 Improving Checkpoint Write
Performance with Aggrega-
tion and Staging I/O

In this section we present the Aggregated Staging I/O
design that can greatly improve write bandwidth for
checkpoint writing. The design consists of two com-
ponents: the computer nodes side(client side) and the
data server side(server side). As indicated in figure
1, the shadowed boxes represent our new design on
both client and server sides.

4.1 Write Aggregation on Client Side

In traditional checkpointing, each application process
independently issues a sequence of VFS writes to sep-
arate checkpoint files. If not optimized, the interfer-
ence of intermixed VFS write streams can severely
degrade aggregated write bandwidth. Therefore we
propose to insert an interposition layer between the
application VFS writes and the actual data move-
ment between client and data servers. This layer
aggregates all VFS writes from the application, and
takes care of moving data to data servers.

Figure 1: Checkpoint Write Staging

In our new strategy, the “Write Aggregation” mod-
ule prepares a buffer pool by registering the buffer
pool to the InifiniBand hardware. Each application
process will request the “Write Aggregation” module
to allocate a memory chunk from the buffer pool. As
shown in figure 1 on client side, when a VFS write
is called by application process, instead of follow-
ing the usual path to store data to a VFS buffer
cache, the data is directly copied to the memory
chunk associated to that process. When the chunk
is full, the process requests another free chunk from
the “Write Aggregation” module, and continues with
checkpoint writing. Meanwhile for every filled chunks
in the buffer pool, “Write Aggregation” module de-
livers a “RDMA-Read request” to data server. The
data server then pulls the data to server side through
RDMA Read. By aggregating many VFS writes into
a buffer pool at client side, we expect to harvest sig-
nificant improvement in file writing bandwidth at the
cost of additional memory usage. A recent study [7]
suggests that even large scale parallel jobs seldom
use all available local memory. Therefore we feel it
is reasonable to assume that residential memory is
available in the client side. Our experiments indi-
cate that even a mildly-sized buffer pool(64MB) can
greatly improve the write bandwidth.

Although VFS write also stores the data into a VFS
buffer cache by default, we believe our strategy out-
performs the default VFS write data path for 3 rea-
sons.

4



(1) Traditionally each application process has a
data stream with a corresponding opened file. For
a parallel filesystem, the cost to open/close many
files can become significant at larger scale applica-
tions since the metadata server may become the bot-
tleneck. Our strategy effectively coalesces multiple
data streams into one with reduced metadata-related
overhead.

(2) Parallel filesystems usually flush client side data
to servers at relatively small data size, which results
in higher network round trip delay and lower band-
width usage. Our strategy, on the contrary, can select
proper chunk size to achieve better network band-
width. Although one can specify larger flush size for
the parallel filesystem, this may adversely affect other
applications using the same parallel filesystem.

(3) Each VFS write system call involves cost at
kernel/user context switch. An ever large overhead
comes from the management of the complicated VFS
buffer cache shared by many files. On the contrary,
our strategy translate a VFS write to a swift memory
copy.

Design alternatives exist to choose a proper buffer
pool size and chunk size. Large buffer pool always
help to improve the write bandwidth. Our experi-
ments choose a mild size 64MB to be the buffer pool
size. Once the chunk size is reasonably large(greater
than 1MB), we find that the performance won’t
change much. So we will stick to 4MB chunk size
in this paper.

4.2 Staging Area on Server Side

The data server maintains a queue to receive all re-
quests from clients. Each request contains informa-
tion such as: process ID, data size, offset of data
in original checkpoint, buffer address to be used in
RDMA-Read, remote key to be used in RDMA-Read.
Once a request is enqueued, it’s dispatched to a free
IO thread out of the IO thread pool. This IO thread
grabs a free chunk of memory in the local buffer pool,
then issues a RDMA-Read operation to pull data
from client memory to server memory. Once the data
is present in the memory chunk, the IO thread ap-
pends this data chunk to local storage in a log-based
file structure [8]. The persistent storage can be a disk
file, or even a raw block device. The metadata about
this chunk (process ID, data size, offset of data, phys-
ical offset in data server storage, etc.) is also saved
for all IO threads. After the file write finishes, the IO
thread sends a completion message back to the client.
The client will then release the memory chunk to be
used by other processes. Figure 2 illustrates this

procedure.

Figure 2: RDMA-Read Based Checkpoint Writing

In our design, we choose to let the client expose
its memory to server, so server can perform RDMA-
Read to pull the data. This approach owns the
merit of better security over the alternative, where
server exposes its memory to client and client per-
forms RDMA-Write to push the data to server.

4.3 Reconstruct Checkpoint Files

Our design alters the structure of data stored in the
persistent storage. At restart, it’s necessary to recon-
struct the data into the original checkpoint file for-
mat required by BLCR. When a data server writes
the data chunks to persistent storage, the metadata
for each data chunk (process ID, data size, offset of
data) are cumulated and saved to an index file. At
restart, a client node collects the index files from all
data servers. These index files are parsed and the
metadata of data chunks belonging to this client is
condensed. Then the client can contact the data
servers to retrieve corresponding data. These data
chunks are then concatenated to rebuild the original
checkpoint files.

5 Experimental Results

In this section, we conduct various experiments to
evaluate the performance of our design. A 64 nodes
RedHat Enterprise Linux 5 cluster is used in the eval-
uation. Each node has 8 processor cores on 2 In-
tel Xeon 2.33 GHz Quad-core CPUs. The nodes are
connected with Mellanox MT25208 DDR InfiniBand
HCAs. All our experiments are based on MVAPICH2
1.4 as the MPI library with BLCR 0.8.0.

The client side “Write Aggregation” design can be
implemented as a stackable filesystem to intercept the
VFS write system calls. In this experiment, we have

5



0 

500 

1000 

1500 

2000 

2500 

3000 

1  2  4  8 

A
gg
re
ga
te
 W

ri
te
 B
an

dw
it
dh

(M
B/
s)
 

Number of Client 

PVFS2 (Disk, Buffered‐IO)  PVFS2 (SSD,  Buffered‐IO) 
Staging (Disk, Buffered‐IO)  Staging (SSD, Bufferer‐IO) 
Staging (Disk, Direct‐IO)  Staging (SSD, Direct‐IO) 

Figure 3: Aggregated Write Bandwidth with 4 Data Servers

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

PVFS2 (Disk, 
Buffered‐IO)  

PVFS2 (SSD, 
Buffered‐IO) 

Staging (Disk, 
Buffered‐IO) 

Staging (SSD,  
Buffered‐IO) 

Staging (Disk, 
Direct‐IO) 

Staging (SSD,  
Direct‐IO) 

Ti
m
e 
to
 W

ri
te
 O
ne

 C
he

ck
po

in
t (
m
s)
 

LU.C.64 

Figure 4: Checkpoint Write Time: LU.C.64

modified BLCR kernel module to redirect VFS writes
to the aggregation module. Client buffer pool is fixed
to 64MB with 4MB chunk size. At the server side
Staging Area design, 16 IO threads are used in the
thread pool. The same buffer pool size(64MB) and
chunk size(4MB) are used. Both hard disk and Solid
State Disk(SSD) are tried as storage device at the
server side. Table 3 gives the raw write bandwidth of
these two kinds of storage devices.

Table 3: Device Raw Bandwidth (MB/s)
Write Read

Hard Disk 57 65

SSD(Intel X-25E 64GB) 179 202

5.1 Aggregated Write Bandwidth

We first run a synthetic benchmark to measure the
aggregated write bandwidth achieved by our Aggre-
gation Staging IO strategy. In this benchmark, 4
nodes act as data servers. All participating client
nodes synchronize at a barrier, then start to write

1GB data at 4MB chunk size to the data servers.
When all client nodes finish writing, they enter an-
other barrier, after which the elapsed time T is mea-
sured. The aggregated write bandwidth is derived
as (TotalDataAmount)/T . Both PVFS2 and Aggre-
gated Staging IO strategy are evaluated as a com-
parison. Only buffered IO mode is tested for PVFS2,
while both buffered IO and direct IO modes are evalu-
ated with Aggregated Staging IO strategy. The data
servers use hard disk and SSD as storage device at
different runs. Figure 3 shows the aggregated write
bandwidth using 1/2/4/8 client nodes.

PVFS2 with hard disk is used as a baseline for com-
parison. As client node number varies from 1/2/4/8,
the aggregated write bandwidth is 313/560/497/262
MB/s respectively. It’s clear that the interference
between multiple data streams at data servers lead
to a performance degradation when 8 client nodes
are used. Since SSD has no mechanical seek latency
as hard disk, the write stream interference should
exhibit little impact on its write throughput. This

6



0 

5000 

10000 

15000 

20000 

25000 

PVFS2 (Disk, 
Buffered‐IO)  

PVFS2 (SSD,  
Buffered‐IO) 

Staging (Disk, 
Buffered‐IO) 

Staging (SSD,  
Buffered‐IO) 

Staging (Disk, 
Direct‐IO) 

Staging (SSD,  
Direct‐IO) 

Ti
m
e 
to
 W

ri
te
 O
ne

 C
he

ck
po

in
t (
m
s)
 

BT.C.64 

Figure 5: Checkpoint Write Time: BT.C.64

is consolidated by our experiment to substitute disk
with SSD. PVFS2+SSD achieves a aggregated write
bandwidth of 310/556/601/643 MB/s, a big improve-
ment over PVFS2+disk at 8 client nodes.

As a comparison we measured the performance of
Aggregation Staging IO strategy. Staging IO with
hard disk and buffered IO reaches aggregated write
bandwidth of 1176/1468/1560/1654 MB/s when us-
ing 1/2/4/8 client nodes. Our strategy outperforms
PVFS2+disk by 6.31 times at 8 client nodes. When
replacing disk with SSD(Staging IO with SSD and
buffered IO), we can achieve write bandwidth of
1266/2184/2744/2575 MB/s, 55% higher than Stag-
ing IO with disk at 8 clients. This improvement can
be attributed to the better raw bandwidth of SSD
over hard disks. If newer PCIe based SSD like Fusion-
IO [2] is used, we will expect to gain more benefit in
bandwidth. At 8 client nodes, Staging IO+SSD out-
performs PVFS2+SSD by 4 times.

When direct IO is used instead of buffered IO,
our staging IO with disk reaches write bandwidth
of 145/151/180/180 MB/s. If using SSD as storage,
the write bandwidth is 593/713/698/716 MB/s. Our
strategy can saturate the 4 SSDs even with 2 client
nodes.

5.2 Application Checkpoint Time

In this test we measure the time to checkpoint some
parallel applications(LU and BT) from NAS parallel
benchmark of class C and 64 processes. 8 compute
nodes are used to run the application, and 4 storage
nodes act as data servers. The benchmarks are com-
piled with MVAPICH2 1.4 Checkpoint/Restart and
modified BLCR 0.8.0.

Figure 4 gives the time cost to write checkpoint
data of application LU with different strategies. For
PVFS2 with disk, 12.4 seconds are required to write

the checkpoint data. PVFS2+SSD uses 7.3 seconds
to complete the writing. If Staging IO with disk and
buffered IO is used to write checkpoint data, the writ-
ing can be completed in 1.25 seconds, which is 9.9x
improvement over PVFS2+disk. This time can be
further driven down to 1.07 seconds if replacing disk
with SSD. As with direct IO, Staging IO with disk
can finish checkpoint writing in 8.83 seconds. Stag-
ing IO with SSD can finish writing in 2.75 seconds.

The similar trend can be observed for applica-
tion BT in figure 5. The checkpoint writing time
can be reduced from 19.67 seconds(PVFS2+disk and
buffered IO) to 2.02 seconds(Staging IO + disk and
buffered IO), which represents a 9.7 times improve-
ment. This time is driven down to 1.43 seconds by
Staging IO with SSD and buffered IO.

6 Related Work
The overhead of checkpoint/restart on file IO has
been studied by [17]. [26, 27] explore how to utilize
write aggregation to improve checkpoint writing to a
local filesystem. In this paper we extend the work
to store checkpoint data to a shared parallel storage
system. Milo etc. [8] proposes the use of log-based
file structures at the server side to serialize all file
writing requests for checkpoint. The parallel filesys-
tem has to be altered to adopt this design. Stdchk
[11] tries to scavenge spare storage resources from
all participating nodes to form a dedicated storage
space for checkpoint data. [9] developed a prototype
distributed filesysetm to accelerate aggregated write
bandwidth of checkpoint data. Our work differs from
both in that we utilize aggregation on client side and
staging IO on server side.

The work of PLFS [12] proposes to design a stack-
able filesystem on top of a parallel filesystem to remap
the logical checkpoint data layout to a physical lay-
out favorable to parallel filesysetm. The actual data

7



storage is offloaded to the parallel filesysetm. On
the contrary, our strategy doesn’t rely on a parallel
filesystem.

7 Conclusion and Future Work

In this paper we propose a Aggregation Staging IO to
enhance write bandwidth of checkpoint data. We also
evaluated the potential benefits of replacing hard disk
with SSD in such a strategy. With Aggregation and
Staging IO, our design is able to accelerate checkpoint
writing significantly.

As part of the future work, we intend to conduct
the experiments in larger scale. We plan to develop a
stackable filesystem at client side based on FUSE [1]
to implement the functionality of write aggregation.
Additionally We want to compare our new strategy
with other popular parallel filesystem such as Lus-
tre [4].

References
[1] Filesystem in Userspace. http://fuse.sourceforge.net/.

[2] Fusion IO. http://www.fusionio.com/.

[3] InfiniBand Trade Association.
http://www.infiniband.org/.

[4] Lustre Parallel Filesystem. http://wiki.lustre.org/.

[5] MPI over InfiniBand Project. In http://nowlab.cse.ohio-
state.edu/projects/mpi-iba/.

[6] PVFS2. http://www.pvfs.org/.

[7] Application Requirements and Objectives for Petascale
Systems . HPCwire, February 2008.

[8] Milo Polte and Jiri Simsa etc. . Fast log-based concur-
rent writing of checkpoints . In PDSI 2008 workshop in
conjunction with SC08 , Nov. 2008.

[9] Paul Nowoczynski, Nathan Stone, Jared Yanovich, Jason
Sommerfield . Zest: Checkpoint Storage System for Large
Supercomputers. In PDSI 2008 workshop in conjunction
with SC08 , Nov. 2008.

[10] Hasan Abbasi, Matthew Wolf, Greg Eisenhauer, Scott
Klasky, Karsten Schwan, and Fang Zheng. Datastager:
scalable data staging services for petascale applications.
In HPDC ’09: Proceedings of the 18th ACM international
symposium on High performance distributed computing,
2009.

[11] S. Al-Kiswany, M. Ripeanu, S.S. Vazhkudai, and
A. Gharaibeh. stdchk: A checkpoint storage system for
desktop grid computing. June 2008.

[12] John Bent, Garth Gibson, Gary Grider, Ben McClelland,
Paul Nowoczynski, James Nunez, Milo Polte, and Meghan
Wingate. Plfs: a checkpoint filesystem for parallel appli-
cations. In SC ’09: Proceedings of the Conference on
High Performance Computing Networking, Storage and
Analysis, 2009.

[13] Avery Ching, Alok Choudhary, Kenin Coloma, Wei-keng
Liao, Robert Ross, and William Gropp. Noncontiguous
i/o accesses through mpi-io. In CCGRID ’03: Proceedings
of the 3st International Symposium on Cluster Comput-
ing and the Grid, 2003.

[14] Avery Ching, Alok Choudhary, Wei keng Liao, Robert
Ross, and William Gropp. Efficient structured data ac-
cess in parallel file systems. Cluster Computing, IEEE
International Conference on, 2003.

[15] Avery Ching, Alok Choudhary, Wei&#45;Keng Liao,
Robert Ross, and William Gropp. Evaluating structured
i/o methods for parallel file systems. Int. J. High Per-
form. Comput. Netw., 2.

[16] J. Duell. The design and implementation of berkeley
lab’s linux checkpoint/restart. Lawrence Berkeley Na-
tional Laboratory,Paper LBNL-54941, April 2005.

[17] I.R. Philp. Software failures and the road to a petaflop
machine. In First Workshop on High Performance Com-
puting Reliability Issues (HPCRI), February 2005.

[18] Sang-Won Lee and Bongki Moon. Design of flash-based
dbms: an in-page logging approach. In SIGMOD ’07:
Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, 2007.

[19] Pin Lu and Kai Shen. Multi-layer event trace analysis
for parallel i/o performance tuning. In ICPP ’07: Pro-
ceedings of the 2007 International Conference on Parallel
Processing, page 12, Washington, DC, USA, 2007. IEEE
Computer Society.

[20] Michael Litzkow, Todd Tannenbaum, Jim Basney, and
Miron Livny. Checkpoint and Migration of UNIX
Processes in the Condor Distributed Processing Sys-
tem. In Technical Report UW-CS-TR-1346, University
of Wisconsin-Madison, Computer Sciences Department,
April 1997.

[21] Paul H. Hargrove and Jason C. Duell. Berkeley Lab
Checkpoint/Restart (BLCR) for Linux Clusters. In Sci-
DAC, 6 2006.

[22] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André
Barroso. Failure trends in a large disk drive population.
In FAST ’07: Proceedings of the 5th USENIX conference
on File and Storage Technologies, pages 2–2, Berkeley,
CA, USA, 2007. USENIX Association.

[23] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
Transparent checkpointing under Unix. In Usenix Winter
Technical Conference, pages 213–223, January 1995.

[24] Q. Gao, W. Huang, M. Koop, and D. K. Panda. Group-
based Coordinated Checkpointing for MPI: A Case Study
on InfiniBand. In Int’l Conference on Parallel Processing
(ICPP), XiAn, China, 9 2007.

[25] Q. Gao, W. Yu, W. Huang and D. K. Panda. Application-
Transparent Checkpoint/Restart for MPI Programs over
InfiniBand. In International Conference on Parallel Pro-
cessing (ICPP), August 2006.

[26] Xiangyong Ouyang, Karthik Gopalakrishnan and Dha-
baleswar K. Panda. Accelerating checkpoint operation by
node-level write aggregation on multicore systems. ICPP
2009, September 2009.

[27] Xiangyong Ouyang, Karthik Gopalakrishnan, Tejus Gan-
gadharappa and Dhabaleswar K. Panda. Fast checkpoint-
ing by write aggregation with dynamic buffer and inter-
leaving on multicore architecture. HiPC 2009, December
2009.

[28] Xuechen Zhang, Song Jiang, and Kei Davis. Making res-
onance a common case: A high-performance implementa-
tion of collective i/o on parallel file systems. In IPDPS
’09: Proceedings of the 2009 IEEE International Sym-
posium on Parallel&Distributed Processing, Washington,
DC, USA, 2009. IEEE Computer Society.

8


