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Abstract

Efficient communication design is essential for HEC applications to scale to thousands

and 10s of thousands of processors on current and upcoming systems. Traditionally, non-

blocking two-sided semantics from MPI-1 have been used to achieve latency hiding when

optimizing communication for HEC applications. The more recently proposed one-sided

semantics of MPI-2 can also be used to achieve latency hiding but have not been evalu-

ated at large scale. For this study, we investigate application level optimizations for latency

hiding in conjunction with one-sided and non-blocking two-sided implementations of near-

neighbor communication in a stencil-based earthquake-induced ground motion simulation

code, AWM-OLSEN from the Southern California Earthquake Center. We implement re-

duced synchronization and communication-computation overlap, two key mechanisms for

latency hiding. We use Post-Wait/Start-Complete calls or Fence calls in the one-sided ver-

sions and ISend/IRecv/Waitall calls in the two-sided version. Our experiments on TACCś

Ranger system show that these mechanisms can provide similar benefits in both the one-

sided and two-sided models and demonstrate use of one-sided communication at large scale.

We see a 7% improvement in the overall application performance on 4,096 cores.

1 Introduction
Efficient communication design is essential for HEC applications to scale to thousands and tens

of thousands of processors on current and upcoming systems. The earthquake modeling code

(AWM-Olsen) discussed in this paper is frequently run on 32,000 cores of the TACC Ranger

system. Any inefficiency in its implementation or in the implementation of similar HEC codes

will result in the consumption of tens of thousands of CPU hours which could be better spend on

additional science runs. AWM-Olsen, like most commonly used HEC codes, uses the Message
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Passing Interface (MPI) for managing parallel processes and communications among them. For

stencil-based codes, the near-neighbor exchanges are commonly implemented with MPI-1 point-

to-point semantics. These calls are traditionally optimized for latency hiding using non-blocking

two-sided semantics from MPI-1. The more recently proposed one-sided semantics of MPI-2 can

also be used to achieve latency hiding but adoption of these semantics in scientific applications

has been slow. Due to this slow adoption, there have been very few studies on the performance

of MPI applications which use one-sided communications, particularly at large scale.

In this paper we use the highly parallel AWM-Olsen ground motion simulation as a platform

to explore the following questions in optimizing the near-neighbor communication pattern in

stencil-based codes.

• How much latency hiding can we achieve in non-blocking two-sided communication de-

signs?

• What are the design alternatives to consider when converting a two-sided based code to use

one-sided operations?

In exploring the one-sided approach, some additional questions arise.

• What kind of window creation techniques represent best-practice for stencil-based appli-

cations?

• What is the impact of different synchronization models in MPI-2 semantics on the overall

application performance?

To address these questions, we develop multiple non-blocking implementations using the

asynchrous two-sided and the active synchronization-based one-sided communication mecha-

nisms made available in MPI-1 and MPI-2 respectively. We compare our one-sided Fence-based

and Post/Wait -Start/Complete-base version with equivalently restructured ISend/IRecv/Waitall-

based versions. These designs are presented in-depth to illustrate how an MPI application written

with two-sided semantics can be converted to use one-sided semantics. The proposed designs

have been evaluated on the TACC Ranger system. Our experiments show that the proposed two

mechanisms provide similar benefits to our application, with a 7% decrease in run-time on 4,096

cores. Additionally we demonstrate that one-sided communications with either fence-based or

post-wait/start-complete synchronization can be effectively used at large scale for a common

communication pattern in HEC software.

The remainder of this paper is organized as follows. Section 2 gives a brief review of the

petascale AWM-Olsen application and provides an overview of the one-sided operations pro-

vided in MPI-2. In section 3 we present several approaches for reducing synchronization and

achieving overlap for the near-neighbor communications in AWM with both asynchronous two-

sided and MPI-2 one-sided versions of the sub-grid boundary exchange. In Section 4, we present

the detailed analysis of experimental performance. We briefly introduce the related work in Sec-

tion 5, and present the conclusions and future work in section 6.



2 Background
2.1 AWM Application Overview
AWM-Olsen is a community model [10, 15, 3, 5, 4] used by researchers at the Southern Califor-

nia Earthquake Center (SCEC) for wave propagation simulations, dynamic fault rupture studies,

physics-based seismic hazard analysis, and improvement of the structural models. The AWM-

Olsen code has been scaled to tens of thousands of processor cores of Ranger at TACC, Kraken

at NICS, and BlueGene machines at IBM and ANL. Some of the most detailed simulations to

date of earthquakes along the San Andreas fault were carried out using this code, including the

well-known TeraShake, SCEC ShakeOut simulations. The ShakeOut simulations, for example,

modeled an M7.8 earthquake with 600 × 300 × 80-km3 domain at 100-m resolution for up to

four minutes. The most demanding simulation of a wall-to-wall rupture scenario required 32 bil-

lion volume elements and 86,000 time steps, ran for 20 hours on 32K processor cores of TACC

Ranger, and generated 7 terabytes of surface output and checkpoints.

AWM-Olsen solves the 3D velocity-stress wave equation explicitly by a staggered-grid FD

method, fourth-order accurate in space and 2nd-order accurate in time. The code includes a

coarse-grained implementation of the memory variables for a constant-Q solid and Q relations

validated against data. The code uses PerfectlyMatched Layers to implement absorbing boundary

conditions on the sides and bottom of the grid, and a zero-stress free surface boundary condition

at the top. The 3D volume representing the ground area to be modeled is decomposed into 3D

sub-grids. Each processor is responsible for performing stress and velocity calculations for its

portion of the grid, as well as applying boundary conditions at the external edges of the volume.

Ghost cells, comprising a two-cell-thick padding layer, manage the most recently updated wave-

field parameters exchanged from the edge of the neighboring sub-grids, see Figure 2 for a 2D

schematic of these cells. The Ghost cell update presents a promising scenario to use one-sided

communication for accelerated performance. Recent optimization of the 2-sided Ghost cell up-

date from blocking to asynchronous send and receives along with removing some collective calls

greatly improved the application’s performance on large core counts.

The main loop of the AWM Olsen has been outlined in Figure 1. The velocity values are

updated for the interior and the boundary of the volume. Then velocity values are exchanged

with processors containing the neighboring sub-grids in the directions of north, south, east, west,

up and down. This is followed by stress calculations and updates which are done in a similar

manner.

2.2 MPI One-sided Semantics
In the MPI one-sided communication model [12, 9, 8, 16], each process defines a memory re-

gion, which is called window, in its local address space for other processes to access. Data

transfer happens through communication calls: MPI Put copies data from the caller’s (origin’s)

memory to the target’s memory; MPI Get transfers data from the target’s memory to the caller’s

(origin’s) memory; and MPI Accumulate atomically updates the target’s memory with the result

of an operation on data from origin’s and target’s memory. In these operations, all parameters

required for the transfer are specified at the origin and thus intervention of the target in not re-

quired. However, completion of the operations requires explicit synchronization calls. The MPI

one-sided model defines two modes for synchronization: active and passive. Active synchro-

nization involves both the origin and the target processes and has either point-to-point semantics



MAIN LOOP IN AWM-OLSEN

do i = timestep0, timestepN

Compute Velocities

Swap Velocity data with neighboring sub-grids

Compute Stresses

Swap Stress data with neighboring sub-grids

enddo

SWAP VELOCITY DATA

North and South Exchange

s2n(u1,north-mpirank, south-mpirank) ! recv from south, send to north

n2s(u1, south-mpirank, north-mpirank) ! send to south, recv from north

. . . repeat for velocity components v1,w1

East and West Exchange

w2e(u1,west-mpirank, east-mpirank) ! recv from west, send to east

e2w(u1, east-mpirank, west-mpirank) ! send to west, recv from east

. . . repeat for velocity components v1,w1

Up and Down Exchange

. . .

S2N

Copy 2 planes of data from variable to sendbuffer !north face excluding ghost cells

MPI Isend(sendbuffer, north-mpirank)

MPI Irecv(recvbuffer, south-mpirank)

MPI Waitall()

Copy 2 planes of data from recvbuffer to variable ! south ghost cells

Figure 1: AWM-Olsen Application Pseudo-Code

Figure 2: Data transfer patterns in AWM-Olsen



or collective semantics. MPI Win fence is an example of active synchronization with collective

semantics which requires the participation of all processes of the communicator. MPI Win post-

MPI Win wait/MPI Win start-MPI Win complete provide a point-to-point mode of active syn-

chronization which can coordinate among a subset of processes in the communicator. Passive

synchronization involves locking and unlocking of remote windows requiring participation of

only the origin process. Both shared and exclusive lock semantics are provided. Multiple com-

munication operations (to distinct locations in a window) can be issued between processes before

they synchronize to amortize the overhead of synchronization. The communication and synchro-

nization operations provided in the MPI one-sided model are summarized in Figure 3.

Figure 3: An Overview of MPI-2 Communication Model

3 Proposed Designs

3.1 Design and Implementation using ISend/IRecv

Blocking and non-blocking two-sided communication semantics have been part of the original

MPI-1 standard [11] and are quite popular with application scientists. With the option to initiate

multiple transfers concurrently, non-blocking semantics provide a better potential for reduced

synchronization and communication-computation overlap when compared to blocking semantics,

and are less prone to deadlock. The AWM-Olsen application was originally [10, 15] written using

blocking semantics. Recently, Cui et. al. [5, 4] have enhanced the application by optimizing

TeraShake initialization and I/O handling. This has helped the application to scale to several

thousands of cores. This version uses non-blocking semantics for communication.

However, it does not take complete advantage of the non-blocking semantics to reduce syn-

chronization. It naively replaces every MPI Send and MPI Recv with MPI Isend and MPI Irecv,

respectively, and waits for completion by calling an MPI Wait after each transfer. As discussed

in Section 2, in the AWM-Olsen application, every process exchanges data with its nieghbours

in all directions and each of these exchanges involved multiple data transfers. In our design, we

initiate all of the communication in one direction simultaneously and then wait for the comple-

tions. As shown in Figure 4 all of the MPI Isend and MPI Irecv are first issued, then only one

MPI Waitall is issued to check all of the completions. It is to be noted that the send or receiver

buffers must be defined globally, as the buffers should not be freed until the call to MPI Waitall



completes. This approach is expected to provide better asynchronous progress. We refer to it as

”Async-reduce-sync”.

Generally, computation and communication overlap is closely related to the asynchronous

progress. The velocity and stress information exchanged in the AWM-Olsen application has

several sub-components. For example, velocity has three components, u, v and w. Each of these

components corresponds to a data grid. The computation of one sub-component is independent of

others which provides an opportunity for overlap. To exploit this characteristic, we reorganize the

communication pattern and the main loop is restructured as shown in Figure 5. Instead of issuing

all of the transfers in one direction one after another, we group the transfers in all directions

related to one component. At the end, the waitall function is called. By doing this, we can overlap

the computation of one component with the exchange of another component. We believe this

implementation can further hide the communication latency and improve the overall performance.

VELOCITY EXCHANGE

North and South Exchange

s2n(u1,north-mpirank, south-mpirank) ! recv from south, send to north

n2s(u1, south-mpirank, north-mpirank) ! send to south, recv from north

. . . repeat for velocity components v1,w1

wait onedirection()

s2nfill(u1, recvbuffer, south-mpirank)

n2sfill(u1, recvbuffer, north-mpirank)

. . . repeat for velocity components v1,w1

East and West, Up and Down Exchanges

. . .

S2N

Copy 2 planes of data from variable to sendbuffer !north face excluding ghost cells

MPI Isend(sendbuffer, north-mpirank)

MPI Irecv(recvbuffer, south-mpirank)

WAIT ONEDIRECTION

MPI Waitall(list of receive requests)

S2NFILL

Copy 2 planes of data from recvbuffer to variable ! south ghost cells

Figure 4: Velocity Exchange with Reduced Synchronization using Non-blocking Two-Sided Se-

mantics



MAIN LOOP

do i = timestep0, timestepN

VELOCITY COMPUTATION AND EXCHANGE

Compute velocity component u

Start exchange of velocity component u with neighboring sub-grids

Compute velocity component v

Complete exchange of velocity component u

Start exchange of velocity component v with neighboring sub-grids

Compute velocity component w

Complete exchange of velocity component v

Start exchange of velocity component w with neighboring sub-grids

Complete exchange of velocity component w

STRESS COMPUTATION AND EXCHANGE

. . .

enddo

Figure 5: Overlapped Velocity Exchange in Main Loop of AWM-Olsen

3.2 Design and Implementation using One-sided Semantics

3.2.1 Window Design for One-sided Implementations

In theMPI-2 one-sided model the window is a contiguous region of memory each process exposes

for other processes to read and write data. Organization of these windows not only impacts their

creation overhead but also effects the efficiency of the associated communication. In the AWM-

Olsen application, data exchange between processes happen in multiple dimensions including

north-south, east-west and up-down. While the source and destination array sections in the east-

west dimension are contiguous, the array sections for ghost cells in the other dimensions are

non-contiguous, considering the column-major allocation in FORTRAN. To include all the target

ghost cells, the window will have to span the complete 3D data grid, and there are multiple such

grids involved, one for each sub-component exchanged. In MPI implementations that exploit the

RDMA feature of InfiniBand, window creation involves pinning the memory and registering it

with the NIC. The registration costs increase as the window size increases and there is a limit on

the total amount of memory that can be registered. Also the larger the memory pinned the lesser

is the memory available for the computation part of the application.

To overcome these limitations, we use intermediate staging buffers as windows. After each

synchronization operation, the data is copied from the staging buffers to the actual location in

the 3D data grid. Though this involves an extra data copy, it reduces the cost of creating larger

windows. This also gives us the flexibility to issue multiple data transfers between two processes

though the final destinationmemory regions are overlapping, thus amortizing the synchronization

overhead.



Figure 6: Grouping of process based on the communication dependencies in AWM-Olsen a)

Nearest-neighbor pattern b) Row-dependency pattern

3.2.2 Design and Implementation using Fence

From an application programmer’s perspective, FENCE [12, 6] is the simplest form of synchro-

nization that the MPI-2 standard provides. FENCE is a collective call and is intended for appli-

cations which alternate between global computation phases and global communication phases.

All the processes call a FENCE to start an access epoch and each process can issue multiple

Put/Get/Accumulate operations to other processes in its communicator group as long as the tar-

get buffers are non-overlapping. Finally all the processes call a second FENCE to ensure the

completion of one-sided operations issued during the access epoch. The second FENCE marks

the completion of the current access epoch and also signals the start of the next access epoch.

This ability to issue multiple communication operations in each access epoch provides the op-

portunity for exploit reduced synchronization overhead. The fence form of synchronization also

helps the user escape the complexity of handling constantly changing communication patterns.

Though AWM-Olsen application goes through alternating computation and communication

phases, each process is involved in data exchange with only its six neighbors in the 3-dimensional

grid. The collective nature of fence synchronization causes an unnecessary overhead in the case

of such a localized communication pattern. Also this overhead increases as the process count

increases. We have explored the use of sub-communicators to reduce this overhead. A straight-

forward implementation is to create a sub-communicator for each process including its nearest-

neighbors as shown in Figure 6 a. However, this leads to a complex set of dependencies where

each process is involved in fences over six overlapping sub-communicators.

Each communication phase of the AWM-Olsen application can be divided into three sub-

phases based on the direction in which the transfers happen. First, all the processes are involved in

a north-south exchange. Each process sends data to its northern neighbor and then, to its southern

neighbor. A similar exchange happens in the east-west and north-south directions. As we show

in Figure 6 b, the dependencies in each of these sub-phases are localized to the row/column

of processes in one dimension. We use this localization to create sub-communicators. Each

process is part of three sub-communicators, one in each direction. After communication in a

given direction, the processes call a fence on their sub-communicators in that dimension. This

reduces the amount of synchronization to a minimum. For example, in a 20x20x20 process grid,

localized fence synchronization involves only 20 processes instead of 8000 processes as in the



naive case. Figure 7 shows the velocity exchange implemented using fence.

Through this study we try to show the need for localized fence semantics in the MPI standard.

Though such an effect can be achieved using sub-communicators, at the application level, as

we have done here, in scenarios where the communication patterns are more asymmetrical and

dynamic in phases, this will become a complex task for the programmer. Also this can be handled

more efficiently inside the MPI implementation.

VELOCITY EXCHANGE

North and South Exchange

s2n(u1,north-mpirank, south-mpirank) ! recv from south, send to north

n2s(u1, south-mpirank, north-mpirank) ! send to south, recv from north

. . . repeat for velocity components v1,w1

MPI Win fence(north-south sub-communicator)

s2nfill(u1, window buffer, south-mpirank)

n2sfill(u1, window buffer, north-mpirank)

. . . repeat for velocity components v1,w1

East and West, Up and Down Exchanges

. . .

S2N

Copy 2 planes of data from variable to sendbuffer !north face excluding ghost cells

MPI Put(sendbuffer, north-mpirank)

S2NFILL

Copy 2 planes of data from window buffer to variable ! south ghost cells

Figure 7: Velocity Exchange with Reduced Synchronization using Fence

3.2.3 Design and Implementation using Post-Wait/Start-Complete

The Post-Wait/Start-Complete model provided by MPI-2 aims at reducing synchronization be-

tween processes to the minimum by requiring only pairs of processes to synchronize. This model

is aimed at applications where processes communicate with only a few logical neighbors and

the communication pattern is fixed or changes infrequently. The asynchronous nature of these

semantics also provide a good opportunity for communication and computation overlap.

The nearest neighbor communication pattern of the AWM-Olsen application suites this model

well. Considering the north-south communication phase, a naive implementation has each pro-

cess post the window to its southern neighbor, issue the data transfer to its northern neighbor

and wait for it to complete and then post the window at its northern neighbor. The MPI-2 one-

sided semantics allow a process to post its window to a group of processes with one Post call.

Similarly a process can start accessing the windows of a group of processes with one Start call.

Also, as discussed earlier, multiple put operations can be issued concurrently with the constraint

that the target buffers and the source buffers of these operations at a process are non-overlapping.

As shown in Figure 8, we post windows to the northern and southern neighbors and wait for

completions after issuing all transfers in both the directions, thus reducing the synchronization



VELOCITY EXCHANGE

North and South Exchange

MPI Win post(window, north-south group)

MPI Win start(window, north-south group)

s2n(u1,north-mpirank, south-mpirank) ! recv from south, send to north

n2s(u1, south-mpirank, north-mpirank) ! send to south, recv from north

. . . repeat for velocity components v1,w1

MPI Win wait(window, north-south group)

MPI Win complete(window, north-south group)

s2nfill(u1, window buffer, south-mpirank)

n2sfill(u1, window buffer, north-mpirank)

. . . repeat for velocity components v1,w1

East and West, Up and Down Exchanges

. . .

S2N

Copy 2 planes of data from variable to sendbuffer !north face excluding ghost cells

MPI Put(sendbuffer, north-mpirank)

S2NFILL

Copy 2 planes of data from window buffer to variable ! south ghost cells

Figure 8: Velocity Exchange with Reduced Synchronization using Post-Wait/Start-Complete

overhead. We follow a similar pattern in other directions as well. The synchronization overhead

can be further reduced by increasing the size of the staging buffers and by issuing transfers in

all directions before synchronizing. But this comes at the cost of larger pinning and registration

overhead.

Similar to the code restructuring described in Section 3.2, in this implementation, we also

interleave the computation and communication for more overlap with post-wait/start-complete

synchronization.

4 Experimental Results
4.1 Experimental Setup
We have run all of our experiments on the TACC Ranger system. Ranger is a blade-based sys-

tem. Each node is a SunBlade x6420 running a 2.6.18.8 Linux kernel. Each node contains four

AMD Opteron Quad-Core 64-bit processors (16 cores in all) on a single board, as an SMP unit.

Each node has 32 GB of memory. The nodes are connected with InfiniBand SDR adapter from

Mellanox [1]. In our experiments, we use MVAPICH2 1.4rc2 [14] as the underlying MPI model.

We use a weak scaling model for our experiments to simulate the real world application use. We

increase the size of the data set as the process count increases such that data grid size per process

remains at 256x256x256 elements.



4.2 Performance of ISend/IRecv-based Designs
To study the effect of reduced synchronization at the application level, we modified the velocity

and stress exchanges, which form part of the main loop in AWM-Olsen. In this section we

compare the performance of the original asynchronous two-sided version with the asynchronous

two-sided version with reduced synchronization. Part (a) in Figure 9 shows the times of the

velocity exchange loop for one iteration. We see an improvement of 11% for 512 processes and

9% in the case of 4,096 processes. We believe the variation in performance improvement across

problem sizes is because of the weak scaling we have used. Part (b) shows the improvement

we observe due to this optimization in the overall velocity and stress computation and exchange

times. Figure 10 shows gains in velocity computation and exchange times due to overlap. We see

a 2% improvement for 4,096 processes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

256 512 1024 2048 4096

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Number of Processes

Async-basic
Async-reduced-sync

 0

 10

 20

 30

 40

 50

256 512 1024 2048 4096

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Number of Processes

Async-basic
Async-reduced-sync

Figure 9: Asynchronous Two-sided Versions with Reduced Synchronization: (a) Velocity Ex-

change Time and (b) Velocity and Stress Computation and Exchange Time
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Figure 11: Fence Versions with Reduced Synchronization: (a) Velocity Exchange Time and (b)

Velocity and Stress Computation and Exchange Time
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Figure 12: Post-wait/Start-Complete Versions with Reduced Synchronization: (a) Velocity Ex-

change Time and (b) Velocity and Stress Computation and Exchange Time
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Figure 13: Post-wait/Start-Complete Version with Overlap - Velocity computation and exchange

time

4.3 Performance of Fence-based Designs
Here, we compare the two new designs of AWM-Olsen application that use fence synchronization

with the original asynchronous version. Results in figure 11 clearly show that the overhead of

global fence operation increases drastically with the number of processes while the localized

fence design avoids this overhead upto 2048 processes and performs better than the original

asynchronous design due to the effect of reduced synchronization. We see a 5% improvement in

the velocity exchange times for 2048 processes.

4.4 Performance of Post-Wait/Start-Complete-based Designs
Figure 12 shows the improvement due to reduced synchronization using Post-Wait/Start-Complete

over the original asynchronous two-sided version. The velocity exchange times improved by

10.4% for 512 processes and by 8.6% for 4,096 processes. The improvements we observe here

are similar to those achieved by using Waitall calls in the improved two-sided version. Figure 13

shows the improvement due to overlap in the Post-Wait/Start-Complete version. We observe a

2.5% improvement in velocity exchange latency for 1,024 processes. Again the results show

that one-sided and non-blocking two-sided implementations show similar performance improve-

ments. From a high level, one-sided semantics appear to have an advantage over two-sided se-

mantics on modern networks where large message transfers happen through RDMA [16]. This is

because address information exchange and memory registration happen during the window cre-

ation phase unlike two-sided communication where these happen in the communication critical

path. However, techniques like registration cache used in the underlying implementations help

remove this overhead in the two-sided communication helping it achieve similar gains as in the

one-sided case.



4.5 Application performance
In this section, we present the impact of our optimizations on the overall performance of the

AWM-Olsen application. The times shown Figure 14 are for a 6 timestep execution. We see

close to 7% improvement in performance on 4,096 processes for the Post-Wait/Start-Complete

version with overlap. Assuming that we get similar gains on 32,000 cores, this improvement

would correspond to savings of 45875 core-hours in the real world run described in section 2.

We also observed that localized fence minimizes the overhead due to global synchronization.

However, the size of local fence groups increases as size of the process grid increases. This

results in a noticeable overhead even in the case of the localized fence design as we go to 4,096

processes.
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Figure 14: Effect of optimizations on the overall performance of the AWM-Olsen application

5 Related Work
In this section, we give a brief introduction on the related research.

MPI-2 standard [12] expanded MPI to include Remote Memory Access (RMA) or one-sided

communication. This mode of communication facilitates the coding of some applications with

dynamically changing data access patterns where the data distribution is fixed or slowly chang-

ing. There are proposals in the MPI forum to extend the current RMA interfaces [2]. Initial topics

include exploiting different memory models, extending accumulate to support user-defined oper-

ations, extending accumulate to support read-modify-write operations, active message, etc. Our

work in this paper targets at analyzing the potential of existing one-sided and non-blocking two-

sided semantics to exploit reduced synchronization and communication-computation overlap in

the AWM-Olsen application.

The Anelastic Wave Model (AWM) was originally developed by Kim Olsen et al. [10, 15, 3]

and was picked as the primary model for the SCEC TeraShake simulation. As part of their work in

[5, 4], Cui et al. enhanced the application through single-processor optimizations, optimization

of I/O handling and optimization of TeraShake initialization. In this work, we improve the ap-

plication performance further by optimizing communication through the afore mentioned latency

hiding techniques.

The study in [13] explores the use of MPI one-sided semantics coupled with multi-threading

to optimize the Community Atmosphere Model. Hermmans et al. investigate the performance of

one-sided communication alternatives in the Nas Parallel Benchmark BT application running on

256 cores of a Blue Gene/P [7].



6 Conclusion and Future work
AWM-Olsen is a widely used earthquake-induced ground wave-propagation simulation code

which is run on tens of thousands of cores of TeraGrid HPC machines and consumes 10’s of

millions of CPU hours every year. Efficient communication design is paramount in such large

scale, heavily used applications to make best use of available system resources. In this paper,

we optimize the communication in AWM-Olsen using two common latency-hiding techniques

- reduced synchronization and communication-computation overlap. We achieve a 7 percent

improvement in overall application performance at 4096 cores. Traditionally, non-blocking two-

sided semantics from MPI-1 have been used to acheive the afore mentioned benefits in many

HEC applications. In this work, we explore the use of the more recently proposed MPI-2 one-

sided model to acheive these effects. We observe that, similar benefits can be achieved using

either models because the underlying MPI implementation uses similar RDMA operations in

both cases.

We plan to extend this work by running the MPI-2 one-sided implementation of the AWM-

Olsen at full core count ( 60,000 cores) on Ranger and comparing performances with the two-

sided implementations of the AWM-Olsen at that high core count. As future work, we plan to

explore hybrid programming techniques such as MPI+OpenMP to further optimize both compu-

tation and communication in the AWM-Olsen application. We also plan to analyze the limitations

of the existing one-sided model in delivering performance for stensil based applications and pro-

pose extensions to overcome these limitations.
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