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Abstract—Energy harvesting sensor platforms have opened up
a new dimension to the design of network protocols. In order
to sustain the network operation, the energy consumption rate
cannot be higher than the energy harvesting rate, otherwise,
sensor nodes will eventually deplete their batteries. In contrast
to traditional network resource allocation problems where the
resources are static, time variations in recharging rate presents
a new challenge. In this paper, we first explore the performance
of an efficient dual decomposition and subgradient method based
algorithm, called QuickFix, for computing the data sampling rate
and routes. However, fluctuations in recharging can happen at
a faster time-scale than the convergence time of the traditional
approach. This leads to battery outage and overflow scenarios,
that are both undesirable due to missed samples and lost energy
harvesting opportunities respectively. To address such dynamics,
a local algorithm, called SnapIt, is designed to adapt the sampling
rate with the objective of maintaining the battery at a target level.
Our evaluations using the TOSSIM simulator show that QuickFix
and SnapIt working in tandem can track the instantaneous
optimum network utility while maintaining the battery at a
target level. When compared with IFRC, a backpressure-based
approach, our solution improves the total data rate by42% on
the average while significantly improving the network utility.

I. I NTRODUCTION

In various application scenarios, energy can be harvested
from the surrounding environment to recharge the batteries
and extend the network’s lifetime. Many forms of energy such
as solar, wind, water flow, thermal and vibration are being
explored for driving sensor network platforms [1], [2], [3],
[4]. Such sensor platforms have opened up a new dimension
to the design of networking protocols. However, the strength
of harvested energy is a function of various static parameters,
such as the specifications and orientation of the solar panel;
and time-varying parameters, such as the weather and the
season. The protocol needs to adapt to such dynamics to
avoid running out of battery. This is especially needed for
environmental monitoring applications as they often require
periodic data collection from all nodes in the network and
high data throughput with fairness guarantee is desired.Our
objective in this paper is to design a distributed and adaptive
solution that jointly computes the data collection rates for each
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node, finds the routes and schedules transmissions based on
interference constraints and energy replenishment rates,such
that the network utility can be maximized while maintaining
perpetual operation of the network.

Similar to the standard flow control and resource allocation
(e.g. [5], [6]) approaches, we formulate the problem as a con-
strained optimization problem. In our formulation, we havean
energy conservation constraintinvolving the replenishment
rates, along with the standard flow conservation and interfer-
ence constraints. Thefundamental differenceof our problem
is that, our energy conservation constraint istime-varying, due
to the time-varying nature of energy replenishment, i.e., our
problem is dynamic and thus it has a different solution in
every point in time. The standard implementations of the dual
decomposition method for resource allocation involves a large
number of iterations, each of which incurs a high overhead
due to the necessary message exchange between neighboring
nodes. In a static setting, the convergence time is less of an
issue, since the solution of the problem is fixed. However,
with time-varying replenishment rate, we have a time-varying
optimal resource allocation in our problem.

To that end, the first major question we answer in this paper
is, “how closely can wetrack that optimal point by using
distributed iterations to solve the Lagrangian dual problem?”
We show (in Section IV) that, in a network with arbitrary
topology, the time scale of such solutions is too slow to follow
the variations in the replenishment rate for the optimal point
to be tracked sufficiently closely. Consequently, we focus on
well-structured networks with an underlyingdirected acyclic
networkgraph (DAG). We exploit the structure of (DAG) to
develop an efficient synchronous message passing scheme,
QuickFix , motivated by general solution structure of dynamic
programs. We show that the convergence time of QuickFix is
sufficiently small to track the optimal solution fairly closely.

The second major question we address is, “how does the
finiteness of the total amount of energy storage in each
node affect the performance of joint energy management and
resource allocation?” If one accounts for the finite batteries
in the original problem formulation, the solution involves
complicated Markov decision processes, which does not lead
to better understanding of the dynamics of the system. Instead,
we propose a simple noveladaptive localized algorithm,
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SnapIt, that operates above QuickFix, to slightly modify the
optimal sampling rate provided by QuickFix, based on local
battery states. We show that, using SnapIt along with QuickFix
has two important consequences. Firstly, the fraction of time
for which a node is down reduces significantly due to a
complete battery discharge reduces significantly (to 0 in many
instances as shown in our evaluations). Secondly, due to the
short response time of SnapIt, the joint algorithm is capable
of responding to the changes in replenishment rate much more
quickly. Hence, the overall network utility also increaseswith
SnapIt.

In summary, the key contributions of this paper are as
follows:

• We develop a decomposition and subgradient based dis-
tributed solution, called QuickFix, that can efficiently
track instantaneous optimal sampling rates and routes in
the presence of a time-varying recharging rates. Prior
works based on such techniques have mostly focused on
static scenarios.

• For perpetual operation in the presence of rapid fluc-
tuations in the the recharging rates, we present a new
local algorithm, called SnapIt, that attempts to maintain
the battery at a certain target level while stochastically
maintaining a high network utility.

• Simulations using TOSSIM [7] show that the algorithms
working in tandem can lead to an efficient solution
for simultaneously achieving proportional fairness and
perpetual operation. It is also shown to significantly
outperform IFRC, a backpressure-based protocol.

II. RELATED WORK

Rate Control and Routing: Routing in energy harvesting
sensor network is explored in [8]. The authors proposed two
heuristic protocols. The first protocol is a localized solution
that allows the source node and exactly one intermediate node
to deviate from the shortest path and opportunistically forward
packets to a solar-powered neighboring node. On the other
hand, the second protocol, with the assistance of the sink,
chooses the shortest path with the minimum number of nodes
that run solely on the batteries. In another work [9], an online
routing algorithm which seeks to maximize the number of
accepted flows is proposed. In contrast to these works, we
consider joint computation of routes and rates with a different
objective of fair data collection and perpetual operation.

Lexicographically maximum rate assignment and routing for
perpetual data collection has been studied in [10]. It extends
the framework in [11], and presents a centralized as well as
a distributed algorithm. The centralized algorithm is proven
to give the optimal lexicographic rate assignment. However,
the distributed algorithm can only reach the optimum if the
routing paths are predetermined, and the network is a tree
rooted at the sink. Furthermore, the dynamics of recharging
profiles is not considered. The exact recharging profile for each
day must be known and it is sensitive to the initial battery
levels. In contrast, our distributed solution does not require
any knowledge of the future recharging rates. Furthermore,our

distributed solution can work on a more generalized structure
than a tree. All of these factors result in a more practical
algorithm in comparison to the algorithm proposed in [10].

Other prior works on rate control in WSNs include [12],
[13], [14], [15], [16]. Although some of these works [14],
[15] also aim to achieve fairness in WSNs, none of them
consider energy replenishment. In this paper, we re-engineered
IFRC [14] to consider recharging capabilities of modern sensor
platforms and use it as a benchmark.

Dual-Decomposition Technique for Optimizing Network
Performance: The dual decomposition technique has been
applied in many works to maximize the network utilization. In
[5], the utility function, as ours, is defined as the summation
of the log of the rate achieved by each flow in the network.
However, in their formulation, the route for each flow is fixed.
The authors propose both a primal and a dual-based algorithm.
Both algorithms tune the transmission attempt probabilityof
each node to maximize the utility function. In contrast to [5],
a general utility function is considered in [6]. It also applies
the dual decomposition technique to develop a distributed
algorithm. However, the algorithm not only addresses rate
assignment, but also routing. Maxmin fairness of rate assign-
ment problem in WSNs is studied in [17]. Their proposed
algorithm is also based on dual decomposition. In their model,
each sensor transmits with a certain probability. Thus, after
Lagrangian relaxation, the dual function is not concave. To
overcome this problem, they convexify their problem and
apply the Gauss-Seidel method to solve the problem. Although
all the above approaches allow nodes in the network self-
tune certain parameters to maximize the network utilization,
none of them consider energy constraints, not to mention
recharging.

III. N ETWORK MODEL

This section outlines the network model and the problem
formulation. We consider a static sensor network represented
asG = (N,L), whereN is the set of sensor nodes including
the sink node,s, and L is the set of directed links. We
assume a DAG (directed acyclic graph) rooted at the sink is
constructed over the network for data collection. The problem
is formulated as a convex optimization problem by exploiting
the DAG structure. This formulation not only provides clear
system design guidelines but also allows us to design an
efficient signaling scheme. Before presenting the problem
formulation, we present some of the key notations used in
the paper. The notations and their corresponding semantics
are also listed in Table I for reference.

For each sensor nodei ∈ N , Ai denotes its ancestors in the
DAG, i.e., the nodes that are on some path(s) from nodei to
the sinks. Conversely,Di denotes the descendants. Also,Ci

andPi are the children and parent nodes of nodei respectively.
The amount of energy consumed in sensing the environment is
represented byλ(sn)

i . We assume that the the expected number
of retransmissions over a long time is known for each link.
Thus, λ

(tx)
ij represents the average energy consumption for
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TABLE I
NOTATIONS

Symbol Semantics

Di The set of descendants of nodei
Ai The set of ascendants of nodei
Ci The set of children nodes of nodei
Pi The set of parent nodes of nodei
Bi(t) Battery state of nodei at time t
Mi Battery capacity of nodei
πi(e) Estimated average recharging rate of nodei in epoche
ρi(t) The instantaneous recharging rate of nodei at time t
τ Epoch length
ri Sampling rate of nodei

λ
(sn)
i Energy cost for sampling at nodei

λ
(tx)
ij Average energy cost for TX over link(i, j)

λ
(rx)
i Energy cost for RX at nodei

fij The amount of capacity allocated on link(i, j)
wij The fractional amount of nodei’s traffic that passes link(i, j)
zij(w) A function of w, that represents the fractional

amount ofi’s traffic that passesj
Π The feasible region of link capacity variablesfij

W The feasible region of routing variableswij

µi Lagrange multiplier for energy conservation constraint at node i
υi Lagrange multiplier for flow balance constraint at nodei
α The constant step size used in the subgradient method

delivering a packet over link(i, j) and λ
(rx)
i represents the

energy cost for receiving a packet at nodei. These parameters
are theenergy costsof the system. In particular, we consider
slotted-time system and the time during a day is broken into
multiple time intervals called epochs. The length of each epoch
is τ slots. We useπi(e) to represent the average (long term)
energy replenishment rate of nodei in epoche, while ρi(t)
is used to represent the real instantaneous (short term) energy
replenishment rate of nodei in time slot t. For each epoch
e, we defineπi(e) = E

[

∑eτ
t=(e−1)τ+1 ρi(t)

]

/τ . We assume

that πi(e) can be estimated by each node with high accuracy.
Estimatingπi(e) is beyond the scope of this paper. Moreover,
we definewij to be the fractional outgoing traffic ofi that
passes through aparent j and zij(w) to be the fractional
outgoing traffic ofi that passes through anancestorj. Thus,
wij = 0, ∀j /∈ Pi andzij(w) = 0, ∀j /∈ Ai. Note thatzij(w)
is a function ofw, wherew is the vector ofwij ∀i, j. The
recursive relation between the two variables is given below.

zij(w) =
X

k∈Pi

wikzkj(w) (1)

IV. A C ROSS-LAYER APPROACH TODYNAMIC RESOURCE

ALLOCATION

In this section, we present an outline of the dual based
cross-layer framework for distributedly computing the rates
and routes in each epoch. We define the utility functionUi(ri)
for nodei to belog(ri), whereri is the sampling rate of node
i. Our goal is to maximize the sum of the utility functions
∑

Ui(ri) =
∑

log ri, which is strictly concave and known
to achieve proportional fairness [18]. Thus, we formulate our
problem as an optimization problem as follows:

Pe: max
ri,fij ,wij

X

i

log(ri) (2)

s.t. πi(e) ≥ λ
(sn)
i ri +

X

j∈Di

zji(w)λ
(rx)
i rj +

X

j∈Pi

λ
(tx)
ij fij (3)

X

j∈Pi

fij ≥ ri +
X

j∈Di

zji(w)rj

ri ∈ R+, fij ∈ Π, wij ∈ W

The first and the second constraints are the energy con-
servation and flow balance constraints, respectively. The flow
balance constraint states that the sum of allocated capacity for
each outgoing link should be greater than the total amount
of traffic going through each node, including its own data.
Besides these two constraints, the amount of capacity allocated
on each link must be in the feasible capacity regionΠ. We
assume the node exclusive interference model as in [6]. Thus,
the feasible capacity region can be similarly defined as the
convex hull of all the rate vectors of the matchings inG.

One can observe that this problem is dynamic, since the
energy conservation constraint involves the time varying re-
plenishment rateπi(e). Thus, the the feasible region and
the optimum solution differ in each epoch. One can view
this dynamic problem as a sequence of static problems. The
standard method to solve each static problem involves the
application of the dual decomposition and the subgradient
methods. However, the implementation of these solutions
in the network involves a large overhead due to message
exchange between neighboring nodes. Consequently, the con-
vergence time becomes an important issue.

To that end, we introduce QuickFix, which, in each iteration
of the subgradient method, exploits the special structure of
DAG to form an efficient control message exchange scheme.
This scheme is motivated by the general solution structure
of a dynamic program. QuickFix is based on the hierarchical
decomposition approach as the starting point. By relaxing the
energy conservation and flow balance constraints in Problem
Pe, we get the partial dual functionq(µ, υ) as follows:

q(µ, υ) = max
ri,fij ,wij

X

i

log(ri)

+
X

i

µi

0

@πi(e) − λ
(sn)
i ri −

X

j:(i,j)∈Di

zji(w)λ
(rx)
i rj −

X

j∈Pi

λ
(tx)
ij fij

1

A

+
X

i

υi

0

@

X

j∈Pi

fij − ri −
X

j:(i,j)∈Di

zji(w)rj

1

A

s.t. ri ∈ R+, fij ∈ Π, wij ∈ W

The dual problem is therefore:

min
µi≥0,υi≥0

q(µ, υ) (4)

The dual problem in (4) can be decomposed hierarchically
[19], [20], [21] as follows. The top level dual master problem
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is responsible for solving the dual problem. Since the dual
function is not differentiable, the subgradient method [21], [22]
is applied to iteratively update the Lagrange Multipliersµi and
υi at each node using (5). The notation[.]+ means projection
to the positive orphan of the real lineR.

µk+1
i =

»

µk
i − α1

„

πi(e) − λ
(sn)
i ri

−
X

j∈Di

zji(w)λ
(rx)
i rj −

X

j∈Pi

λ
(tx)
ij fij

«–+

υk+1
i =

»

υk
i − α2

„

X

j∈Pi

fij − ri −
X

j∈Di

zji(w)rj

«–+

(5)

Each time the Lagrange Multipliers are updated, a primal
decomposition is performed to decouple the coupling variables
fij , such that whenfij are fixed, the problem can be further
decomposed into two layers of subproblems. The upper level
optimization problem can then be further decomposed into
many smaller subproblems, one for eachi, as shown in (6):

max
ri,wij

log(ri) − µi

0

@λ
(sn)
i ri +

X

j∈Di

zji(w)λ
(rx)
i rj

1

A

− υi

0

@ri +
X

j∈Di

zji(w)rj

1

A

s.t. ri ∈ R+, wij ∈ W (6)

At the lower level, we have the optimization problem shown
in (7), which is in charge of updating the coupling variables
fij

max
fij

X

(i,j)∈L

(υi − λ
(tx)
ij µi)fij

s.t. f ∈ Π (7)

The lower level optimization problem in (7) is equivalent
to the maximum weight matching problem. Under the node
exclusive interference model, it can be solved in polynomial
time. However, in order to solve the maximum weight match-
ing problem in a distributed fashion, we utilize the heuristic
algorithm in [23]. While applying the algorithm, instead of
the queue difference between neighboring nodes, we use the
combined energy and queue state of a node (υi − λ

(tx)
ij µi) to

modulate the MAC contention window size, when a nodei
attempts to transmit a packet over the link(i, j).

Note that in the upper level optimization problem, thefij

and υi variables are fixed, and since the objective function
is strictly concave in(r, w), it admits a unique maximizer as
shown in (8).

r∗i =
1

λ
(sn)
i µi + υi +

P

j∈Ai

zij(w∗)(λ
(rx)
j µj + υj)

(8)
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Fig. 1. The convergence time comparison between QuickFix and the standard
dual-based algorithm.

We refer toλ
(sn)
i µi + υi in Eq. (8) as nodei’s local price,

and Pi =
∑

j∈Ai

zij(w)(λ
(rx)
j µj + υj) as its aggregate price.

Observe that if a node wants to maximize its rate, it should
find the path(s) such that its aggregate pricePi is minimized,
i.e., it is a joint routing and rate control problem. Since our
formulation utilizes the DAG structure, this allows a node
to calculate its aggregate price recursively from those of its
parents as stated in Proposition 1. Furthermore, Proposition 1
implies that a node should select the parent with the minimum
sum of local and aggregate prices as its relay node in the
DAG. This motivates the following distributed routing and rate
control algorithm. Each node collects the local and aggregate
prices from all its parents and selects the parent(s) with the
minimum sum of the local and aggregate prices as the relay
node(s) in the DAG. Then, each node uses (9) to calculate
its own aggregate price and then applies (8) to determine its
rate. Having determined the local rate and the outgoing link(s)
to use, a node distributes its local and aggregate prices to
its children, so that the children nodes can determine their
routes and rates. This process continues until the leaf nodes
are reached. Now, starting from the leaf nodes, each node
reports its aggregate traffic to its parents, so that the parent
nodes can have the needed information to update their local
prices. Aggregate trafficTi of node i is the total amount of
traffic generated by the descendants that goes through nodei.
Similar to the computation of the aggregate price, a node can
compute its aggregate traffic recursively using (10). The proof
of Propositions 1 and 2 can be found in the Appendix.

Proposition 1. The aggregate pricePi can be recursively
computed as

Pi =
∑

j∈Pi

wij

(

(λ
(rx)
j µj + υj) + Pj

)

(9)

Proposition 2. The aggregate trafficTi of node i can be
recursively computed as

Ti =
∑

k∈Ci

wki (rk + Tk) (10)

Figure 1 compares the convergence time of QuickFix with
the standard dual-based algorithm when a fixedπi(e) is
given. Here, QuickFix is run for a DAG of 67 nodes. The
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Algorithm 1 : QuickFix: Distributed routing, rate control
and scheduling algorithm for energy-harvesting sensor
networks based on our proposed DAG formulation

while true do1

/* Phase I: */
Each node locally adjusts the Lagrange Mulpliersµi,2

υi using Eq. (5);
The sink initiates a new iteration by broadcasting its3

aggregate price, which is0, and a new iteration
number. Non-sink (sensor) nodes wait until the
aggregate price of all the parents have been collected.
Once the aggregate price from all the parents have
been collected, select the link(s) with the minimum
aggregate price. If multiple links are selected, equally
split flows among them.;
Compute aggregate price using Eq. (9);4

Broadcast the aggregate price to the children.5

Compute the maximum rate using Eq. (8);
/* Phase II: */
Once a leaf node has determined its rate and6

outgoing links in Phase I, it reports its local rate to
its parent nodes of the selected links. Non-leaf nodes
must collect the aggregate traffic from all its children
nodes on the DAG. After that, a non-leaf node
computes aggregate traffic using Eq.(10) and report it
to all parent nodes.;
Inform MAC layer of newly selected link(s) and their7

weight(s)υi − λ
(sn)
ij µi ;

Start applying the newly computed rate and routing8

paths;
end9

(ri)

iδiδ

ri
*

U

d

uu

u

ir

Fig. 2. With our energy management scheme, instantaneous utility alternates
betweenuu andud

improvement in convergence rate with QuickFix relative to the
standard dual-based solution is apparent. However, we leave
the convergence rate analysis for future work.

V. SNAPIT: A L OCALIZED ENERGY MANAGEMENT

SCHEME FORVARIABLE REPLENISHMENTRATE

We introduce a localized scheme called SnapIt that uses the
current battery level to adapt the rate computed by QuickFix
with the objective of maintaining the finite-capacity battery at
a target level. This mechanism does not require any control
signalling between nodes. Furthermore, we observe that by
attempting to maintain the battery at a target level, the interval
(epoch) of running the QuickFix algorithm can be extended,

leading to reduced control overhead. Another approach witha
similar motivation of utilizing energy efficiently with replen-
ishing batteries is given in [24]. There, each node manages
energy to keep its duty cycle period as smooth as possible
and at the same time tries to keep the battery state close to
a certain desired level. Although we do not consider duty-
cycling in this work, SnapIt enables sensor nodes to achieve
perpetual operation.

If we denote the total size of the battery of nodei asMi,
SnapIt uses the mid point, i.e.,Mi/2 as the target battery
state. Each node takes into account the instantaneous energy
state,Bi(t), of its battery and makes slight variations on the
rate allocation in order to keep the drift towardMi/2. These
variations are small enough to guarantee a total utility close
to the optimal.

The optimal rate assignment for nodei in epoch e is
r∗i (e) = r∗i (πi(e)), provided by QuickFix by solvingP. Since
the solution toP depends onπi(e), and not the state of the bat-
tery, QuickFix is the battery-state oblivious static assignment
r∗i (e) for all times t during epoche. QuickFix is inclined to
choose the rates such that the energy conservation constraint
(3) at a node is kept active if possible. Consequently, energy
is drained at a rate, identical to the average replenishmentrate
possibly over multiple successive epochs. This leads to a high
rate of battery discharge and hence a low network utility.

SnapIt chooses the rate (and hence the transmission power),
independently at each nodei based on the current state of the
battery as follows: Fort, (e− 1)τ + 1 ≤ t ≤ eτ ,

rSnapIt
i (t) =

{

r∗i (e)− δi, Bi(t) ≤Mi/2

r∗i (e) + δi, Bi(t) > Mi/2
, (11)

for someδi > 0, which we will specify later on. Conse-
quently, the transmit cost (power) reduces byδiλ

(sn)
i if the

battery is less than half full and increases by the same amount
when it is more than half full. Each node can run SnapIt
based solely on the local battery stateBi(t) to make rate
assignments. In general, one may choose to update the rate
assignments at longer intervalsτS > 1, whereτS ≪ τ . The
algorithm is detailed as follows:

Algorithm 2 : SnapIt: Localized Energy Management

foreach τS time unitsdo1

Check out the battery stateBi(t)2

if Bi(t) ≤Mi/2 then3

rSnapIt
i (t)← r∗i (e)− δi4

else5

rSnapIt
i (t)← r∗i (e) + δi6

end7

end8

As shown in Fig. 2, the instantaneous utility associated
with SnapIt alternates betweenuu(e) = log(r∗i (e) + δi) and
ud(e) = log(r∗i (e)− δi), depending on the battery state. Due
to concavity of the log function, the average utility at epoch e
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will be lower (by Jensen’s inequality) than the optimal value
log(r∗i (e)), which can only be achieved ifMi = ∞. The
smaller the value we select forδi, the closer the average utility
of SnapIt gets tolog(r∗i (e)). However, a smallδi implies a
small drift away from the complete discharge state, and hence
a higher likelihood of complete discharge. The important
question is how to chooseδi such that, not only the average
utility approaches to the optimal value, but also the complete
discharge rate decays to 0 sufficiently fast. Next, we show
that this is possible under rather weak assumptions on the
instantaneous replenishment rateρi(t).

In particular, we assume that the asymptotic semi-invariant
log moment generating function

Λρi
(s) = lim

T→∞

1

T
log E

[

exp

(

s

∞
∑

t=1

ρi(t)

)]

(12)

of ρi(t) exists and is finite for alls ∈ (−∞, smax) for some
smax > 0. Note that this existence requires an exponential (or
faster) decay for the tail of the sample pdf ofρi(t) and it rules
out the possibility of long range dependencies in the{ρi(t)}
process. We also assume that the estimate,πi(e) used for the
average replenishment rate for each epoche is unbiased, i.e.,
πi(e) = 1

τ
E
[

∑eτ
t=(e−1)τ+1 ρi(t)

]

for all e ≥ 1.
In presenting our result, we use the following notation:an =

O(bn) if an goes to 0 at least as fast asbn, an = o(bn) if an

goes to 0 strictly faster thanbn, andan = Θ(bn) if an andbn

go to 0 at the same rate. AlsopSnapIt
i (Mi) is the probability

of complete battery discharge for nodei as a function of the
size,Mi, of its battery,ŪSnapIt

i = E
[

U(rSnapIt
i (t))

]

and Ū∗
i =

E [U(r∗i (e))] are the time average utilities achieved by SnapIt
and the optimal rate allocation with an unlimited battery size
respectively.

Theorem V.1. If the variance,σ2
ρ̃i

, var
(

1
τ

∑τ
t=1 ρi(t)

)

is
bounded and the utility function is the log function,U(·) =
log(·), then, given anyβ ≥ 1, SnapIt achievespSnapIt

i (Mi) =

O(M−β
i ) and Ū∗

i − ŪSnapIt
i = Θ

(

log Mi

Mi

)

with the choice of

δi =
βσ2

ρ̃i
log Mi

λ
(sn)
i Mi

.

Proof: See Appendix A.

This theorem shows that it is possible to have a quadratic
decay for the probability of complete battery discharge, and
at the same time achieve a utility that approaches the optimal
value (that of an unlimited energy source) approximately1 as
1/Mi. To understand the strength of this SnapIt, note that
there exists no scheme that achieves (even asymptotically)the
optimal utility with an exponential decay for the probability of
complete discharge. Very briefly, the proof has the following
sketch. By choosingδi = κ log Mi

Mi
, we show for any choice of

κ > 0, the desired scaling for the utility function is achieved.

1Note that the scaling laws given in the theorem are asymptoticin the
battery sizeMi for fixed values ofβ.

Then, by choosingκ = βσ2
ρ̃i

/λ
(sn)
i , we prove that we can

achieve the desired quadratic decay for the probability of
complete discharge.

An extensive performance analysis of SnapIt is given in
Section VI along with some comparisons to the static scheme
that assigns a rate, fixed at the optimal valuer∗i (e) during the
entire epoche. As we shall illustrate, in many scenarios, the
dynamic scheme significantly reduces the battery discharge
rate, and consequently increases the overall utility consider-
ably.

VI. EVALUATION

In this section, we evaluate QuickFix/SnapIt and compare
it with IFRC [14] using TOSSIM 2.0 [7]. The parameters
used in the simulations are listed in Table II. We build the
recharging profiles of the nodes using the real solar radiation
measurements collected from the Baseline Measurement Sys-
tem at the National Renewable Energy Laboratory [25]. The
data set used is Global 40-South Licor, which measures the
solar resource for collectors tilted 40 degrees from horizontal
and optimized for year-round performance. Unless explicitly
specified, we use the profile of a sunny day (Feb. 1st 2009).
The data is appropriately scaled to create a recharging profile
for a solar panel with a small dimension (37mm×37mm). The
battery capacity of sensor nodes is assumed to be2100mAh.
Throughout the evaluation, we focus on the performance
measures during the daytime because the energy harvesting
rate is zero at night. However, based on the application’s
minimum sampling rate requirement, one can determine the
minimum battery level that can support the minimum sampling
rate at night and the SnapIt algorithm will maintain the battery
at that level to ensure the network remains active during the
night time. It should also be noted that although we did not
consider the energy cost for signaling in our formulation, we
did take that into account in the simulations. In the remaining
section we compare our algorithms with the instantaneous
optimum computed using MATLAB in each epoch; contrast
it with a backpressure-based algorithm (IFRC); and, evaluate
the sensitivity of the results with respect to the parameterδ.

A. QuickFix, SnapIt and Instantaneous Optimum

We first demonstrate the operation of SnapIt using a small
6-node network which has three levels. Node 0, at the first
level, is the sink. Node 1 and node 2 are at the second level
and they are the immediate children nodes of the sink. Nodes
3, 4 and 5 are at the third level. Nodes 3 and 5 have only
one parent (nodes 1 and 2, respectively) and node 4 has two
parents (both node 1 and node 2). In this set of simulations,
we use the same recharging profile for all the sensor nodes.
The performance metric include the network utility, the sum
of data rates, the cumulative downtime of sensor nodes, and
the cumulative battery full time. The network utility and the
sum of data rates are computed based on the packet reception
rates at the sink. The sum of data rates is used as one of
the metrics because the utility function is in the logarithmic
scale and has a small slope. The latter metric makes it easier
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to visualize the difference in performance between different
solutions, especially at higher data rates.

It can be seen in Figures 3(a), 3(b), 4(a) and 4(b) that the
network utility and the sum rates observed at the sink are close
to the optimum no matter whether SnapIt is used or not (the
optimum is computed using Matlab without considering the
battery levels of the sensor nodes). However, if the battery
level is high (above the target level), SnapIt will exploit the
excessive energy in the battery and increase the rates byδ.
This benefit is especially observable during 6-8 AM in Figure
4(a).

In Figure 3(c), we observe the cumulative downtime of
nodes 1 and 2 when the initial battery levels of all the sensor
nodes are at a very low level (0.15% of the full capacity). We
only observe nodes 1 and 2 because these are the only potential
bottleneck nodes in the network. Without using SnapIt, the
cumulative downtime for both nodes are high. This is due to
the fact that the QuickFix algorithm only runs coarsely (one
iteration every5 minutes), and thus its computed rates can be
inaccurate and even infeasible. The SnapIt algorithm mitigates
this problem by reducing the rates when the battery level is
below the target level. Therefore, the cumulative downtimefor
both nodes are zero (thus invisible in Figure 3(c)) when SnapIt
is used.

In contrast to Figure 3(c), we observe the cumulative battery
full time when the initial battery levels of all the sensor nodes
are at a very high level (99% of the full capacity). It can be
observed that, without using SnapIt, the batteries of nodes1
and 2 spend more time in the full state. This causes nodes
1 and 2 to miss the opportunities to harvest more energy. In
contrast, if SnapIt is used, both nodes 1 and 2 spend less time
in full battery state, and the additional harvested energy is
leveraged to increase the network utility.

TABLE II
PARAMETERS

Parameter λ
(sn)
i λ

(tx)
ij λ

(rx)
i α1 & α2 δ

Value 105µW 63mW 69mW 0.001 0.1 × ri

B. QuickFix/SnapIt v.s. Backpressure-based Protocol

Next, we compare our protocol with a backpressure-based
protocol, IFRC [14], which aimes to achieve maxmin fairness
in WSNs [16][14]. IFRC uses explicit signaling embedded
in every packet to share a node’s congestion state with the
neighbors. Rate adaptation is done by using AIMD. Several
queue thresholds are defined in IFRC. A node will reduce
its rate more aggressively as a higher queue threshold is
reached. Since IFRC does not consider battery state and energy
replenishment, we similarly defined several thresholds for
battery levels and energy harvesting rates so that all the nodes
can maintain the battery at half of the full capacity. We use
a tree instead of a DAG when performing the comparison as
IFRC assumes a tree network. The tree is constructed using
67 nodes based on Motelab’s [26] topology. We used the
recharging profiles of a sunny day (Feb. 1st 2009) as well
as that of a cloudy day (Feb. 2nd 2009) for the evaluation.

The initial battery level for all nodes is set to50% of the full
capacity. Figure 5 clearly shows that QuickFix can achieve
both higher network utility and sum of the data rates. The sum
of rates is42% higher than IFRC on average. The main reason
is as follows. In order to maintain the battery at50%, IFRC
halves the rate of a sensor and that of all its descendants if the
battery drops below50%. In contrast, SnapIt slightly reduces
the rate by a small amount,δ. It is possible to improve the
performance of IFRC, but a smarter rate control algorithm is
needed.

C. Effect of differentδ

Larger δ can result in a higher network utility when there
is extra energy in the battery. However, largeδ has a negative
impact on the battery levels as it can cause a node and its
ancestors to consume the energy at a higher rate. We manually
select three nodes and observe their battery levels over time.
The three selected nodesA, B, andC are 1-hop, 3-hops,6-
hops away from the sink respectively. And nodesA andB are
on a path from nodeC to the sink, i.e. both nodeA andB are
ancestors of nodeC. Figure 6 shows that the performance of
our solution is not very sensitive to the exact value ofδ if δ
is small. However, high values ofδ (= ri) should be avoided
due to the consequent high fluctuations in the battery that also
increases the chances of a node to run out of battery.

VII. CONCLUSIONS ANDFUTURE WORK

Achieving proportional fairness in energy harvesting sensor
networks is a challenging task as the energy replenishment
rate varies over time. In this paper, we showed that our
proposed QuickFix algorithm can be applied to track the
instantaneous optimum in such a dynamic environment and
the SnapIt algorithm successfully maintains the battery at
the desired target level. Our evaluations show that the two
algorithms, when working together, can increase the total data
rate at the sink by42% on average when compared to IFRC,
while simultaneously improving the network utility. As part
of the future work, we plan to generalize our solution to
arbitrary graphs rather than a DAG. We will also explore
dynamic adaptation of our parameterδ for faster operation,
while continuing to avoid battery overflows and underflows.
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significantly reducing the battery downtime.
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Fig. 5. QuickFix vs. IFRC (67-node network, initial battery= 50%). Recharging profile of nodes are obtained by varying a base profile by an amount
randomly selected in the [-5%,5%] region.
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APPENDIX

Recall that rate allocation with SnapIt is described as
follows: for t, (e− 1)τQ + 1 ≤ t ≤ eτQ,

rSnapIt
i (t) =

{

r∗i (e)− δi, Bi(t) ≤Mi/2

r∗i (e) + δi, Bi(t) > Mi/2
,

for a certainδi > 0 andr∗i (e) is the optimal sampling rate for
epoche.

Let us define the processes ρ̃i(e) ,
1

τQ

∑eτQ

t=(e−1)τQ+1[ρi(t)−πi(e)] andD̃−
i (e) , ρ̃i(e)+δiλ

(sn)
i .

Note thatD−
i (e) represents the average drift of the battery

of node i in epoche in which Bi(t) < Mi/2 for all t and
the energy conservation constraint (3) is active. This implies
that r∗i (e) = λ

(sn)
i πi(e), i.e., the battery is drained at the

rate it is being replenished in epoche. We can write the

semi-invariant asymptotic log moment generating functionof
process{ρ̃i(e)} as:

Λρ̃i
(s) = lim

τA→∞

1

τA

log E

[

exp

(

s

τA
∑

e=1

ρ̃i(e)

)]

.

Likewise for process{D−
i (e)}, the same function can e written

asΛD−

i
(s) = Λρ̃i

(s) + sδiλ
(sn)
i .

Let so
i be the unique negative root ofΛD−

i
(s). Note that, as

Mi → ∞ (i.e., δi → 0), so
i goes to 0. To prove the theorem,

we first prove the following lemma.

Lemma A.1. The variance of̃ρi(t), σ2
ρ̃i

= Λ′′
ρ̃i

(0) satisfies

dso
i

dδi

∣

∣

∣

∣

δi=0

=
−2λ

(sn)
i

σ2
ρ̃i

. (13)

Proof: Let Λ
(n)

D−

i

(0) =
dnΛ

D
−

i

(s)

dsn

∣

∣

∣

∣

s=0

. The expansion of

ΛD−

i
(s) arounds = 0 leads to

0 = ΛD−

i
(so

i ) =

∞
∑

n=1

Λ
(n)

D−

i

(0)
(so

i )
n

n!

= δiλ
(sn)
i so

i +

∞
∑

n=1

Λ
(n)
ρ̃i

(0)
(so

i )
n

n!
. (14)

Since we assume that the replenishment rate estimatorπi(e)
is unbiased, E[ρ̃i(e)] = 0 for all e ≥ 1 and (14) reduces to:

∞
∑

n=2

Λ
(n)
ρ̃i

(0)
(so

i )
n−1

n!
= −δiλ

(sn)
i . (15)

Differentiating both sides with respect toδi, (15) becomes

dso
i

dδi

∞
∑

n=2

Λ
(n)
ρ̃i

(0)
(n− 1)(so

i )
n−2

n!
= −λ

(sn)
i .

For δi = 0, so
i = 0 and the above equality becomes

dso
i

dδi

∣

∣

∣

∣

δi=0

= −
2λ

(sn)
i

σ2
ρ̃i

⇒ so
i = −

2λ
(sn)
i

σ2
ρ̃i

δi + o(δi).

Proof of Theorem V.1: Here we prove that our scheme
satisfies the scaling properties given in Theorem V.1. By
choosingδi = κ

log Mi
Mi

, we first show that the asymptotic scaling
of p

SnapIt
i (Mi) with Mi is of the form p

SnapIt
i (Mi) = O(M−β

i ). For
nodei, let us consider the worst case scenario, in which rate
rSnapIt
i (t) is such that the energy is consumed at the rate it

is being replenished, i.e., energy conservation constraint (3)
is active at all times. The probability of complete discharge
in this scenario constitutes an upper bound for the actual
probability of complete discharge. The driftD−

i (e) for this
scenario is treated in the above lemma. Applying Wald’s
identity [27] for D−

i (e), we can write:

pSnapIt
i (Mi) = O

(

exp

(

so
i

Mi

2

))

.
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By Lemma A.1, we have

so
i = −

2λ
(sn)
i

σ2
ρ̃i

δi +o(δi) = −
2λ

(sn)
i

σ2
ρ̃i

κ log Mi

Mi

+o

(

log Mi

Mi

)

.

Choosing κ = βσ2
ρ̃i

/λ
(sn)
i , we prove the desired result

pSnapIt
i (Mi) =O(M−β

i ).

Next we show that for any choice ofκ, our scheme achieves
an average utilitȳUSnapIt

i such thatŪ∗
i −ŪSnapIt

i = Θ
(

log Mi

Mi

)

.
Let us focus on a single epoche initially. First, note that,
instantaneous utilityU(rSnapIt

i (t)) = 0 if Bi(t) = 0 (i.e.,
with probability O(M−β

i )), since r
SnapIt
i (t) = 0. Otherwise, as

illustrated in Fig. 2, the utility alternates betweenuu , uu(e)
and ud , ud(e) during epoche. With a first order Taylor
series expansion of the utility functionU(rSnapIt

i (t)) = log(rSnapIt
i (t))

aroundr∗i , r∗i (e), we have

uu = log(r∗i ) +
δi

r∗i
+ o(δi)

and

ud = log(r∗i )−
δi

r∗i
+ o(δi).

Let γ−
i , γ−

i (e) be the fraction of time that battery state
Bi(t) < Mi/2. Then,

ŪSnapIt
i = E

[

γ−
i ud + (1− γ−

i )uu

]

(

1− pSnapIt
i (Mi)

)

= log(r∗i ) + E
[

1− 2γ−
i

] 1

r∗i

(

κ log Mi

Mi

)

+ o

(

log Mi

Mi

)

,

(16)

where (16) follows sinceκ is chosen such thatβ ≥ 1. Thus,
sincer∗i > 0 for all i and Ū∗

i = E [log(r∗i (e))], we can write

Ū∗
i − ŪSnapIt

i = Θ
(

log Mi

Mi

)

.

A. Proof of Proposition 1

Proof:

Pi =
X

j∈Ai

(λrµj + υj)zij(w)

=
X

k∈Pi

(λrµk + υk)zik(w) +
X

ℓ∈Ai\Pi

(λrµℓ + υℓ)ziℓ(w) (17)

=
X

k∈Pi

(λrµk + υk)

„

wik +
X

m∈Pi\{k}

wimzmk(w)

«

+
X

ℓ∈Ai\Pi

(λrµℓ + υℓ)ziℓ(w) (18)

=
X

k∈Pi

wik(λrµk + υk)

+
X

k∈Pi

(λrµk + υk)

„

X

m∈Pi\{k}

wimzmk(w)

«

+
X

ℓ∈Ai\Pi

(λrµℓ + υℓ)ziℓ(w) (19)

=
X

k∈Pi

wik(λrµk + υk)+

+
X

k∈Pi

wik

„

X

m∈Pi\{k}

(λrµm + υm)zkm(w)

«

+
X

ℓ∈Ai\Pi

(λrµℓ + υℓ)ziℓ(w) (20)

=
X

k∈Pi

wik(λrµk + υk)

+
X

k∈Pi

wik

„

X

m∈Pi\{k}

(λrµm + υm)zkm(w)

«

+
X

ℓ∈Ai\Pi

(λrµℓ + υℓ)

„

X

k∈Pi

wikzkℓ(w)

«

(21)

=
X

k∈Pi

wik(λrµk + υk)

+
X

k∈Pi

wik

„

X

m∈Pi\{k}

(λrµm + υm)zkm(w)

«

+
X

k∈Pi

wik

„

X

ℓ∈Ai\Pi

(λrµℓ + υℓ)zkℓ(w)

«

(22)

=
X

k∈Pi

wik

„

(λrµk + υk)

+
X

m∈Pi\{k}

(λrµm + υm)zkm(w)

+
X

ℓ∈Ai\Pi

(λrµℓ + υℓ)zkℓ(w)

«

(23)

=
X

k∈Pi

wik

„

(λrµk + υk) + Pk

«

(24)

(25)

(17) is true becauseAi = Pi ∪ Ai\Pi. (18) follows the
definition of zik. (19) simply separates the inner sum from
the outer sum. (20) exchanges the sum and applied change of
variables. (21) expandsziℓ by using its definition. (23) groups
the second and the third sum. Finally, (24) follows because
Ak ⊆ Pi\{k} ∪ Ai\Pi and if a nodem ∈ Pi\{k} ∪ Ai\Pi

andm /∈ Ak, zkm = 0. Proposition 2 can be similarly proved.


