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Abstract

Modern high performance computing systems are being increasingly deployed in a hierar-

chical fashion with multi-core computing platforms forming the base of the hierarchy. These

systems are usually comprised of multiple racks, with each rack consisting of a finite number

of chassis, with each chassis having multiple compute nodes or blades, based on multi-core

architectures. The networks are also hierarchical with multiple levels of switches. Message

exchange operations between processes that belong to different racks involve multiple hops

across different switches and this directly affects the performance of collective operations. In

this paper, we take on the challenges involved in detecting the topology of large scale Infini-

Band clusters and leveraging this knowledge to design efficient topology aware algorithms for

collective operations. We also propose a communication model to analyze the communication

costs involved in collective operations on large scale supercomputing systems. We have ana-

lyzed the performance characteristics of two collectives, MPI Gather and MPI Scatter on such

systems and we have proposed topology aware algorithms for these operations. Our experi-

mental results have shown that the proposed algorithms can improve the performance of these

collective operations by almost 54 % at the micro-benchmark level.

1 Introduction
Large scale supercomputing systems have witnessed significant growth in the recent history and

some of them are poised to break the exaflop barrier in the coming years. At the heart of these

systems are compute nodes based on modern multi-core architectures and high speed networks. As

shown in Figure 1, clusters such as the TACC Ranger [24] and the Roadrunner [13] have thousands

of compute cores and are typically comprised of hundreds of racks, with each rack consisting of

a few chassis, with each chassis including tens of compute-blades, with each blade consisting

multiple compute cores. These blades are coupled together through high-speed networks such as

InfiniBand [9], 10GigE [8] or other proprietary networks, through multiple stages of switches.

The core density in compute nodes is constantly on the rise and this trend looks promising with

upcoming architectures such as the Intel Nehalem-EX [10] and the Magny-Cours [2] from AMD,

which will include 8-12 cores per socket. These systems offer a vast amount of computing power

and resources to application developers and are allowing scientific applications to scale out to

several thousands of processes.

Most of these systems typically operate at near-peak load and handle thousands of requests that

are submitted through a batch-submission system. It is necessary to schedule the resources in a fair

manner across several users and softwares such as the Sun Grid Engine (SGE) [23] and STORM

[6] are used to address this requirement. Such schedulers typically aim to lower the amount of
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time various jobs spend in the submission queue and try to keep the overall system as busy as

possible. As we have shown in Section 2, processor allocation patterns can affect the time required

to perform a simple zero-byte point-to-point operation on a large scale cluster by almost 80 %.

Also, such systems allow several jobs to concurrently run on various nodes of the system and they

all contend for the network. This limits the effective network bandwidth available per application.

The effects of network contention become more severe when the processes are across various

racks in the system. This significantly affects the performance of collective message exchange

operations and directly affects the application run-times. But, in real-world systems, guaranteeing

contiguous processor allocation places a higher burden on the job scheduler and would also imply

that jobs would be spending a considerably higher amount of time in the submission queues, which

may not be acceptable. This leads to the following open challenge: Can collective algorithms be

designed to be aware of network topology and to be resilient to network traffic to deliver optimal

performance to applications.

In this paper, we take on the following important design challenges :

• How do we efficiently discover the topology of a large scale InfiniBand cluster?

• What are the challenges involved in designing efficient collective algorithms that are aware

of the network topology?

• Can we derive communication cost models for collective operations on large-scale systems

with several levels of hierarchies?

• What is the effect of the background traffic on the performance of collective operations?

Can we leverage the topology information to design algorithms that are resilient to network

contention?

In this paper, we propose topology aware algorithms for two collective operations -MPI Scatter

and MPI Gather. We also derive communication models to account for the costs associated with

various levels of hierarchy that are found in large scale supercomputing systems. The rest of the

paper is organized as follows : In Section 2, we speak about the topology of large-scale clusters,

its impact on communication costs and collective algorithms in MVAPICH2. We discuss about

InfiniBand topology discovery and indicate the various sub-communicators we create to reflect the

topology in Section 3. In Section 4, we propose topology aware algorithms for Scatter and Gather

operations. In Section 5, we give experimental results for our proposed algorithms. We list the

relevant research contributions in Section 6.

2 Background
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Figure 1: A Typical Topology

In this section, we give an overview of the net-

work architectures of large scale supercomputing

systems, InfiniBand, the effect of topology on com-

munication costs and collective message exchange

algorithms used in MVAPICH2.

2.1 Network Architectures

Large scale supercomputers such as the TACC

Ranger have tens of thousands of computing cores.

These cores are organized hierarchically across dif-

ferent racks, with each rack consists of a few chassis, each chassis includes tens of compute blades.
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Each blade is based on a suitable multi-core architecture. Processes that belong to different blades,

but within the same chassis are connected to one part of the leaf-switch and can communicate

without incurring any hops within the leaf-switch. Processes that belong to the same rack, but

different chassis will be connected to the same leaf-switch, but any communication will incur an

additional hop within the leaf switch. Communication between processes that belong to different

racks involve multiple hops across the leaf-level and the spine switches and will incur higher la-

tency. In Figure 1, we give a high-level view of the topology of modern large-scale clusters. In

Table 2.1, we include MVAPICH latency for communication between 2 processes that belong to

different parts of the cluster. We can see a difference of almost 81% between processors that are

within the same chassis and those that belong to different racks.

Process Location Number of Hops MPI Latency (us)

Intra-Rack Intra-Chassis 0 Hops in Leaf Switch 1.57

Inter-Chassis 1 Hop in Leaf Switch 2.04

Inter-Rack 3 Hops Across Spine Switch 2.45

5 Hops Across Spine Switch 2.85

Table 1: MVAPICH Communication Performance Across Varying Levels of Switch Topology on

TACC Ranger

2.2 InfiniBand

InfiniBand is a processor and I/O interconnect that has become popular in the high performance

computing area and being used increasingly to connect commodity clusters. Almost 36% of the

clusters in the Top500 supercomputers are currently using InfiniBand as the interconnect.

2.3 Collective Operations in MPI-2

The MPI standard [14] specifies various types of collective operations such as All-to-All, All-to-

One,One-to-All andOther. Collective operations belonging to the types All-to-One andOne-to-All

assign one process as the root and involve a message exchange pattern in which the root either acts

as the source or the sink. Personalized collective operations such as MPI Scatter, MPI Gather and

MPI Alltoall involve each process sending and/or receiving a distinct message. Operations of this

type can benefit with networks that offer higher bandwidths. In this paper, we have studied the

performance of MPI Scatter and MPI Gather collective operations, in-depth.

2.4 Collective Message Passing Algorithms used in MVAPICH2

In MVAPICH2, we use optimized shared-memory based algorithms to optimize several collective

operations. However, these optimizations are limited to identifying and grouping processes that are

within the same compute node and we have no knowledge of the topology at the switch-level. Cur-

rently, for each communicator, we create an internal shared-memory communicator to contain all

the processes that are within the same compute node and share the same address space. We assign

one process per compute node as the node-level leader process and create a node-level-leader com-

municator object to include all the node-level leader processes. For collectives such as MPI Bcast,

MPI Reduce, MPI Allreduce and MPI Barrier, we schedule message exchange operations across

these communicators to achieve lower latencies. These methods have two significant advantages :

• The shared-memory space is leveraged for exchanging messages between processes that are

within the same node. This can lead to a higher degree of concurrency, than compared to

exchanging messages through point-to-point calls, as shown in [1, 21, 11]
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• The intra-node stages of the communication operations can happen without any data move-

ment across the network and can also minimize network contention

3 Determining and Using the Topology Information for Infini-

Band Networks
In this section, we briefly describe the InfiniBand related tools we used to gather information

about our cluster. ibnetdiscover is one of the tools supported by the InfiniBand standard and

it provides information about LID mapping across all the active ports in the switches and the

network interfaces. It gives us detailed information of the connectivity between the hosts and the

chassis to the leaf-switches and between switches. We have leveraged this information to create

sub-communicators to group various processes according to the topology of the system. During

the initialization phase of the MPI library, we create intra-switch communicators to include all the

processes that are connected to the same leaf-switch. We also create an intra-chassis communicator

to group all processes that belong to the same chassis. We assign one process in each intra-chassis

communicator as the chassis-leader process, and one process in the intra-switch communicator as

the switch-leader process. We then create switch-leader and chassis-leader communicators that

include the respective leader processes. In Section 4, we have used these sub-communicators to

design topology aware algorithms.

4 Designing Topology Aware Collective Algorithms
In Section 2, we illustrated the impact of topology on small message latency between a pair of

processes. Collective operations involve many processes exchanging messages and are sensitive to

network noise [7]. Since production environments allow several applications to run concurrently,

the effective bandwidth available per application also plays a key role in determining the time

consumed for a collective operation. In this section, we propose topology-aware algorithms for

optimizing the performance of collective operations on large scale computing systems.

In [25], authors proposed models to predict the costs of various collective algorithms for small

scale clusters with compute nodes comprising of a single core. In this paper, we extend these mod-

els to incorporate the communication costs associated with various levels of hierarchy in modern

large scale clusters. Let ts-intra-node be the start-up cost associated with an intra-node message
exchange operation and tw-intra-node be the cost involved in sending a word of data to a peer pro-
cess within the same node. Similarly, ts-intra-switch and tw-intra-switch are the costs associated
with a message exchange operation between processes that are connected to the same leaf switch

and ts-inter-switch and tw-inter-switch are the costs involved for an inter-switch transfer operation.
Owing to the hierarchy of the system, the following is true :

ts-intra-node < ts-intra-switch < ts-inter-switch

tw-intra-node < tw-inter-switch < tw-inter-switch

It is to be noted that the inter-switch costs depends on the number of switch-hops involved in

the message exchange operation. Also, we assume that the contention involved in intra-node and

intra-switch operations are insignificant when compared to that of inter-switch exchanges.

4.1 MPI Gather and MPI Scatter - Default algorithms

As explained in [25], MPI implementations such as MPICH2 [15], Open-MPI [18] and MVA-

PICH2 [16] use tree-based algorithms to implement these operations. These algorithms were pro-

posed and optimized for conventional single-core systems. However, on large scale production
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systems, it is necessary to design efficient topology aware algorithms to lower the communica-

tion costs. Consider the case in which an MPI Gather operation is being invoked with a message

size of N bytes, with a group of P processes, that are distributed in some manner across R racks.

For simplicity, we assume that the root of the operation is also one of the rack-level leaders. The

inter-rack communication can involve more than one inter-switch exchange operation. Each pro-

cess in the binomial tree does a finite number of inter-switch operations. Hence, the cost of the

entire operation is dominated by the number of inter-switch operations, the costs associated with

each inter-switch exchange and the network contention. Consider (α) to be the overhead intro-
duced by the contention at various levels of switches in the system. The cost involved in binomial

tree based approaches with P processes on traditional single-core systems could be expressed in

terms of log(P). Let us introduce three variables C1, C2 and C3 to account for the number of intra-

node, intra-switch and inter-switch operations, such that, C3 <= R and C1 + C2 + C3 = log(P).

Their values also depend on the distribution of processes across different racks. We also introduce

three positve variables γ, β and δ to indicate the fact that the tw componenents of T binomial are
obtained by adding up the individual costs of various intra-node, intra-switch and inter-switch op-

erations, respectively. On extending the models presented in [25], we can express the cost of an

MPI Gather operation as

Tbinomial =(ts-intra-node ∗ C1 + ts-intra-switch ∗ C2 + α ∗ ts-inter-switch ∗ C3)

+ tw-intra-node ∗ (C1) ∗ (N ∗ γ) + tw-intra-switch ∗ (C2) ∗ (N ∗ β)

+ α ∗ tw-inter-switch ∗ (C3) ∗ (N ∗ δ)

Since the costs involved in inter-switch operations dominate the cost of the entire operation,

the following is true

Tbinomial > (α ∗ ts-inter-switch ∗ C3) + (α ∗ (C3) ∗ N ∗ tw-inter-switch ∗ δ)

4.2 MPI Gather and MPI Scatter - Topology Aware algorithms

From the above cost model, we can observe that if we schedule the inter-switch exchanges in an

optimal manner, we can minimize the costs incurred due to the effects of network contention and

also the costs associated with making multiple hops across various levels of the switches.

As explained in Section 3, we create sub-communicators to reflect the topology of the system.

Creation of these sub-communicators allows us to perform the entire collective operation efficiently

in a recursive manner by minimizing the number of inter-switch operations and lowering both the

ts and tw components of the costs of collective operations which result in better performance for

both small and large messages.

• Each of the rack-leader process performs an intra-switch gather operation. This phase of the

algorithm does not involve any inter-switch exchange operation.

• Once the rack-leaders have completed the first phase, the data is gathered at the root through

an inter-switch gather operation performed over the R rack-leader processes

Since MPI Gather and MPI Scatter are symmetric operations, we have designed a similar

topology aware algorithm for the MPI Scatter operation as well.

Let Ttopo be the cost of the proposed topology-aware algorithm. We can say

Ttopo > (α ∗ ts-inter-switch ∗ log(R)) + (α ∗ (1 − 1/R))/(M ∗ tw-inter-switch)

We would like to point out that with the new algorithm the number of inter-switch exchanges

can be minimized to log(R) and this plays a key-role in minimizing the overall performance by
5



improving both the latency and the bandwidth components of the operation. Also, the messages

exchanged between the rack-leader processes are the aggregated messages of size C2*N, which

were obtained through an intra-switch gather operations at the rack-leader processes. If we com-

pare the costs models for T topo and T binomial, we expect the performance benefits to be of

the order of O(R/log(R)) for small messages, and to be of the order of O((R*C3)/R-1) for larger

messages.

5 Experimental Evaluation
In this section, we briefly describe our experimental test-bed. We also provide experimental results

comparing the default algorithms and the proposed algorithms on our cluster.

We have used three InfiniBand DDR switches, Switches A,B and C to create a tree topology.

Switch A is connected to 8 nodes based on the quad-core, quad-socket AMD Barcelona architec-

ture and Switch B is connected to 32 nodes based on the quad-core, dual-socket Intel Clovertown

architecture. Switches A and B are connected to Switch C with two InifniBand DDR links each.

All nodes have ConnectX DDR HCA’s. For our experiments, we use 4 nodes(64 processes) from

Switch A and 29 nodes(232 processes) from Switch B.

As indicated earlier, it is important to study the impact of background traffic on the performance

of collective algorithms. We first measure the average time required to complete these collective

operations for various message sizes when the system is quiet. Next, we run the same benchmark in

the presence of a background MPI job involving a separate set of 96 processes doing MPI Alltoall

operations in a continuous loop. We have modified the Alltoall algorithm to perform only the

inter-switch exchanges to maintain a constant traffic over the switches. We vary the buffer size

in the Alltoall job to study the impact of network congestion on the performance of the collective

operations.
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Figure 2: Gather latency for 296 processes: (a) Effect of background traffic on MPI Gather and

(b) Default Vs Topology Aware MPI Gather algorithms
In Figure 2 (a), we compare the performance of the default binomial tree algorithm forMPI Gather

under quiet and busy conditions. We can see that this algorithm is quite sensitive to the presence

of background traffic. When the background job is run with 4MB messages, we see a performance

degradation of almost 21% for large messages. In Figure 2 (b), we compare the performance of the

default algorithm with the proposed topology aware algorithm under both quiet and busy condi-

tions. We can infer that the proposed algorithm delivers an improvement of up to 50 % even when

the network was busy.

Similarly, in Figure 3 (a), we compare the performance of the default binomial tree algorithm

for MPI Scatter under quiet and busy conditions. We observe that the presence of background

traffic has resulted in a smaller overhead in this operation, than MPI Gather. In Figure 3 (b), we

compare the performance of the default algorithm with the proposed topology aware algorithm
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under both quiet and busy conditions. We can infer that the proposed topology aware algorithm

performs almost 23% better than the default algorithm when the network is quiet.
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Figure 3: Scatter latency for 296 processes: (a) Effect of background traffic on MPI Scatter and

(b) Default Vs Topology Aware MPI Scatter algorithms

6 Related Work
The concept of gathering topology information and leveraging this knowledge to design better al-

gorithms has been applied to grid based systems. Several researchers have explored the potential

performance benefits of creating a multi-level communication framework to optimize the perfor-

mance of parallel applications in grid environments [3, 5, 4, 17]. In [12], authors have proposed

a tool to automatically detect the topology of switched clusters for Ethernet based clusters. In

[20], authors have proposed an optimized algorithm for MPI Allreduce operation that utilizes the

network bandwidth in an efficient manner. However, these studies mostly focused on grid based

systems that are loosely coupled through Ethernet. In our work, we have proposed topology-aware

collective algorithms for large scale supercomputing systems that are tightly coupled through inter-

connects such as InfiniBand. Resource management is again a well studied area in grids, [19].

Authors have also explored optimizing collectives on a BlueGene system based on SMP nodes

connected in a 3D torus architecture in [22]. However, in our study, we have explored the effects

of topology across multiple chassis, racks and across multiple levels of switches. In [6], authors

have proposed an efficient resource manager for cluster based systems. But to the best of our

knowledge, there is no resource manager that allocates compute nodes in a contiguous manner, at

the same time keeping the overall system utilization high.

7 Conclusion
The scale at which supercomputers are being deployed continues to increase each year. These clus-

ters offer a vast amount of computing resources to application developers. However, it is necessary

to design efficient software stacks that can fully leverage the performance benefits offered by such

systems to allow applications to achieve good scalability. In this paper, we have explored the need

for detecting the topology of large scale InfiniBand clusters and we have leveraged this knowledge

to design efficient topology aware collective algorithms for Scatter and Gather collective oper-

ations. We have proposed a communication model to theoretically analyze the performance of

collective operations on large-scale clusters. We have compared the performance of our proposed

topology aware algorithms against the default binomial tree approaches and we have observed

benefits of almost 54 % with micro-benchmarks. In future, we plan on designing an interface to

automatically detect the topology of InfiniBand clusters at job launch time. We also plan to de-

sign topology aware algorithms for other collective operations such as the Alltoall Personalized

Exchange, Allreduce and Broadcast operations and study their impact on real-world applications.
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