
An MPI-Stream Hybrid Programming Model for Computational Clusters

Emilio P. Mancini, Gregory Marsh, and Dhabaleswar K. Panda
Department of Computer Science and Engineering,

The Ohio State University
{mancini, marshgr, panda}@cse.ohio-state.edu

Abstract—The MPI programming model hides network type
and topology from developers, but also allows them to seamlessly
distribute a computational job across multiple cores in both an
intra and inter node fashion. This provides for high locality
performance when the cores are either on the same node or on
nodes closely connected by the same network type. The streaming
model splits a computational job into a linear chain of decoupled
units. This decoupling allows the placement of job units on
optimal nodes according to network topology. Furthermore, the
links between these units can be of varying protocols when the
application is distributed across a heterogeneous network.

In this paper we study how to integrate the MPI and Stream
programming models in order to exploit network locality and
topology. We present a hybrid MPI-Stream framework that
aims to take advantage of each model’s strengths. We test
our framework with a financial application. This application
simulates an electronic market for a single financial instrument. A
stream of buy and sell orders is fed into a price matching engine.
The matching engine creates a stream of order confirmations,
trade confirmations, and quotes based on its attempts to match
buyers with sellers. Our results show that the hybrid MPI-
Stream framwork can deliver a 58% performance improvement
at certain order transmission rates. 1

I. INTRODUCTION

Achieving optimal performance in a parallel application
is a hard task when underlying topology becomes complex,
and the network parameters can affect overall performance in
unpredictable ways. The increased number of nodes in mod-
ern computational systems introduces implicit heterogeneity,
for example, when using switch hierarchies. In these cases,
some links may have higher latency and lower bandwidth,
because the data crosses a different number of switches. MPI
implementations are the most common frameworks used for
parallel programming, but they hide the system topology [1].
Therefore, exploiting the locality can improve the performance
of a parallel MPI program.

In some cases, users want to exploit clusters of clusters, so
that one MPI program can spawn across multiple clusters. Of-
ten this architecture uses a high performance network for intra-
cluster communication, and low performance communication
for inter-cluster data transfers. A flat model such as MPI with
heavy coupled tasks can only exploit such configurations with
difficulty. Stream programming models, instead, use indepen-
dent computational units, that can easily exploit heterogeneous
networks. However most of the algorithms commonly used in

1This research is supported in part by U.S. Department of Energy
grants #DE-FC02-06ER25749 and #DE-FC02-06ER25755; National Science
Foundation grants #CNS-0403342, #CCF-0702675, #CCF-0833169, #CCF-
0916302 and #OCI-0926691; grant from Wright Center for Innovation
#WCI04-010-OSU-0; grants from Intel, Mellanox, Cisco, QLogic, and Sun
Microsystems; Equipment donations from Intel, Mellanox, AMD, Advanced
Clustering, Appro, QLogic, and Sun Microsystems.

parallel programming need to be reformulated for stream use
[2].

In this paper, we propose a hybrid approach that combines
the Stream model to build an application across heterogeneous
communication systems, and an MPI model to exploit heavy
local computation on computational clusters. We designed
a framework with a minimal set of primitives to support
distributed hybrid Stream/MPI programming.

One of the most studied areas of application of the stream
paradigm is the financial area. We tested the proposed frame-
work with a financial application comparing two models:
the first with a pure MPI model, the second with a hy-
brid Stream/MPI paradigm. The results show that the lighter
overhead and data structures in the stream portion of the
hybrid model deliver a 58% performance improvement in
some scenarios as compared to the pure MPI model.

In this paper, in Section II we present the stream and
MPI programming models. Then in Section III we propose
a way to mix the two models. In Section IV we introduce
a new streaming framework, and in Section V we apply it
to a financial application in order to compare a pure MPI
implementation with a hybrid MPI-Stream architecture. In
Section VI we present a performance evaluation with the
application. After a review of related work, in Section VIII
we draw conclusions and outline future work.

II. THE STREAM AND MPI PROGRAMMING MODELS

The Message Passing Interface (MPI) is a specification that
describes a parallel programming model. MPI is the de-facto
standard in parallel programming, providing a well defined
interface and several efficient implementations. It explains how
several processes can move data between their address spaces
using communication operations, such as, point-to-point, col-
lective, or one-sided. Besides this, MPI offers other interesting
features like Dynamic Process Management, parallel IO, and
new features are continuously proposed [1].

Every MPI program is a set of autonomous processes
that do not run necessarily the same code; they elaborate
and exchange data, through message passing, following the
Multiple Instructions Multiple Data (MIMD) model. The
basic operations are point-to-point transactions that involve
two processes: one that initiates the data transfer with send
routines, and the other that is ready to receive incoming data
with a receive function. Collective and one-side operations
can optimize such processes in various scenarios. MPI tries to
hide the underlying network topology presenting a flat view to
the processes. While the user’s program does not know about
the hardware structure, several MPI implementations try to

exploit any knowledge they have to optimize the most complex
operations such as the collectives [3].

The Stream approach is quite different. A parallel appli-
cation using the Stream Programming Model is composed
of multiple tasks, called “kernels”, connected by point-to-
point links. These connect two successive kernels, so that
each one sends its output as input to another one. The next
kernel gathers and elaborates the data before placing it in
another stream. Therefore, the streams are an unbounded flow
of data records that link computational units. Each kernel is
independent; the only way it has to communicate is through
streams. It does not have control on arriving data; it can only
filter it and then chose to discard or send forward the results
of its computations [2], [4].

Fig. 1 shows a generic acyclic communication stream
model. The basic way to compose the kernels is the pipeline,
but more advanced schemas can use splits, joins and feedbacks.
The splits can duplicate a stream, so that successive kernels
gather the same data set, or it can divide the records so the
successive kernels take only a part of original data. In other
words, data streams can be duplicated on two physical links,
or separated so that the computational effort can be divided on
two different kernels. The join operations put different streams
in the same receive queue.

Fig. 1. Generic streams model

III. DESIGNING A HYBRID STREAM/MPI MODEL

As described in the preceding section, MPI implementations
are the ideal way to exploit strictly interconnected nodes, and
have high performance on computational clusters. But when
the topology becomes more complicated, it is harder to exploit
it in an optimal way [5].

MPI uses a flat view of its parallel virtual machine, so, for
example, the joint use of different clusters, and the access to
internal hidden nodes can be a hard and time-consuming task.
The resulting performance may not be so good, because the
presence of slow links, can reduce the overall speed due to
synchronization and collective operations involving both, fast
and slow links.

On other side, streams can easily exploit heterogeneous
networks. Because the kernels are highly independent, the
user can design the kernel chain so that it can exploit faster
machines to handle complex duties. The absence of explicit
synchronizations and the decoupling of computational units
can result in better performance when using heterogeneous
networks. If some part of the computation is particularly heavy,
the user can assign it to a parallel MPI application, rather than

to a single sequential kernel as in Fig. 2. In this way the latency
of the whole chain should be lower.

Fig. 2. The use of an MPI application as stream kernel.

When heterogeneous technologies are involved, the launch-
ing process is complex. It requires a description of the whole
system, and running and synchronization of both MPI and
sequential programs on different nodes. As described in Fig. 3,
the user runs a first level launcher, which launches sequential
tasks as new remote processes, and parallel kernels using
the standard MPI launchers. An XML file can provide all
necessary information to dynamically produce MPI hostfiles
and startup scripts. When it starts, every kernel has to call an
initialization routine, in order to build a local graph data struc-
ture that the middleware can use to direct the communication;
this graph is similar to the one shown in Fig. 1.

Every kernel, at this point, should register itself with the
middleware, so that it can run the right function on the
right machine. A different approach is to let each kernel
poll the stream autonomously without explicit middleware
management. We used the first method for sequential kernels,
and the second for MPI kernels. When the application registers
the kernels, it can specify some additional information about
their behavior, for example if they are stateless or statefull, or
if they use a polling or callback model to elaborate streams.
At this point, the application can ask the middleware to start
the kernel processes, and open the streams with the Get and
Put operations. A fragment of a typical program in the model
we propose is:

/* Source kernel: opens an output
stream */

osf_Result_t SourceKernel(
osf_KernelContext_t *ctx) {

static osf_Stream_t *s = NULL;
if (s==NULL)

osf_Open(&s, OSF_STR_OUT, 1);
...
record = sin(t)+sin(4+2*t);
osf_Put(s, &record, sizeof(record));
return OSF_ERR_SUCCESS;

}

/* Destination kernel: takes the
data from source kernel and
elaborates */

osf_Result_t FilterKernel(
osf_KernelContext_t *ctx) {

static osf_Stream_t *sIn = NULL;
if (sIn==NULL)

osf_Open(&sIn, OSF_STR_INPUT, 0);

Fig. 3. The sequence diagram of the hybrid MPI/Stream model.

...
res = osf_Get(sIn, &x, sizeof(double),

&receiv);
return OSF_ERR_SUCCESS;

}

/* Main function: registers
the kernels and starts the
streams */

int main (...) {
osf_KernelContext_t *kctx;
osf_Init(...);
osf_RegisterKernel(0,

OSF_KRNTYP_POLLING, OSF_KRN_STATELESS,
SourceKernel, &kctx);

osf_RegisterKernel(1,
OSF_KRNTYP_POLLING, OSF_KRN_STATELESS,
FilterKernel, &kctx);

osf_StartStreams();
osf_Finalize();

}

In the preceding example, each kernel is coded in a function
with a well-defined interface. We have chosen a functional
implementation model to be consistent with the MPI functional
logic. Other solutions require the use of compiler or language
extensions [6].

The main procedure registers the kernel procedures using
the osf RegisterKernel API. In this way the middleware knows
what are the kernels and how to associate each routine to the
internal graph. Then it starts the streams (osf StartStreams())
according to the external launcher indications, activating one

or more kernels on each computational node.

IV. THE STREAMING FRAMEWORK

To implement a framework supporting the hybrid
Stream/MPI approach we studied the architecture shown in
Fig. 4. The core module is a modularized communication
subsystem. The application can interact with the system using
the Abstract Communication Interface. The framework hides
the network type so that different segments of the stream chain
can use different communication technologies. When the user
starts more than one kernel on the same node, the middleware
uses Posix threads and IPC in order to optimize local com-
munication. When the launcher starts the kernels on different
nodes it can chose the network technology as a function of
its hardware and of its needs. For example, it can reserve
high performance networks for communication intensive MPI
kernels, and low performance networks to connect sequential
kernels. Besides supporting different network technologies,
the current prototype uses only socket communication. In the
future, we plan to extend the communication modules.

One of the goals of this study is to identify a minimal
set of primitives for designing a framework supporting the
integration of stream and MPI programming models. Table I
presents this set, leaving out utility functions like initialization
routines. The osf RegisterKernel() function inserts information
about each kernel into the framework. The framework gathers
such information from two sources: the compiled program,
using the API and an external configuration file, which maps
the kernels with the computational nodes. After the program
registers the kernels, it can start them as new processes using
osf StartKernels().

To communicate, a kernel needs to open a stream with the

Operations Description
RegisterKernel() Register the kernel in the middleware;
StartKernels() Optional hints (for future purposes);

Open() Open or subscribe a stream;
Put() Put a set of record in the stream;
Get() Get records from incoming stream.

TABLE I
THE PROPOSED MINIMAL SET OF PRIMITIVES.

osf Open() function. This creates the required connections to
the right kernels so that the sender can transmit its data with
the osf Put() operation, and the destination can gather data
with the osf Get() function.

Fig. 4. The framework prototype high level architecture.

V. CASE STUDY WITH A FINANCIAL APPLICATION

We tested our framework on a simulation of the market
for a single financial instrument such as a stock. The code
was originally developed by the ZeroMQ project as a test
application for its messaging middlware [7]. Our adaptations
(Figures 5 and 6) have 4 major components: a Random Data
Generator, a Matching Engine, an Order Confirmation receiver,
and a Store. The Matching Engine is the core of the simulation
and contains data structures that receive, hold, and process
orders from the Random Data Generator. The order type, price,
and volume are randomly generated numbers, the ranges of
which were choosen by the simulation’s original designers.
The order type may be either a bid (buy) or ask (sell). The
price of an order is an integer between 450 and 549 inclusive.
The volume is the amount to be bought or sold and is an
integer between 1 and 100 inclusive. If a bid price is equal to
or greater than the lowest available ask price, the Matching
Engine executes a trade and sends a confirmation and a
quote with the current market price to the Order Confirmation
receiver. The Order Confirmation component sends everything
it receives to the Store which archives all messages on disk.

1) Data Structures and Global Variables: The Matching
Engine simulates a market with the help of an OrderBook
vector comprised of double-ended queues and two global
variable integers (Figure 7).

vector <double-ended queue> OrderBook[0..999]: Each
index of OrderBook vector represents a price. Orders with
the same price are stored in the double-ended queue at the
vector element for their price-index. These queues preserve

Fig. 5. The case study financial application chain: pure MPI implementation.

Fig. 6. The case study financial application chain: hybrid implementation.

orders that cannot be traded immediately while ensuring that
any order may be matched for a trade in the sequence that it
was received at the Matching Engine.

integer min ask: The OrderBook index storing ask orders
with the lowest available selling price. Any orders queued in
OrderBook elements at, and to the right of, min ask are ask
orders.

integer max bid: The OrderBook index storing bid orders
with the highest available buying price. Any orders queued in
OrderBook elements at, and to left of, max bid are bid orders.

2) Matching Engine Algorithm: The Matchine Engine is
composed of a recieve loop that retrieves orders sent over the
network by the Random Data Generator and two routines that
simulate the market by processing either bid or ask orders,
depending on order type.

a) Matching Engine Receive Loop:
loop

Recieve order
if order.type = ask then

Ask Order Routine(order)
else

Bid Order Routine(order)
end if

end loop

b) Overview of Order Processing Routines: In brief the
Ask Order Routine and the Bid Order Routine each do the
following. More precise details are presented in the Appendix
at the end of this paper.

1) Compare the price of the received order against
min ask or max bid to determine if the order can

be immediately matched for a trade with orders already
enqueued in the OrderBook (Figure 7).

2) If the received order can not be matched immediately
then it is enqueued in the OrderBook at its price index.

3) When executing trades, each routine considers the re-
ceived order’s volume. If there is not enough matching
volume at one price level, each routine will match what-
ever volume is available and then search other matchable
price levels in the OrderBook in order to totally satisfy
the remaining volume in the received order. For example
an ask order of price 500 with volume 100 is received
and the max bid is 510 while the min ask is 500. The
Ask Order Routine first tries to dequeue as many bid
orders as needed at price 510 to satisfy the ask order’s
volume of 100. Suppose that the bids enqueued at 510
only total 30 in volume. Trade confirmations are sent for
these matched trades. The routine will then decrement
max bid and try to find matching bids in the price range
509 to 501, creating as many trades as needed to fill
the remaining ask order volume of 70. If the ask order
can only be partially filled the volume of the order is
adjusted and the order is enqueued in the OrderBook for
future matching of the remaining volume.

Each routine runs in O(n ∗max price depth) where n
is the range of prices (450...549 in this simlation) and
max price depth is the size of the largest doubled-ended
order queue within the OrderBook. However in this simulation
as orders rapidly accumlate across the range of prices, the
runtime of these routines approach O(∗max price depth)
as more often that not a price match can be immediately found
without searching throughout the price range for compatible
orders.

Fig. 7. Matching Engine Data Structures.

VI. PERFORMANCE EVALUATION

A. Experimental Setup
As detailed above, the Matching Engine receives orders and

matches the prices in buy orders to the prices in sell orders.

A compatible price match results in a trade. The Matching
Engine produces three types of messages which are sent back
to the Order Confirmation component: trade confirmations,
order confirmations, and price quotes. Order confirmations
are produced when there is no matching price to make a
trade. Price quotes occur when the stock’s maximum bid or
ask price changes due to trading activity. During the course
of their operation, the Random Data Generator, Matching
Engine, Order Confirmation component, and Store produce
performance measurements. These measurements are taken
with a sampling interval, which we set for every 20,000
orders. The Random Data Generator generates the following
measurement:

1) Orders per second sent from the Random Data Generator
to the Matching Engine.

The Order Confirmation component measures the following:
1) Order Completion Time: Time in seconds between when

an order is sent by the Random Data Generator and
when either a trade confirmation or order confirmation
is received by the Order Confirmation component.

2) Sum of trade confirmations, order confirmations, and
quotes received per second from Matching Engine by
the Order Confirmation component.

The Matching Engine produces the following measurements:
1) Orders per second received from the Data Generator.
2) Sum of trade confirmations, order confirmations, and

quotes sent per second from the Matching Engine to
the Order Confirmation.

Our evaluation uses a cluster consisting of Intel Xeon
Quad dual-core processor hosts. Each host node has 6GB
RAM and is equipped with a 1 Gigabit Ethernet network
interface controller. The operating system for each node is
Red Hat Enterprise Linux Server 5. For MPI operations we
used MPICH2 Version 1.2 middleware [8]. Each message type
(orders, confirmations, and quotes) exchanged between the
components has a different sized payload. We counted the
number of each message type created during a typical run and
calculated a weighted average message size of around 9 bytes.
The application’s performance may be tested by varying the
number of random orders per second created by the Random
Data Generator as well as varying the programming model
scheme (MPI or Hybrid MPI-Stream). In our tests we used
order generation rates of 5,000, 10,000, 15,000, and 20,000
orders/second and created 10,000,000 orders at each rate. We
recorded the resulting measurements at each rate. Beyond
20,000 orders/second, the application stressed the limits of the
hardware and would not record a full set of measurements.

B. Experimental Results

Figures 8 and 9 show our experimental results. Figure 8
summarizes measurement 1 on the Order Confirmation com-
ponent. The MPI-Stream Hybrid scheme on Gigabit Ethernet
(hygrid-ge) achieves a faster order completion time than the
corresponding MPI-only scheme (mpi-ge) at order generations
rates of 5,000 and 10,000 orders/sec. We feel that this result

reflects the lighter overhead and minimal data structures of the
streaming framework within the Hybrid scheme, as compared
the MPI scheme where all processes must make use of the
MPICH2 middleware. At rates of 15,000 orders/sec and above,
performance for the Hybrid scheme begins to deteriate. The
MPI-only scheme does not degrade until 20,000 orders/sec
and performs better than Hybrid at 15,000 orders/sec. We
feel this reflects a “sweet spot” where the high overhead of
its middleware is efficiently amortized over a high network
load that the middleware effectively bears. We are carrying
out further optimizations in the hybrid design to obtain better
performance.

Figure 9 summarizes measurements 1 and 2 from both the
Data Generator and Matching Engine, as well as measurement
2 from the Order Confirmation component. The lower line
shows that measurement 1 for the Data Generator and Match-
ing Engine was the same: the Matching Engine was able to
read orders from the network at the same rate as the Generator
was able to produce them. The upper line shows measurement
2 for the Matching Engine and Order Confirmation component
is the same for both the MPI and Hybrid schemes except at
20,000 orders per second. At all but this order generation
rate, the Order Confirmation component was able to read
confirmations and quotes from the network at the same rate as
the Matching Engine was able to generate them. Although the
MPI-only scheme also shows a high order completion rate at
20,000 orders/sec, the more complex structures in the MPICH2
middleware allow for a high sustained reading of data buffers
from the network at this traffic level.

Fig. 8. Financial Application Order Completion Time

VII. RELATED WORK

Several studies try to apply the MPI model to heterogeneous
scenarios, exploiting for instance clusters of clusters. Some
implementations, like MPICH-G2 uses the Grid technologies
to hide the heterogeneity and to allow users to manage it.
MPICH-G2 uses the Globus Toolkit services to implement
communication and management layers in both local and
wide-area networks [9]. The framework proposed in this paper

Fig. 9. Financial Application Message Rate

differs from the MPICH-G2 approach because we don’t want
to hide the topology, but empathize with it, and exploit
this knowledge in order to choose the best communication
technology in each program segment.

Stream processing has been widely studied to support high
performance computing. Babcock et al. [2] and Gaber et al.
[10] propose overviews on models and data mining using
streams as well an overview of current projects, algorithms
and techniques related to streaming models.

One of the most interesting application areas for streams
is related to the use of dedicated processors, like GPUs
[11]–[13]. While the major efforts focus on stream processor
architectures [14], several studies exist on the use of such
models in parallel systems. Wagner and Rostoker [15] propose
an interesting stream-processing framework based on the MPI
library: using the standard MPI structures they build a stream
environment. To prove their approach, they apply it to a finan-
cial data analysis workflow. In this paper, instead, we use a
whole MPI program as building block in a stream application,
using it, not as communication framework, but only to speed-
up heavy computational units, and exploit locality in clusters.

Financial data analysis is a hot topic in stream processing,
although most of studies have focused on the use of single
machines. For example Agarwal et al. [16] focus on financial
analysis on multicore computers. There is also interest in
how to adapt legacy code, written for streaming hardware
architectures, to general purpose processors. Gummaraju et al.,
in their inspiring paper [17], show how to map salient features
of streaming models (e.g., kernels ...) to general purpose CPU
components. The approach we propose in this paper, instead,
exploits general-purpose parallel heterogeneous architectures.

Several studies focus on the languages and methodologies
to describe streaming programming. Usually they propose the
design of new languages [18], [19], or the extension of an
existing one like C [12] or Java [20], [21]. Carpenter et al.,
for example, in [6] propose an extension to the C language as a
set of OpenMP-like directives. In our design, we have chosen
a functional approach to be consistent with the MPI approach.

A similar approach is suggested, for example in [17].

VIII. CONCLUSIONS

The use of heterogeneous networks or “cluster of computa-
tional clusters” makes it difficult to reach optimal performance
using only MPI programs. The impact of a slow link can strike
the overall behavior, mainly when using collective operations.
In this paper, we propose a way to exploit locality in complex
heterogeneous computational systems using a hybrid approach
of Stream and MPI programming models. We propose to
model a parallel application as a chain of kernels following
the “stream” approach, and to use MPI to develop the kernels
that need more computational power.

We presented the prototype of a framework that supports
the launch and the communication between sequential and
MPI kernels. The evaluation on a financial application shows
that the lighter overhead and minimal data structures in
the stream portion of a hybrid MPI/Stream framework can
improve processing time at certain order generation rates by
as much as 58% compared to the corresponding MPI-only
framework where the entire application is subject to higher
middleware overhead.

In the future, we expect to support more communication
infrastructure and to study how to describe the application in
order to give the framework the hints needed to optimize the
overall behavior of the application.

REFERENCES

[1] MPI Forum, “Mpi: A message-passing interface standard,” September
2009, http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in PODS ’02: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems. New York, NY, USA: ACM, 2002, pp. 1–16.

[3] K. Kandalla, H. Subramoni, G. Santhanaraman, M. Koop, and D. K.
Panda, “Designing multi-leader-based allgather algorithms for multi-core
clusters,” in Parallel and Distributed Processing Symposium, Interna-
tional, vol. 0. Los Alamitos, CA, USA: IEEE Computer Society, 2009,
pp. 1–8.

[4] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 requirements of
real-time stream processing,” SIGMOD Rec., vol. 34, no. 4, pp. 42–47,
2005.

[5] E. P. Mancini, S. Marcarelli, I. Vasilev, and U. Villano, “A grid-
aware mip solver: implementation and case studies,” Future Generation
Computer Systems, vol. 24, no. 2, pp. 133–141, February 2007.

[6] P. Carpenter, D. Rodenas, X. Martorell, A. Ramirez, and E. Ayguade,
“A streaming machine description and programming model.” in Proc. of
SAMOS’07 Conf., ser. Lecture Notes in Computer Science, S. Vassiliadis
and et al., Eds., vol. 4599. Springer, 2007, pp. 107–116.

[7] ZeroMQ Stock Exchange Example, http://www.zeromq.org/
code:examples-exchange.

[8] MPICH2 Message Passing Interface Standard, http://www.mcs.anl.gov/
research/projects/mpich2/.

[9] N. T. Karonis, B. Toonen, and I. Foster, “MPICH-G2: A grid-enabled
implementation of the message passing interface,” Journal of Parallel
and Distributed Computing Special Issue on Computational Grids,
vol. 63, pp. 551–563, May 2003.

[10] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Mining data
streams: a review,” SIGMOD Rec., vol. 34, no. 2, pp. 18–26, 2005.

[11] J. H. Ahn, W. Dally, B. Khailany, U. Kapasi, and A. Das, “Evaluat-
ing the imagine stream architecture,” in Computer Architecture, 2004.
Proceedings. 31st Annual International Symposium on, June 2004, pp.
14–25.

[12] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan, “Brook for gpus: stream computing on graphics hardware,”
in SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers. New York, NY,
USA: ACM, 2004, pp. 777–786.

[13] S. Yamagiwa and L. Sousa, “Design and implementation of a stream-
based distributed computing platform using graphics processing units,”
in CF ’07: Proceedings of the 4th international conference on Comput-
ing frontiers. New York, NY, USA: ACM, 2007, pp. 197–204.

[14] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson,
and J. D. Owens, “Programmable stream processors,” Computer, vol. 36,
no. 8, pp. 54–62, 2003.

[15] A. Wagner and C. Rostoker, “A lightweight stream-processing library
using MPI,” Parallel and Distributed Processing Symposium, Interna-
tional, vol. 0, pp. 1–8, 2009.

[16] V. Agarwal, D. A. Bader, L. Dan, L.-K. Liu, D. Pasetto, M. Perrone,
and F. Petrini, “Faster fast: multicore acceleration of streaming financial
data.” Computer Science - R&D, vol. 23, no. 3-4, pp. 249–257, 2009.

[17] J. Gummaraju and M. Rosenblum, “Stream programming on general-
purpose processors,” in MICRO 38: Proceedings of the 38th annual
IEEE/ACM International Symposium on Microarchitecture. Washing-
ton, DC, USA: IEEE Computer Society, 2005, pp. 343–354.

[18] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language LUSTRE,” in Proc. IEEE, vol. 79,
no. 9, 1991, pp. 1305–1320.

[19] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, “Cg: a system
for programming graphics hardware in a c-like language,” in SIGGRAPH
’03: ACM SIGGRAPH 2003 Papers. New York, NY, USA: ACM, 2003,
pp. 896–907.

[20] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek, “Streamflex: high-
throughput stream programming in java,” SIGPLAN Not., vol. 42, no. 10,
pp. 211–228, 2007.

[21] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit: A language
for streaming applications,” in CC ’02: Proceedings of the 11th Interna-
tional Conference on Compiler Construction. London, UK: Springer-
Verlag, 2002, pp. 179–196.

APPENDIX

For reference we show algorithm details for only the
Ask Order Routine. The Bid Order Routine is identical ex-
cept that it focuses on bid orders that are equal to, or greater
than, the min ask price.

Ask Order Routine(order)

Save current min ask and max bid for future reference.
loop

if order.price > max bid then
{There are no matching buyers for this seller. Place the
order on the tail of its price-appropriate double-ended
queue in the OrderBook.}
OrderBook[order.price].push back(order)
{Change min ask value if needed.}
min ask ←min(min ask, order.price)
Break from loop

end if

{At this point order.price is less than or equal to max bid.
Get previously stored bid orders at max bid price.}
bid deque← OrderBook[max bid]
cumulative volume← 0

while bid deque not empty do
{Execute a trade by matching current ask order with
most recent bid order at this price level, and then send
trade confirmation to bidder.}
prev bid← bid deque.front()

trade volume ← min(order.volume,
prev bid.volume)
send trade conf(prev bid.id, max bid, trade volume)

{Adjust volume of prev bid, ask order, and cumula-
tive volume to reflect this trade}
prev bid.volume ← prev bid.volume −
trade volume
order.volume ← order.volume − trade volume
cumulative volume ← cumulative volume +
trade volume

if prev bid.volume = 0 then
{Entire prev bid has been filled. Discard the bid.}
bid deque.pop()

end if

if order.volume = 0 then
{Entire ask order has been filled.}
Break from loop

end if
end while

if cumulative volume > 0 then
{Send a trade confirmation to the asker.}
send trade conf(order.id, max bid,
cumulative volume)

end if

if order.volume = 0 then
{Entire ask order has been filled.}
Break from loop

end if

{Any further iteration of loop will try to make trades at
prices less than current max bid.}
max bid← max bid− 1

end loop

repeat
Decrement max bid by 1

until OrderBook[max bid].front() is not an empty queue
or max bid = 0

if max bid or min ask are different from the values saved
at the beginning of the routine then
{The market price has changed.}
send quote(max bid, min ask)

end if

if No trade confirmations were sent in the steps above then
{Confirm the asker’s order in the event that it cannot
be immediately filled with a bid at current market condi-
tions.}
send order conf(order.id)

end if

