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Abstract

Dynamic process management is a feature of MPI-2 that

allows an application to spawn new processes during its

execution. Communication between the parent and the

newly spawned process groups is established using inter-

communicators. In this paper, we design a high performance

communication framework for the MPI-2 dynamic process

management interface over modern multi-core architectures

and high performance networks. We propose efficient algo-

rithms for point-to-point and collective operations over inter-

communicators. We also propose a set of micro-benchmarks

to evaluate these designs. Results show that the new designs

outperform the conventional implementations by more than

30% at the micro-benchmark level. Finally, we present a syn-

thetic application built using the NAS Grid Benchmarks to

measure communication performance in applications based on

multi-component architectures. Using the proposed designs,

we observe a 46% improvement in the application’s inter-

communicator communication time.

Keywords : Message Passing Interface, Dynamic Process

Management, InfiniBand, Collective communication.

1 Introduction

Modern multi-core architectures and high speed networks are

playing a key role in powering several large scale clusters to-

wards exascale computing. Large scale clusters comprising

of several hundred compute nodes based on multi-core archi-

tectures from Intel [7] and AMD [6] with high performance

networks such as InfiniBand and 10GigE [33] have become

quite common over the last few years. Several researchers and

application developers have evaluated the performance bene-

fits observed with applications on such clusters. However, it

is necessary to design software stacks and libraries that can

fully leverage the performance benefits offered by such plat-

forms to deliver the best performance to the applications. The

Message Passing Interface (MPI) is currently the most domi-

nant model for programming parallel applications. The MPI-

1 standard was first defined in 1994 and was designed to in-

clude the attractive features of contemporary message pass-

ing systems such as PVM [10]. This specification defined a

standard interface for communication, providing both point-

to-point and collective communication primitives. However,

the MPI-1 model was static in nature and mandated that the

number of tasks in a job is fixed at launch time. This require-

ment restricts the applications from spawning additional tasks

for compute intensive portions of the applications or to expand

and contract with compute node availability. The MPI-2 spec-

ification addressed this limitation and added support for dy-

namic process management. This allows MPI applications to

dynamically create and communicate with new processes, thus

providing a new paradigm for programmingMPI applications.

Dynamic process management is being used in several

classes of scientific and engineering applications that are usu-

ally deployed on clusters and grid-based systems. Multi-Scale

applications such as MD/FE [11], Multi-Component applica-

tions such as CFD [9] and parallel image processing applica-

tions such as [8] are some of the well-known examples that

can benefit from the dynamic process management interface.

These applications need to achieve load balance efficiently to

ensure that the ”idle” periods of the processing units are mini-

mized and the overall system throughput is high. The load im-

balance can arise due to the computational imbalance between

some of the individual components of the applications [26], or

due to a sudden surge in computational or networking require-

ments [8]. Application designers leverage the advantages of

using the Dynamic Process Interface to address such issues to

ensure high utilization of the computing systems. Several pop-

ular MPI implementations (MVAPICH2[29], OpenMPI[28],

MPICH2[27]) support the Dynamic Process Management fea-

ture.

The dynamic process interface involves spawning new pro-

cesses, setting up new connections and managing them during
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the execution of a job. Some of the previous studies related

to this feature [14, 4] have stressed on the need to minimize

the overhead of setting up and managing the new connections

and to schedule the spawned processes in a manner that leads

to optimal resource utilization. Applications that use the dy-

namic process interface create inter-communicator objects be-

tween the original process set and the spawned process set and

use them while exchanging messages between processes be-

long to different process groups. Basic point-to-point and col-

lective communication operations over inter-communicators

have been proposed in [31]. However, it is also necessary to

model the communication costs incurred by the processes in

the dynamic process interface and to design optimal point-to-

point and collective message exchange algorithms over inter-

communicators to minimize the communication time. In this

paper, we have studied the challenges that are involved in de-

signing a high performance communication framework in the

dynamic process interface for clusters with multi-core archi-

tectures with InfiniBand as the network fabric.

To summarize, the following are the main problems that we

have addressed in our paper :

• Can we improve the inter-communicator point-to-point
communication framework to achieve lower latencies?

• The performance of inter-communicator collective oper-
ations will strongly impact the application run-times. Is

it possible to enhance the inter-communicator collective

communication framework for the dynamic process inter-

face?

• How do these designs reflect on the performance of the
real-world applications that use dynamic process man-

agement?

The rest of the paper is organized as follows: In Section 2,

we describe a serious of concepts related to our work includ-

ing MPI Communicator, InfiniBand, the Dynamic Process In-

terface. We also give an introduction to the applications that

use the dynamic process interface, which we have studied in

the following sections. Section 3 presents the various issues

involved with designing a high-performance dynamic process

management solution. In Section 4, we propose a number

of new benchmarks to evaluate the performance of dynamic

process management implementations. Section 5 provides an

evaluation of the various design options proposed using bench-

marks and Section 6 provides an application evaluation. Sec-

tion 7 cites work related to dynamic process management and

finally Section 8 provides conclusions and offers future work

in this area.

2 Background and Motivation

In this section, we give a brief description about the concept

of communicators in MPI, InfiniBand, the Dynamic Process

Interface and the class of applications that we have studied in

this work.

2.1 MPI Communicators

The MPI-1 standard introduced the concept of communica-

tor objects to provide a convenient abstraction object for com-

munication in parallel programs. A communicator is a soft-

ware construct that defines a group of processes and a con-

text (tag/identifier) for communication within that group. MPI

operations use the rank and communicator context informa-

tion to decide the target rank within the process group. MPI

also allows applications to split an existing communicator

to create new sub-communicators that contain a specific set

of processes. These communicators are referred to as intra-

communicators as they are used for communicationwithin that

group of processes. The MPI standard also defines another

type of communicator, called the inter-communicator. Inter-

communicators have a local process group and a remote pro-

cess group and all communication is always between a process

in the local group and a process in the remote group.

The dynamic process interface in MPI-2 allows a pro-

cess that resides in a specific intra-communicator, to spawn

a new set of processes, that are contained in a different intra-

communicator. An inter-communicator that comprises of both

the intra-communicators is created and facilitates communica-

tion between the two process groups.

2.2 InfiniBand

InfiniBand is a popular processor and I/O interconnect that has

become popular and is enjoying wide success due to low la-

tency (1.0-3.0µsec), high bandwidth and other features. Over

30% of the Top500 fastest supercomputers show InfiniBand as

the interconnect being used. However, we wish to indicate that

the algorithms proposed in this paper can be applied to other

high speed networks such as 10GigE, as well.

2.3 Dynamic Process API

The MPI standard defines three functions to create and join

new processes into existing MPI jobs.

• MPI Comm spawn : This is a collective function called
by all the processes in a communicator. When this

function is called, the root process of the communicator

spawns a set of child processes. All the processes return

from the call only when the inter-communicator that con-

nects the existing process group and the newly spawned

process group has been created.
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• MPI Comm accept/MPI Comm connect : These

functions provide a client-server paradigm to facilitate

the creation of an inter-communicator between existing

parent and child process groups.

• MPI Comm join : Using this function two processes
with an existing TCP/IP connection can establish an inter-

communicator and start MPI message exchange.

2.4 Inter-Communicator Communication op-

erations

In this section, we give a brief overview of the point-to-

point and collective message exchange operations for inter-

communicators.

Applications that use the dynamic process interface will in-

volvemessage exchange operations between processes that be-

long to the different groups of processes. These operations are

done in the context of an inter-communicator that comprises

of the two intra-communicator groups. Applications are free

to use either point-to-point or collective operations over the

inter-communicators.

As explained in [10], inter-communicator communication

involves a source process in the local process group and a

destination process in the remote group. There is an over-

head involved in computing the destination process’s rank

relative to the remote process group. Owing to this, we

expect inter-communicator point-to-point operations to per-

form slightly worse than their intra-communicator counter-

parts. As described in [31], the inter-communicator col-

lective operations are implemented on top of point-to-point

operations and they might also suffer from such overheads.

The inter-communicator collectives also involve slightly dif-

ferent message exchange patterns when compared to their

intra-communicator counterparts [10]. Based on the mes-

sage exchange pattern, the MPI standard categorizes the inter-

communicator collective operations as All-to-All, All-to-One,

One-to-All and Other. All-to-One and One-to-All collective

operations are rooted operations and involve the movement of

messages in a specific direction between the two groups of

communicators. All-to-All operations involve messages being

exchanged between processes belonging to both the groups in

both the directions. Collective calls that belong to the Other

category either have a communication pattern that do not fit

into the above categories - such as MPI SCAN or do not in-

volve any explicit movement of messages such as MPI Barrier.

Point-to-point and collective communication between pro-

cesses that reside within the same communicator is a very well

studied area and several multi-core aware algorithms have al-

ready been proposed [24, 16] . These algorithms leverage

the performance benefits offered by the modern multi-core ar-

chitectures and high speed networks and significantly reduce

fraction of communication time in many applications. How-

ever, applications that use the dynamic process interface in-

volve message exchange operations across both the inter and

intra communicators. Currently applications that use the dy-

namic process support can benefit from the proposed message

exchange operations formost intra-communicatormessage ex-

change operations. However, these applications also rely on

inter-communicator operations to exchange data across differ-

ent modules and to synchronize. The performance of the inter-

communicator collective operations plays a key role in such

applications and a poorly designed set of inter-communicator

message exchange operations will lead to undesirable bottle-

necks and affect the performance of applications. Designing

efficient multi-core aware algorithms for inter-communicator

point-to-point and collective operations is an important re-

search problem that we have addressed in this paper.

2.5 Applications

In this paper, we have considered two major classes of appli-

cations that use the dynamic process interface supported by

the MPI-2 standard. The Master/Worker paradigm is com-

monly used in parallel programming. The WaterGAP appli-

cation [21] and the N-Dimensional functions [23] rely on this

paradigm. Applications based on the Master/Worker paradigm

involve setting up inter-communicators between the master

process and the worker processes. Any message exchange be-

tween the Master and the Worker processes will involve inter-

communicator communication. Image processing applications

such as [8] and CFD based applications use the dynamic pro-

cess interface to optimize a pipelined architecture. Appli-

cations based on the pipelined architectures involve multiple

components of the application connected through a pipeline

and involve data exchange across these components over inter-

communicator. Such applications can achieve better load bal-

ancing across by using the dynamic process interface.

As explained in [23], applications that are based on theMas-

ter/Worker paradigm, involve the following three steps within

each time-step :

• The Master process broadcasts/scatters the data among
the set of Worker processes

• The Workers work on their local chunks in a parallel col-
laborative fashion and send their contributions back to the

master, when they are done

• The Master gathers/reduces the data from all the worker
processes which is followed by some computation

Multi-component applications such as [26] are based on

the MIMD concept and involve different groups of processes

executing different executables. The different components

also exchange data and synchronize with each other during

the execution. Processes executing one kind of executable
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can be grouped under an intra-communicator object and one

of the processes is assigned as a ”Master” process. The

inter-component communication phases are essentially inter-

communicator based communication operations. The ”Mas-

ter” process also acts as the root of the two communica-

tors during the inter-communicator collective operations. In

this paper, we have designed a synthetic application based on

the NAS Grid Benchmarks [12] to examine and measure the

inter-component communication costs in applications based

on the pipelined architecture. We have considered three bench-

marks from the NAS suite - BT, SP and LU and constructed a

pipeline comprising of these three modules. Such a pattern

is commonly found in CFD based applications [9]. The ap-

plication starts off with five processes - three ”Master” pro-

cesses,one source process and one tail process. The three

”Master” processes spawn new process groups and each pro-

cess group works on a different executable. When one pro-

cess group completes its execution, we move the data along

the pipeline to the next process group. We have designed the

inter-group communication using an all-to-one and one-to-all

inter-communicator exchange operations.

As indicated earlier, applications that use dynamic process

management might not able to leverage the performance bene-

fits offered by the modern multi-core architectures if the inter-

communicator message exchange algorithms are not designed

in an efficient manner. In the following sections, we describe

the challenges involved in designing mult-core aware inter-

communicator point-to-point and collective algorithms and the

potential performance benefits of using such algorithms.

3 Efficient Multi-core Aware Inter-

Communicator Communicator Op-

erations

In this section we describe our design for the dynamic process

management framework.

3.1 Enhanced inter-communicator point-to-

point operations

Multi-core computing has now become ubiquitous and the

number of processing cores within a compute node is con-

stantly increasing. For most message sizes, the communica-

tion between processes that reside within the same compute

node is faster than communication between processes that are

on different nodes. This is because the processes use the

shared memory for exchanging the messages. However, this

approach involves an extra-copy of the message being made

and for larger messages, the overhead introduced by the extra-

copy is undesirable. Also, when processes are performing the

copy operation, it invariably leads to cache pollution and it

severely degrades the performance. This is particularly true

for architectures based on shared-L2 cache based architec-

tures. In [16], authors have proposed utilizing a portable zero-

copy based, kernel assisted design called LiMIC, for optimiz-

ing the intra-node communication. In this work, we have stud-

ied the advantages of using the LiMIC module for optimiz-

ing the intra-node communication, in the context of dynamic

process management. Consider the message exchange pattern

indicated in Figure 1(a). We have four processes within a com-

pute node and two processes that reside on the same socket are

sharing the L2 cache. Suppose processes P0 and P3 belong

to different intra-communicators and they are involved in an

inter-communicator message exchange operation, the shared-

memory based approach will involve process P0 copying its

data into the memory buffers and process P3 reading the data

into its local buffers. As indicated in the figure, this entails

moving the message through the L2 cache on both the sockets

and this will lead to cache evictions if the size of the message

is larger than the size of the L2 cache. We have illustrated the

kernel assisted zero-copy based approach in Figure1(b)In the

zero-copy based approach, it is possible to avoid the cost of

copying the data on the source process and this improves the

performance of intra-node inter-communicator message ex-

change operations. We would also like to point out that LiMIC

is one of the zero-copy based approaches. Intra-node message

exchange algorithms based on MPICH2’s knem [2] can also

be used to achieve similar performance gains.

3.2 Shared Memory based inter-communicator

collectives

In the dynamic process framework, collective operations are

performed over processes that are in both the communica-

tor groups - the parent communicator and the spawned com-

municator. These collective operations are essentially inter-

communicator collective operations done on the communica-

tor that comprises of the parent and the spawned communica-

tors. In MVAPICH2, the inter-communicator collective opera-

tions are designed on top of the intra-communicator collective

calls. In Figure 2(a), we have illustrated the conventional inter-

communicator One-to-All Broadcast operation. Processes P0

is the root of the intra-communicator intra-comm1 and pro-

cess P0 is the root of the second intra-communicator intra-

comm2. Lets assume process P0 in intra-comm1 to be the

root of the inter-communicator broadcast operation. In the

conventional algorithm, the root process of intra-comm1 sends

the data to the root of intra-comm2 and this is followed by a

binomial exchange algorithm performed on the intra-comm2

intra-communicator object. Suppose the intra-comm2 com-

municator has P processes, the cost of performing an inter-

communicator broadcast operation is dominated by the time

required to complete the binomial exchange operation over

these P processes. As indicated in [34], if there are P pro-
4



Figure 1: Comparison of the Point-to-point algorithms (a) Conventional Inter-Communicator Point-to-Point algorithms and,

(b) Proposed Multi-core aware Inter-communicator Point-to-point algorithms

cesses in intra-comm2, the algorithm will involve logP steps.

For small messages, the cost of an inter-communicator broad-

cast operation is a function of t*(logP) as the bandwidth cost is

negligible, where ”t” is some cost-function that considers both

intra-node and inter-node message exchange operations. Also,

the binomial exchange operation in multi-core architectures is

not free of network contention as two or more processes in

the same compute node might be involved in inter-node mes-

sage exchange operations at the same time. Lets consider the

cost induced by the network contention to be C. The cost of an

inter-communicator broadcast operation will be a function of

(t*logP + C).

In Figure 2(b), we have illustrated the proposed multi-core

aware inter-communicator broadcast algorithm. In this algo-

rithm, the binomial exchange operation is replaced by multi-

core aware point-to-point or shared memory based algorithms.

In such algorithms, we assign one process per node as the

leader process and this process is involved in message ex-

change operations over the network. Once the leader process

of a node has all data, it broadcasts the data to the rest of the

processes that are within the same compute node. In MVA-

PICH2, the second phase of the broadcast operation is based

on using either point-to-point binomial exchange operation or

the shared-memory based algorithm that allows all the non-

leader processes to read that data in parallel. For simplicity,

assume that the P processes in intra-comm2 are uniformly dis-

tributed across N compute nodes, with n processes in each

compute node. The inter-leader exchange operation is based

on the binomial exchange algorithm and the cost of this phase

will be a function of t inter*(logN), where ”t inter” is the cost

of one inter-node exchange. Also, the inter-leader exchange

operationwill always involve one process per node exchanging

data over the network and is contention free, in fully connected

networks. If we consider the shared-memory based intra-node

exchange operation, this phase can proceed in parallel across

all nodes, without any contention over the network. If we as-

sume the cost of the intra-node exchange operation to be S,

the cost of the proposed multi-core aware inter-communicator

broadcast operation will be a function of (t inter*(logN) + S).

So, we can see that the cost of the shared-memory aware inter-

communicator broadcast operation has the potential to perform

better than the default binomial exchange algorithms.

4 Designing Benchmarks for Dynamic

Process Management

In [31], authors have proposed a set basic inter-communicator

collective operations and have provided a few benchmarks to

measure their performance. We have augmented these by de-

veloping benchmarks for a few other inter-communicator col-

lectives and point-to-point operations. The benchmarks are

similar to the existing OSU Benchmark suite [25] released

with the MVAPICH/MVAPICH2 software.

4.1 Inter-communicator point-to-point latency

Point-to-point inter-communicator operations involves the

movement of data from a local group to a remote group. This

inter-group message latency is an important metric as Mas-

ter/Worker applications that rely on asynchronous progress

rely on making a lot of inter-communicator point-to-point

calls. Also, as indicated earlier, inter-communicator collec-

tive operations are usually implemented on top of point-to-

point operations. With inter-communicators, message delivery

has an additional overhead of mapping from the (local process

group, rank) to the (remote process group, rank). In some de-

signs, such as ours, no connections are setup between ranks of

the local and remote process groups. Connections are setup

on-demand, when the ranks really need to communicate. This

connection establishment time can be excluded from measure-

ment by using a warmup loop, as we are mainly interested in
5



Figure 2: Comparison of the One-to-All Broadcast algorithms (a) Conventional Inter-Communicator Broadcast algorithm and,

(b) Proposed Multi-core aware Inter-Communicator Broadcast operation

the communication time. Our benchmark calculates an aver-

age latency between two processes from different groups but

are on the same node.

4.2 Inter-communicator collectives latency

As explained in Section 3, the time taken spent in the collec-

tive operations significantly impacts the overall performance

of the applications. Applications that utilize the dynamic pro-

cess management features perform collective operations that

are done over inter-communicators that comprises of the dif-

ferent process groups. In Section 3, we proposed an efficient

inter-communicator collective framework that utilizes the op-

timized shared memory based collective algorithms. It is

necessary to design micro-benchmarks that measure the per-

formance of the various inter-communicator collective algo-

rithms. In this paper, we have designed a benchmark suite to

measure the performance of a few of the inter-communicator

collective operations including MPI Bcast, MPI Reduce and

MPI Allreduce. Since the connections between processes are

set up only when the they first start sending messages to each

other, it is essential to design the benchmarks to amortize the

cost of the connection setup phase. In our benchmarks, for

each message size, we call the inter-communicator collective

operations several times and collect the average time each pro-

cess takes to complete one collective operation. For rooted

collective calls, it is also important to measure the minimum

and maximum amount of time spent within the collective call,

across the set of all the processes in the inter-communicator.

This is because of the asymmetric nature of the message ex-

changes for such collective calls. In MVAPICH2, we have

shared memory based collective algorithms for MPI Bcast,

MPI Reduce, MPI Allreduce and MPI Barrier. In the follow-

ing section we have demonstrated the benefits of using these

algorithms for inter-communicator collectives in the context

of communication in a dynamic environment. In these experi-

ments, we have considered one process in the original process

group and this process spawns new processes and performance

inter-communicator collective operations. We chose this mode

as this reflects the choice of applications in our paper. We can

have any number of processes in the spawning communica-

tor and perform inter-communicator operations with processes

across both the groups.

5 Performance Evaluation

5.1 Experimental Platform

We use a 64-node Xeon cluster with each node having 8 cores

and 6 GB RAM. The nodes are equippedwith InfiniBand DDR

HCAs and 1 GigE NICs. All the nodes are connected to a sin-

gle file server accessed by the NFS (Network File System) pro-

tocol. We run our collective benchmarks using an 8x8 layout

with block allocation of ranks. Our designs were implemented

in the MVAPICH2 library.

5.2 Inter-Communicator Point-to-point La-

tency

The inter-group latency is a basic latency test to measure

the difference between intra-communicator latency and inter-

communicator latency.

In Figure 3 we compare the latency for inter-communicator

and intra communicator point-to-point operations for the de-

fault version of MVAPICH2. As explained earlier, the inter-

communicator latency is slightly higher than the intra commu-

nicator exchange latency.

In Figure 4, we compare the inter-communicator latency be-

tween the default version of MVAPICH2 and our proposed

design that utilizes the LiMIC module. We can see that
6
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Figure 4: (b) Inter-group

with and without LiMIC

our proposed design performs significantly better the default

inter-communicator version. The performance improvement

is about 67% for 64KB message size.

5.3 Inter-communicator collectives latency

5.3.1 MPI Allreduce

This benchmark measures the time taken for an inter-

communicator MPI Allreduce operation to complete. In an

inter-communicator MPI Allreduce operation between two

communicators A and B, the result of the reduction of the data

provided by processes in group B will be stored at all the pro-

cesses in group A and vice-versa. Since MVAPICH2 offers an

efficient shared memory based algorithm for MPI Allreduce,

we have explored the performance implications of having a

shared-memory enabled inter-communication MPI Allreduce

operation. In this experiment the parent process spawns 63

child processes and the processes are distributed uniformly

across 8 nodes. The results in Figure 5 show the performance

benefits of using shared memory based inter-communicator

MPI Allreduce algorithm along with the kernel-based zero

copy mechanism being used for all intra-node large message

exchanges. The improvement is about 36% at 512KBmessage

size.
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5.3.2 MPI Bcast

In an inter-communicator broadcast, one of the groups defines

the root and data is sent from the root to all the processes in

the other group. In MVAPICH2, we perform this operation

by having one point-to-point exchange between the root of the
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Figure 6: Broadcast Latency for 63 Spawned Processes:

(a) Small Messages and (b) Large Messages

parent communicator and the root of the spawned communica-

tor. This root process does an intra-communicatorMPI Bcast.

In our proposed design, the intra-communicator MPI Bcast

phase uses the efficient shared memory broadcast algorithm.

Our benchmark involves one process in the parent communi-

cator and it spawns 63 processes and performsMPI Bcast over

this inter-communicator. The proposed schemes show notable

effect on performance for message sizes beyond 16KBytes. As

shown in Figure 6(b), we see a 56% improvement in latency

for 512KB message size and a 22% improvement for 2MB

message size.

5.3.3 MPI Reduce

The inter-communicator MPI Reduce operation involves all

the processes specifying the root of the operation. Suppose

the root is in the intra-communicator A, the data from all

the processes in the intra-communicator B is ultimately ac-

cumulated at the root. In MVAPICH2, this operation in-

volves a local intra-communicator MPI Reduce performed on

the remote communicator and this data is sent to the root

through a point-to-point call. MVAPICH2 supports an opti-

mized shared memory based algorithm for MPI Reduce with

intra-communicators. In our proposed design, we have used

this algorithm for the reduction phase on the remote commu-

nicator. We also observed that process skew generated during

back-to-back calls to MPI Reduce resulted in widely varying

timing results. To address this issue, in our benchmark, we call

MPI Barrier, before each call to MPI Reduce. However, the

time spent in MPI Barrier is not considered for our analysis.

In Figure 7, we can see that for medium and larger messages,

our proposed framework delivers better performance than the

default inter-communicator schemes in MVAPICH2. The new

framework has a 30% improvement at 512KB message size.

6 Synthetic Application Description

and Evaluation

As explained in Section 2.5, we have constructed a pipeline ar-

chitecture by considering three benchmarks in the NAS suite

to simulate the nature of inter-communicator communication

in CFD based applications. The three benchmarks that we
7



Figure 8: Synthetic DPM Application

 0

 20

 40

 60

 80

 100

 120

 140

 4  16  64  256 1K 4K

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2
MVAPICH2+LiMIC+shmem-coll

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

16K 64K 256K 1M

L
a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH2
MVAPICH2+LiMIC+shmem-coll

Figure 7: Reduce latency for 63 spawned processes:

(a) Small Messages and (b) Large Messages

have considered are Class B - BT, SP and LU. As illustrated in

Figure 8, we split the original MPI COMM WORLD process

group comprising of the three master processes, the source

and the tail processes into five different intra-communicators

so that each process is contained in one intra-communicator.

Each master process spawns a new process group using the

MPI-2 DPM operations and sets up an inter-communicator be-

tween itself and all the spawned processes. The source creates

data and sends it to the BT component’s master process which

does an inter-communicator one-to-all (MPI Bcast) collective

operation. Once the BT job gets done, the data from each pro-

cess is accumulated at BT’s master process through an inter-

communicator all-to-one (MPI Reduce) collective operation.

BT’s master process then moves the data along to SP’s master

process which performs the same set of inter-communicator

collective operations. Since we are interested in measuring the

time spent in the various inter-communicator collective oper-

ations, we have inserted timers around those operations. We

have also measured the overall application run-time that in-

cludes the time required for each component to complete its

job. This application can be extended to have a true pipeline

with the source constantly sending data to the BT module and

each of the modules grow and shrink with varying compute

requirements. In our experiments, the pipelined application is

launched with 64 processes in each of the BT, SP and LUmod-

ules. Since we are mainly interested in the inter-component

communication time, we have not included the costs involved

in setting up the connections. Table 1 compares the commu-

nication and total execution times of the application using the

default MVAPICH2 and the library with our new designs. We

see a 46% improvement in the inter-communicator communi-

cation times. As the application spends most of the time in

computation, we see an improvement of about 2 seconds in

the overall execution time. We would like to point out that

this improvement is with one iteration through the pipeline.

Since most applications belonging to this architecture are long

running and involve several iterations through the pipeline, we

expect to see larger benefits in the overall run-times. We have

also observed that as the size of the process groups increases,

the application run-times have also improved with to our pro-

posed communication framework. We are interested in observ-

ing the benefits of our proposed designs on a larger scale. We

plan to run a few experiments on large scale production level

clusters such as the TACC Ranger [3] and include the results

in camera-ready version of the paper.

7 Related Work

In this section, we describe briefly the relevant research work.

The architecture of a dynamic process creation framework for

MPI was described by Gropp and Lusk [15]. The MPI-2 stan-

dard [10] defined the process creation and management inter-

face. The standard defined only the process creation interface

leaving the job scheduling to the MPI implementation. Marcia

Cera et al [4] have explored the issue of improving scheduling

of dynamic processes. Their solutions are aimed at load bal-

ancing jobs across nodes of a cluster and providing novel ways

of scheduling dynamic processes across a cluster. Gabriel et al

[13] evaluated the dynamic process interfaces of several MPI-

2 implementations. They measure the bandwidth achieved in

point-to-point message exchange over traditional versus dy-

namic communicators. Silva et al, [31] proposed some of the

basic inter-communicator collective operations and compared

their performance against their intra-communicator counter-

parts. Kim et al. [18] explored the design and implementation

of dynamic process management for grid-enabled MPICH.
8



Table 1: Application Execution Times

MVAPICH2 MVAPICH2+LiMIC+shmem-coll

Inter-communicator Communication Time 18,315 µs 9,767 µs

Total Execution Time 92.84 s 90.46 s

Several applications have been modified to leverage the ad-

vantages of using the dynamic process interface. Some of the

prominent applications include [5, 23, 8, 21, 11] and so on.

In [22], authors have proposed the concept of an Applica-

tion Agent to introduce the concept of dynamic process man-

agement in Grid based systems.

Several designs that utilize shared memory and RDMA fea-

tures to achieve high performance for intra-communicator col-

lective operations have been proposed. Some of the notable

works include [24, 20, 17, 1, 32, 19, 30, 35]. Efficient intra-

node point-to-point designs have been proposed in [16].

8 Conclusions

MPI-2 Dynamic process interface allows dynamic spawning

of processes and is used in several classes of scientific and

engineering applications. Communication between the par-

ent and newly spawned process groups happens over inter-

communications. MPI Communication operations over intra-

communicators are well studied and optimized but optimiz-

ing point-to-point and collective communication operations

over inter-communicators is an important issue that needs to

be addressed in the context of dynamic process interface. In

this paper, we have proposed a new framework for inter-

communicator point-to-point and collective operations that

leverage the use of kernel based zero copy intra-node message

transfers and efficient shared memory based collective algo-

rithms to achieve high performance. We implemented our de-

signs and evaluated them on MVAPICH2, a popular MPI im-

plementation for InfiniBand. Evaluations shows that Kernel-

based zero copy mechanism (LiMIC) and shared-memory

based collective algorithms can be exploited to achieve con-

siderable performance gains in inter-communicator point-to-

point and collective communication operations in the dynamic

process management framework.

Acknowledgments

This research is supported in part by U.S. Department

of Energy grants #DE-FC02-06ER25749 and #DE-FC02-

06ER25755; National Science Foundation grants #CNS-

0403342, #CCF-0702675, #CCF-0833169, #CCF-0916302

and #OCI-0926691; grant from Wright Center for Innova-

tion #WCI04-010-OSU-0; grants from Intel, Mellanox, Cisco,

QLogic, and Sun Microsystems; Equipment donations from

Intel, Mellanox, AMD, Advanced Clustering, Appro, QLogic,

and Sun Microsystems. We would like to thank Dr.K.Tomko,

whose guidance has been invaluable in bringing out this paper.

References

[1] H.-W. Jin A. Mamidala, L. Chai and D. K. Panda. Ef-

ficient smp-aware mpi-level broadcast over infiniband’s

hardware multicast. In IPDPS. IEEE, 2006.

[2] Darius Buntinas, Brice Goglin, David Goodell, Guil-

laume Mercier, and Stphanie Moreaud. Cache-Efficient,

Intranode, Large-Message MPI Communication with

MPICH2-Nemesis. In Proceedings of the 38th Interna-

tional Conference on Parallel Processing (ICPP-2009),

Vienna, Austria, September 2009, 2009.

[3] TACC: Texas Advanced Computing Center.

http://www.tacc.utexas.edu/resources/hpc/.
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