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Abstract � While a lot of effort has been made in computational auditory scene analysis to 
segregate voiced speech from monaural mixtures, unvoiced speech segregation has not received 
much attention. Unvoiced speech is highly susceptible to interference due to its relatively weak 
energy and lack of harmonic structure, and hence makes its segregation extremely difficult. This 
study proposes a new approach to segregation of unvoiced speech from nonspeech interference. 
The proposed system first removes estimated voiced speech, and the periodic part of interference 
based on cross-channel correlation. The resultant interference becomes more stationary and we 
estimate the noise energy in unvoiced intervals using segregated speech in neighboring voiced 
intervals. Then unvoiced speech segregation occurs in two stages: segmentation and grouping. In 
segmentation, we apply spectral subtraction to generate time-frequency segments in unvoiced 
intervals. Unvoiced speech segments are subsequently grouped based on frequency characteristics 
of unvoiced speech using simple thresholding as well as Bayesian classification. The proposed 
algorithm is computationally efficient, and systematic evaluation and comparison show that our 
approach considerably improves the performance of unvoiced speech segregation. 
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I. INTRODUCTION 

Speech reaching our ears is almost never pure in the real world. Acoustic interference, such as 

fan noise, music or another voice, poses a serious problem for many applications including 

automatic speech recognition [1] and hearing aid design [8]. While humans are remarkably adept 

in separating a particular sound from a mixture of many sources, such a task remains a major 

challenge for machines [34]. Monaural speech segregation refers to the task of separating speech 

from interference using a single microphone. This is a particularly difficult task because only one 

recording is available and one cannot explore the spatial information of sources present in multi-

microphone situations. In a monaural case, one has to rely on the intrinsic properties of speech, 

such as harmonic structure and onset to perform segregation [4]. Research employing these 

features has made considerable advances in voiced speech segregation for anechoic [5], [12], [21] 

and reverberant conditions [18]. In contrast, the unvoiced speech segregation problem has not 

been much studied (see [13] for an exception) and remains a big challenge. In this paper, we study 

monaural segregation of unvoiced speech from nonspeech interference.  

Speech enhancement methods have been proposed to enhance noisy speech based on a single 

recording [23]. Representative algorithms include spectral subtraction, Wiener filtering, minimum 

mean square error based estimator, and subspace analysis. Such methods work with the whole 

noisy utterance and therefore have the potential to deal with unvoiced speech. However, speech 

enhancement methods often make assumptions about the statistical properties of interference, 

which limits their ability in dealing with general interference. For example, the assumption of 

stationary noise is often made, which is not true in typical real-world situations where interference 

can change abruptly over a short period of time. Another class of techniques, called model-based 

speech separation, focuses on modeling source patterns and formulates separation as an 

estimation problem in a probabilistic framework. By representing observations using source 

models, such a system either directly estimates individual speech utterances or derives a time-

frequency (T-F) mask to segregate each source. For example, Radfar et al. [28] proposed a 

maximum-likelihood method to estimate vocal-tract-related filter responses, which are then 

combined with excitation signals to reconstruct individual speech signals based on a source-filter 

model. Along the same line, a composite source model in the form of Gaussian mixture is used in 

[27] to model individual speakers and a minimum mean square error estimator is used to 
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segregate each source. Model-based techniques have the potential to segregate unvoiced speech, 

but the assumption that the mixture consists of only speech utterances limits the scope of their 

applications. It is also unclear that how the system performs when two speakers utter unvoiced 

speech simultaneously. 

Computational auditory scene analysis (CASA) aims to achieve sound organization based on 

perceptual principles [34]. Segmentation and grouping are the two main stages of CASA. In 

segmentation, the input is decomposed to segments, each of which is a contiguous T-F region 

originating mainly from a single sound source. The grouping stage combines segments that likely 

arise from the same source into a stream. Ideal binary mask (IBM) has been suggested as a main 

goal of CASA [32]. The IBM is a binary T-F matrix where each T-F unit is labeled either as target 

dominant with a value of 1 or as interference dominant with a value of 0. IBM can be constructed 

by comparing the signal-to-noise ratio (SNR) within each T-F unit against a local criterion (LC). 

It is shown that IBM achieves optimal SNR gain under certain conditions [22]. Subject tests have 

shown that speech segregated by IBM leads to dramatic intelligibility improvements for both 

normal-hearing and hearing-impaired listeners [6], [20], [35].  

As a subset of consonants, unvoiced speech consists of unvoiced fricatives, stops, and affricates 

[30], [19]. Recently, Hu and Wang studied unvoiced speech segregation and successfully 

extracted a majority of unvoiced speech from nonspeech interference [13]. They utilized onset and 

offset cues to extract candidate unvoiced speech segments. Acoustic-phonetic features are then 

used to separate unvoiced speech in a classification stage. In [15], we incorporated spectral 

subtraction and noise type in unvoiced speech segregation. The evaluation shows promising 

results but the grouping method involves a large amount of training and is designed for mixtures 

only at one SNR level.   

In this paper, we extend the idea of spectral subtraction based segmentation in [15] and propose 

a simpler framework for unvoiced speech segregation. First, our system segregates voiced speech 

by using a tandem algorithm [14]. We then remove voiced speech as well as periodic components 

in interference based on cross-channel correlation. As periodic portions are removed, the 

interference is expected to become more stationary. Then unvoiced speech segregation occurs in 

two stages: segmentation and grouping. In segmentation, we first estimate interference energy in 

unvoiced intervals by averaging the mixture energy in inactive units (those labeled as 0) in 
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neighboring voiced intervals. Estimated noise energy is then used by spectral subtraction to 

generate unvoiced T-F segments. In the grouping stage, unvoiced speech segments are extracted 

based on thresholding or classification.  

The rest of the paper is organized as follows. The next section presents peripheral processing, 

feature extraction and voiced speech segregation. Unvoiced speech segregation is described in 

Section III. Systematic evaluation and comparison are provided in Section IV and we conclude 

the paper in Section V. 

 

II. BACKGROUND AND VOICED SPEECH SEGREGATION 

Our system is shown in Fig. 1. Noisy speech is first analyzed by an auditory periphery model 

[34] and voiced speech is segregated using a tandem algorithm [14]. The segregated voiced 

speech is subsequently removed along with the periodic portions of interference from the mixture, 

and unvoiced speech segmentation and grouping are then carried out.  

 

A.  Peripheral Processing and Feature Extraction 

To analyze noisy speech, the system first decomposes the signal in the frequency domain using a 

bank of 64 gammatone filters with center frequencies equally distributed on the equivalent 

rectangular bandwidth scale from 50 Hz to 8000 Hz [26]. The gammatone filterbank is a standard 

model of cochlear filtering. The output of each channel is then transduced by the Meddis hair cell 

model [24]. Details of auditory peripheral processing can be found in [34]. In the time domain, 

channel outputs are decomposed to 20-ms time frames with a 10-ms frame shift. The resulting 

time-frequency representation is called a cochleagram [34]. 

Let uc,m denote a T-F unit at channel c and frame m, and r(c,m) the corresponding hair cell 

output. We calculate a normalized correlogram by using the following autocorrelation function 

(ACF) 
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where � denotes the time delay, and the frame length N is 320 corresponding to 20 ms with a 

sampling frequency of 16 kHz. Within each frame, the ACF carries periodicity information of the 

filter response and the delay corresponding to the global peak of the ACF indicates the dominant 

pitch period. In implementation, time delay � varies between 0 ms and 12.5 ms, which includes the 

plausible pitch range of human speech.  

Harmonics of voiced speech are resolved in the low frequency range, but not at high 

frequencies. Each high frequency filter responds to multiple harmonics so that the response is 

amplitude modulated and the envelope of the response fluctuates at the F0 (fundamental 

frequency) of the voiced speech [34]. Therefore, to encode unresolved harmonics, we extract the 

envelope of the response by half-wave rectification and bandpass filtering with the passband from 

50 Hz to 550 Hz [18]. The envelope ACF of uc,m, AE(c,m,�), is then calculated similarly to (1).  

 

Fig. 1. Schematic diagram of the proposed unvoiced speech segregation system. The system 

first performs voiced speech segregation. The segregated voiced speech and periodic portions 

of interference are then removed in a periodic signal removal stage. Unvoiced speech 

segregation then occurs in two stages: segmentation and grouping. In segmentation, the system 

performs spectral subtraction on noise estimated using the voiced binary mask. Unvoiced 

speech segments are subsequently grouped to form an unvoiced speech stream. 
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Neighboring channels responding to the same harmonic or formant tend to have high cross-

channel correlation [33]. We calculate the cross channel correlation between uc,m and uc+1,m by  

                                              
0
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where ˆ( , , )A c m τ  denotes the normalized ACF with zero mean and unity variance, and L = 200 

corresponds to the maximum time delay of 12.5 ms. In addition, we calculate the cross-channel 

correlation of response envelope between uc,m and uc+1,m, CE(c,m), similarly to (2). 

  

B.  Voiced Speech Segregation 

After feature extraction, we use the tandem algorithm [14], [10] to estimate a voiced binary 

mask. The main purpose of estimating a voiced binary mask is to identify inactive T-F units in 

voiced intervals to estimate noise energy in unvoiced intervals.  

Following [10], we extract a 6-dimensional feature vector for uc,m 
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In (3), �m is the estimated pitch period at frame m. A(c,m,�m) measures periodicity similarity 

between the unit response and the estimated pitch at frame m. ( , )f c m  denotes the estimated 

average instantaneous frequency of the response within uc,m, which is estimated using the zero-

crossing rate of A(c,m,�). The function int(x) returns the nearest integer. The product ( , ) mf c m τ⋅  

provides another feature to determine the periodicity of a T-F unit, and its closest integer 

indicates a harmonic number. The third feature measures the deviation of the product from its 

nearest harmonic number. While the first three features in (3) are extracted from filter responses, 

the last three are extracted from response envelopes (indicated by the subscript E).  

Given the pitch-based feature vector in (3), we train a multilayer perceptron (MLP) to label T-F 

units for each channel. The training samples are generated by mixing 100 utterances randomly 
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selected from the training part of the TIMIT database [9] and 100 nonspeech interferences [11] at 

0 dB. Feature extraction needs F0, which is extracted from clean speech utterances by Praat [3]. 

The IBM is generated with an LC of 0 dB and used to provide the desired output in training. All 

64 MLPs have the same architecture of 6 input nodes, one hidden layer of 5 nodes and 1 output 

node according to [14]. The hyperbolic tangent activation function is used for both hidden and 

output layers. Since our system adopts a 64-channel filterbank in peripheral processing, we halve 

the frequency range in neighbor based unit labeling to 4 and retrain the MLP classifier. In 

addition, the thresholds in initial mask estimation are set to 0.945. In testing, the tandem 

algorithm performs pitch estimation and voiced speech segregation jointly.  

 

III. UNVOICED SPEECH SEGREGATION 

The basic idea of our unvoiced speech segregation method is to capitalize on the segregated 

voiced speech to estimate interference energy. Since the estimated voiced binary mask contains 

inactive T-F units during voiced intervals, we utilize them to estimate noise energy and subtract it 

from the mixture during unvoiced intervals in order to form unvoiced segments. Before unvoiced 

segregation, we first remove periodic signals.    

 

A.  Periodic Signal Removal 

Unvoiced speech is aperiodic in nature. Therefore, the T-F units that contain periodic signals do 

not originate from unvoiced speech and should be removed. Specifically, we consider unit uc,m to 

be dominated by a periodic signal if either of the following two conditions is satisfied: uc,m is 

included in the segregated voiced stream, or the unit has a high cross-channel correlation. The 

second condition stems from the observation that T-F units dominated by a periodic signal tend to 

have high cross-channel correlations [33]. The cross-channel correlation is deemed high if it is 

above a certain threshold  

                                               ( , ) RC c m θ>  or ( , )E EC c m θ> .                                               (4) 

Here, �R and �E are thresholds for the response and envelope cross-channel correlations, 

respectively. To maintain a balance between periodic signal removal and unvoiced speech 
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preservation, the thresholds need to be carefully chosen. To find appropriate values, we vary both 

thresholds from 0.86 to 1 and calculate the percent of unvoiced speech energy loss. In this 

analysis, 100 speech sentences from the IEEE sentence database recorded by a single female 

speaker [17] are mixed with 15 nonspeech interferences (see Section IV for details) at 0 dB to 

generate mixtures. Different parts of an interfering signal are used in analysis and evaluation. 

Here, the first half of interference is mixed with speech for analysis or training, while in evaluation 

the second half is used. An interference is either cut or concatenated with itself to match the 

length of a corresponding speech signal. IBM is generated with an LC of 0 dB, and we use the 

portions in unvoiced intervals to represent ideally segregated unvoiced speech. To generate the 

unvoiced IBM, pitch contours are detected from clean speech using Praat. In addition, to exclude 

voiced speech which is not strongly periodic, we remove segments in the unvoiced IBM extending 

below 1 kHz. We calculate the percent of unvoiced speech lost with respect to total unvoiced 

speech in each noisy speech utterance and present the mean in Fig. 2. As shown in the figure, 

when both thresholds are set to 0.86, about 10% of unvoiced speech is wrongly removed. As the 

thresholds increase, less unvoiced speech is lost. To achieve a good compromise, we choose �R to 

be 0.9 and �E to be 0.96. As indicated by the figure, less than 2% of the unvoiced speech is lost in 

this case.  

Based on this criterion, we detect T-F units dominated by periodic signals and merge 

neighboring ones to form a mask. Together with the voiced binary mask obtained in Section II-B, 

we produce a periodic mask whereby active units are removed from the consideration of unvoiced 

speech grouping. Periodic signal removal serves two purposes. First, it reduces the possibility of 

false detection in unvoiced speech segregation. Second, the removal of periodic signal tends to 

make interference more stationary. Consequently, the noise estimated in voiced intervals is 

generalized to neighboring unvoiced intervals. To show how this process improves noise 

estimation, we calculate the root mean square (RMS) error of noise energy estimation for each 

channel with or without periodic signal removal. The RMS error is measured over unvoiced 

speech intervals, which are determined by the tandem algorithm. Here, 100 speech utterances 

different from those in the above analysis are randomly selected from the IEEE database and 

mixed with the bird chirp noise [11] at 0 dB for evaluation. Fig. 3 shows the mean RMS errors.  

The dotted line denotes the error with the cross-channel correlation thresholds set to 1, which 
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amounts to no periodic signal removal. In contrast, the solid line represents the error with the 

chosen thresholds. The RMS error with periodic signal removal is uniformly smaller than that 

without the removal, especially at high frequencies where the energy of bird chirp noise is 

concentrated. 

 

B.  Unvoiced Speech Segmentation Based on Spectral Subtraction 

After the removal of periodic signals, we deal with the mixture of only unvoiced speech and 

aperiodic interference. Obviously, the pitch-based feature vector in (3) cannot be used to 

segregate unvoiced speech. Our method first estimates the background noise and then removes it 

during unvoiced intervals. Without the periodic signals, we estimate the interference energy in an 

unvoiced interval by averaging the mixture energy within inactive T-F units in the two 

neighboring voiced intervals. For channel c, the interference energy (in dB) is estimated as 

 

 

Fig. 2. The unvoiced speech energy loss as a function of thresholds for response and envelope 

cross-channel correlations. The horizontal axes represent two thresholds �R and �E, and the 

vertical axis represents the percent of unvoiced speech energy loss. 
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where EdB(c,i) denotes the energy within uc,i in dB, and y(c,i) its estimated binary label. m1 and m2 

are the indices of the first and last frames of the current unvoiced interval respectively, and l1 and 

l2 the frame lengths of the preceding and succeeding voiced intervals, respectively. For the 

unvoiced interval at the start or end of an utterance, estimation is only based on the succeeding or 

preceding voiced interval, respectively. In the situation where no inactive unit exists in the 

neighboring voiced intervals for certain channels, we search for the two further neighboring 

voiced intervals and continue this process until at least one of them contains inactive units. All 

detected inactive units are then used for estimation. If no inactive unit exists in this channel, the 

mixture energy of the first 5 frames is averaged to obtain the noise estimate. Besides averaging, 

we have tried linear interpolation and smoothing spline interpolation [7], but got no better 

performance.  

Our segmentation method employs spectral subtraction, which is a widely used approach for 

enhancing signals corrupted by stationary noise [23]. Letting X(c,m) be noisy speech energy and 

 

 

Fig. 3. Mean RMS errors of noise energy estimation over frequencies for bird chirp noise. The 

overall estimation performance with the chosen thresholds (solid line) is better than that 

without periodic signal removal (dotted line). 

 

 



 11 

ˆ ( , )N c m  the estimated noise energy in uc,m, we estimate the local SNR (in dB) in this unit as 

                                  ( )10
ˆ ˆ( , ) 10log ( , ) ( , ) ( , )c m X c m N c m N c mξ

+
� 	= −
 �                                  (6) 

where the function [ ]x x
+ =  if 0x ≥  and [ ] 0x

+ = otherwise. Notice that ˆ( ( , ) /10)ˆ ( , ) 10 dBN c mN c m = . A 

T-F unit is then labeled as 1 if ( , )c mξ is greater than 0 dB, or 0 otherwise. Notice that estimating 

the local SNR using (6) is equivalent to performing power spectral subtraction [2], except that 

here we either keep or discard the mixture energy in uc,m depending on ( , )c mξ . We have 

investigated the over-subtraction technique proposed by Berouti et al. [2] to attenuate music 

noise, and found an over-subtraction factor of 2 to be a good tradeoff. Thus we double the noise 

                  

Fig. 4. Illustration of unvoiced speech segmentation via spectral subtraction. (a) Cochleagram 

of a female utterance, “The lamp shone with a steady green flame,” mixed with the bird chirp 

noise at 0 dB. (b) Voiced speech as well as periodic portions of interference detected in the 

mixture. (c) The combination of (b) and estimated noise energy in voiced and unvoiced 

intervals. (d) Candidate unvoiced speech segments after spectral subtraction. 

 

 

(c) (d) 

(a) (b) 
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estimate in (6) during labeling. Unvoiced speech segments are subsequently formed by merging 

neighboring active T-F units in the T-F domain. 

As an illustration, Fig. 4(a) shows a T-F representation of the 0-dB mixture of a female 

utterance, “The lamp shone with a steady green flame,” from the IEEE sentence database and the 

bird chirp noise, where a brighter unit indicates stronger energy. Fig. 4(b) shows the segregated 

voiced speech and the periodic portions of the interference detected using cross-channel 

correlation. Estimated noise in voiced and unvoiced intervals is shown in Fig. 4(c) together with 

detected periodic signals. Fig. 4(d) shows the extracted unvoiced speech segments based on the 

subtraction of Fig. 4(c) from Fig. 4(a) using (6).  

 

C.  Unvoiced Segment Grouping 

Spectral subtraction based segmentation captures most of unvoiced speech, but some segments 

correspond to residual noise. To extract only unvoiced speech segments and remove residual 

noise is the task of grouping. Before grouping, let us analyze the characteristics of unvoiced 

speech. An unvoiced fricative is produced by forcing air through a constriction point in the vocal 

tract to generate turbulence noise [30]. In English, unvoiced fricatives consist of the labiodental 

(/f/), dental (/�/), alveolar (/s/), and palatoalveolar (/�/). Except for the labiodental, the acoustic 

cavity of an unvoiced fricative is so small that resonance concentrates at high frequencies. For 

example, the alveolar fricative often has a spectral peak around 4.5 kHz, which corresponds to the 

natural frequency of its acoustic cavity. An unvoiced stop is generated by forming a complete 

closure in the vocal tract first and then releasing it abruptly [30]. At the stop release multiple 

acoustic events happen, including a transient, a burst of frication noise, and aspiration noise. As a 

result, the energy of an unvoiced stop usually concentrates in both middle (1.5 kHz–3 kHz) and 

high frequency bands (3 kHz–8 kHz). The unvoiced affricate, /t�/, can be considered as a 

composite of a stop and a fricative. In summary, the energy of unvoiced speech often concentrates 

in the middle and high frequency ranges. This property, however, is not shared by nonspeech 

interference. To explore spectral characteristics of unvoiced speech and noise segments, we 

analyze their energy distributions with respect to frequency. Specifically, lower and upper 

frequency bounds of a segment are used to represent its frequency span. Notice that our task is to 

segregate only unvoiced speech; therefore, we consider voiced speech that is not strongly periodic  
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as noise too. A statistical analysis is carried out using the 0-dB mixtures of 100 speech utterances 

and 15 interferences described in the first paragraph of Section III-A. Fig. 5(a) shows the 

normalized energy distribution of segments with respect to the segment lower bound and Fig. 5(b) 

the upper bound. In the plots, a white bar represents the aggregated energy of all unvoiced speech 

segments with a certain frequency bound and a black bar represents that of all interference 

segments. Energy bars are normalized to the sum of 1. For clear illustration, the bar with lower 

energy is displayed in front of the bar with higher energy for each frequency bound in the figure. 

The unvoiced IBM with an LC of 0 dB is used for ideal classification, i.e., segments with more 

than half of energy overlapping with the unvoiced IBM are considered as unvoiced speech and 

others as interference. We observe from the figure that unvoiced speech segments tend to reside 

at high frequencies while interference segments dominate at low frequencies. Interference is 

effectively removed at high frequencies probably because the corresponding noise estimate is 

relatively accurate due to weak voiced speech at these frequencies. Based on our analysis and 

acoustic-phonetic characteristics of unvoiced speech [30], we can simply select segments with a 

lower bound higher than 2 kHz or an upper bound higher than 6 kHz as unvoiced speech and 

remove others as noise. We call this grouping method thresholding. 

We can also formulate grouping as a hypothesis test and perform Bayesian classification. Let S 

 

                                

Fig. 5. Normalized energy distribution of unvoiced speech segments (white) and interference 

segments (black) over (a) segment lower bound and (b) segment upper bound. 

 

 

(a) (b) 
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denote the segment to be classified. The two hypotheses are H0: S is dominated by unvoiced 

speech, and H1: S is dominated by interference. For classification, we construct 3 features for 

segment S 

                                                              ( , , )S S
S L Uf f S=X                                                            (7) 

where S
Lf  and S

Uf  denote the frequency lower and upper bounds of S, respectively. The third 

feature is the size (the number of T-F units) of segment S. We retain S as unvoiced speech if 

                              0 1( | ) ( | )S SP H P H>X X .                                                 (8) 

As MLP directly estimates the a posterior probability [25], we train an MLP to estimate 

P(H0|XS); note that P(H1|XS)=1–P(H0|XS). Here, we adopt an SNR-based objective function in 

[18] for MLP training 

  2

,
( ( ) ( )) ( ) ( )

S S
J d S y S E S E S= − ⋅� �                                        (9) 

where E(S) denotes the energy in segment S, and d(S) and y(S) are the desired (binary) and actual 

MLP outputs, respectively. This objective function penalizes labeling errors in segments with 

higher energy more than those with lower energy, hence maximizing the overall SNR. The 

configuration of the MLP is the same as that in Section II-B except that the hidden layer has 3 

nodes as determined by 10-fold cross validation. The 0-dB mixtures described in the first 

paragraph of Section III-A are used for training and segments are compared with the unvoiced 

IBM to obtain desired labels. The performance of Bayesian classification is presented with that of 

simple thresholding in Section IV-A.  

In addition, we have tried to incorporate the prior probability ratio in classification as in [13] 

but obtain no better performance. We have also considered using Bayesian classification of 

acoustic-phonetic features in [13] to group unvoiced segments. The performance did not improve 

maybe because of the assumption of independence among frames within a segment. Our features, 

on the other hand, are extracted from the whole segment. In terms of dimensionality, the acoustic 

phonetic feature used in [13] is 128-dimensional while ours is only 3-dimensional. As a result, the 

MLP training for Bayesian classification using (7) is much faster.   
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IV. EVALUATION AND COMPARISON 

We evaluate the proposed algorithm using a noisy speech corpus composed of 100 utterances 

and 15 nonspeech interferences. The 100 test sentences are randomly selected from those of the 

IEEE sentences not used in training (see Section III-C). All utterances are downsampled from 20 

kHz to 16 kHz and each is mixed with an individual interference at the SNR levels of −5, 0, 5, 10, 

and 15 dB. The interference set comprises electric fan, white noise, crowd noise at a playground, 

crowd noise with clapping, crowd noise with music, rain, babble noise, rock music, wind, cocktail 

party noise, clock alarm, traffic noise, siren, bird chirp with water flowing, and telephone ring 

[13]. They cover a wide variety of real-world noise types. As mentioned in Section III-A, the first 

half of an interference is mixed with speech to create mixtures in training or analysis, while in 

testing the second half is used. 

The computational objective of our proposed system is to estimate the unvoiced IBM. Hence, 

we adopt the SNR measure in [14] and consider the resynthesized speech from the unvoiced IBM 

as the ground truth 

                                        ( )2 2
10SNR 10log [ ] ( [ ] [ ])I I En n

S n S n S n= −� � ,                          (10) 

where SI[n] and SE[n] are the signals resynthesized using the ideal and estimated unvoiced binary 

masks, respectively. The unvoiced IBM is determined by pitch contours extracted from clean 

speech signals using Praat. For estimation, pitch contours are detected from mixtures using the 

tandem algorithm. In both cases, an LC of 0 dB is used to generate the IBM for all SNR 

conditions. As mentioned earlier, to obtain only unvoiced IBM, segments extending below 1 kHz 

are removed unless they could correspond to unvoiced speech at high SNRs (above 10 dB) for 

some interferences. 

 

A. SNR Performance 

We evaluate the system performance based on simple thresholding described in Section III-C. 

To quantitatively evaluate the performance, an SNR gain is computed from the output SNR of 

segregated speech subtracted by the initial SNR of the mixture over unvoiced intervals. For each 

input SNR, the 1500 mixtures mentioned above are used for evaluation. The results are presented 

in the first row of Table I. Our system achieves an SNR gain of around 18.5 dB when the input 
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SNR is -5 dB. The SNR gain decreases gradually as the input SNR increases. On average, the 

system generates an unvoiced SNR gain of 10.9 dB across all input SNR levels. We have also 

evaluated the system performance with different over-subtraction factors but got no improvement. 

In particular, when the factor is greater than 3, the performance decreases gradually as the factor 

increases. It is probably because of the loss of unvoiced speech due to over-estimated noise.  

We also present the system performance with Bayesian classification in the second row of Table 

I. The classification performs comparably with simple thresholding. The lack of a significant 

improvement is probably because the two frequency bounds chosen empirically are already very 

effective. Since simple thresholding does not require any training, this grouping method should be 

more desirable in real applications.  

 

B. Comparisons 

We compare our system (simple thresholding) with the unvoiced speech segregation system 

proposed by Hu and Wang in [13], the only previous system directly dealing with unvoiced 

speech segregation to our knowledge. In their system, segmentation is performed by multiscale 

onset-offset analysis and grouping is based on Bayesian classification as mentioned earlier. We 

retrain their MLP classifier using the 100 speech utterances mixed with 15 nonspeech 

interferences described in the first paragraph of Section III-A. The training and test conditions of 

the Hu and Wang system match exactly those of our system, i.e., the first half of each interference 

is used in training while the second half is for testing. In training, the unvoiced IBM provides the 

desired output. For both methods, the tandem algorithm is used for voiced speech segregation. 

The results are shown by solid curves in Fig. 6. Our proposed algorithm performs better than their 

system with an average of 1.6 dB SNR improvement over all input SNR levels. In terms of 

computational complexity, the proposed algorithm is much simpler than the Hu and Wang 

TABLE I 
SNR GAIN (IN dB) OF GROUPING METHODS 

Input SNR (dB) 
 Grouping Method 

-5 0 5 10 15 
Thresholding 18.5 15.8 11.1 6.8 2.2 
Classification 18.5 15.9 11.1 6.8 2.1 
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algorithm. First, spectral subtraction based segmentation is more efficient than the multiscale 

onset-offset analysis since the latter needs to analyze the signal in different scales. Second, 

grouping based on simple thresholding is computationally much simpler. It requires no training for 

MLP based segment removal and classification, which is time-consuming with 128-dimensional 

feature vectors in [13]. We have also tried a supervised learning algorithm [18] for voiced speech 

segregation. The supervised learning algorithm performs a little better than the tandem algorithm 

with training using the 100 speech utterances mixed with 15 nonspeech interferences described in 

the first paragraph of Section III-A. As a result, one might expect unvoiced segregation 

performance to improve slightly. But we observed that the system employing the supervised 

learning algorithm obtains almost the same results. 

 

 

Fig. 6. Comparison in terms of SNR gain between the proposed algorithm and the Hu and 

Wang algorithm. Two kinds of pitch contours are used: 1) voiced speech and pitch contours 

detected using the tandem algorithm (solid line) and 2) voiced speech segregated using the 

supervised learning algorithm with ideal pitch contours (dotted line). 
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Errors in pitch tracking influence the determination of voiced and unvoiced intervals, hence 

likely degrading the unvoiced speech segregation performance. To evaluate how pitch tracking 

errors affect segregation performance, we perform unvoiced speech segregation using ideal pitch 

contours, which are extracted from clean speech utterances using Praat. As shown in Fig. 6, using 

ideal pitch contours in the supervised learning algorithm improves unvoiced speech segregation, 

and our system with simple thresholding obtains a larger SNR improvement over the Hu and 

Wang system: 2.8 dB on average.   

The insensitivity to different voiced speech segregation methods with detected pitch suggests 

that our noise estimation is not very sensitive to voiced mask estimation. To further test how 

robust our system is, we have applied ideal voiced segregation. Specifically, the estimated binary 

 

 

Fig. 7. SNR comparison between using estimated voiced binary mask and ideal voiced binary 

mask. Two pitch contours are used in voiced speech segregation: 1) pitch contours extracted 

by the tandem algorithm (solid line) and 2) ideal pitch contours extracted from clean speech 

utterance using Praat (dotted line).  
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mask is replaced by the IBM at voiced frames. As shown in Fig. 7, the system with ideal voiced 

mask information only performs slightly better. On average, it improves the SNR performance by 

only about 0.1 dB. With ideal pitch, the performance difference in terms of voiced mask is about 

0.4 dB. This comparison shows that our system is not much affected by estimated voiced binary 

mask. 

Since spectral subtraction plays a major role in the segmentation stage of our system, it is 

informative to compare our algorithm with speech enhancement methods. To isolate the effects of 

the grouping stage of our CASA based system, we apply spectral subtraction alone to segregate 

unvoiced speech, i.e., the segments generated using spectral subtraction with an over-subtraction 

factor of 2 are directly combined to form an unvoiced stream. In addition, we also compare with a 

Wiener algorithm based on a priori SNR estimation (Wiener-as), which is reported as the best 

 

Fig. 8. Comparison with two speech enhancement methods at different SNR levels. The two 

representative methods are spectral subtraction (SS) and a priori SNR based Wiener algorithm 

(Wiener-as).  
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performing speech enhancement algorithm in speech intelligibility evaluations [16]. In this case, 

we binarize the amplitude gain in Wiener estimation with the threshold of 0.5 to generate 

segments and form a binary mask (see [20]). In both methods, noise is estimated in the same way 

as explained in Section III-B except that no periodic signal removal is carried out. As in our 

method of obtaining the unvoiced IBM, we remove the portions of the estimated unvoiced mask 

below 1 kHz to evaluate unvoiced speech segregation performance.  

Fig. 8 shows the comparative results. As observed in the figure, the proposed algorithm 

performs much better than either of the two speech enhancement methods. In the case of using 

only spectral subtraction, the largest gap is about 10 dB when the input SNR is -5 dB and the gap 

is about 1.8 dB as the input SNR increases to 15 dB. The Wiener-as algorithm performs worse 

than spectral subtraction. We have also evaluated the SNR gains of the speech enhancement 

methods without binary masking, and only the Wiener-as method obtains about 1 dB 

improvement. Even in this case the performance gap from the proposed method is still large. It is 

worth noting that large gains at low input SNR levels are particularly useful for people with 

hearing loss [8]. Hence the need to improve SNR in these conditions is more acute than at high 

input SNRs.  

Motivated by the relationship between intelligibility and labeling errors in IBM estimation [20], 

we have also evaluated our system performance in terms of error percentages in unit labeling. The 

overall percentage of mask error is calculated as the average error rate per frame for entire 

speech, counting flips from 0’s to 1’s and from 1’s to 0’s, relative to the IBM. These error rates 

are given in Table II. We have also examined two different types of error, misses and false alarms, 

which have been shown to have different impacts on speech intelligibility with false alarms to be 

particularly harmful [20]. Specifically, we compute the miss error as the per-frame average 

percentage of active units wrongly labeled as inactive ones, and the false alarm error as the per-

frame average percentage of inactive units wrongly labeled as active ones. Results are also shown 

in Table II and indicate that miss errors are much more prevalent than false alarm errors in our 

system. In comparison with the overall rates of the two representative speech enhancement 

algorithms examined in [20], our algorithm achieves considerably lower error rates. 
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TABLE II 

AVERAGE PER-FRAME LABELING ERROR (%) IN IBM ESTIMATION 

 

 

 

 

 

 

 

V. DISCUSSION 

Unvoiced speech separation is a challenging task. Our proposed CASA system utilizes 

segregated voiced speech to assist unvoiced speech segregation. Specifically, the system first 

removes periodic signals from the noisy input and then estimates interference energy by averaging 

mixture energy within inactive T-F units in neighboring voiced intervals. The estimated 

interference is used by spectral subtraction to extract unvoiced segments, which are then grouped 

by either simple thresholding or Bayesian classification. A systematic comparison shows the 

proposed system outperforms a recent system in [13] over a wide range of input SNR levels. In 

addition, segmentation based on spectral subtraction is simpler and faster than multiscale onset-

offset analysis, and grouping based on simple thresholding does not need MLP training. Our 

CASA based approach also performs substantially better than speech enhancement methods, 

indicating the effectiveness of a grouping stage. 

In our study, the segregation performance is measured in terms of SNR gain in unvoiced 

intervals. Since unvoiced speech is generally much weaker than voiced speech in an utterance, 

high unvoiced SNR gains we have obtained will not directly translate to comparable 

improvements when measuring over whole utterances.  However, unvoiced speech accounts for a 

significant portion of total speech and is important for speech intelligibility [13]. The lack of 

separate treatment of unvoiced speech could be a main reason for the well-known lack of speech 

intelligibility improvement of speech enhancement methods [16]. 

We use a 64-channel gammatone filterbank in T-F analysis. Compared with systems employing 

Input SNR (dB)  
-5 0 5 10 15 

Overall 14.20 17.89 22.11 26.63 31.26 
Miss 70.37 60.45 57.09 55.88 55.47 

False alarm 2.62 3.56 4.56 5.61 6.08 
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128-channel filterbanks [13], [14], [18], the use of a 64-channel filterbank halves the computing 

time. In terms of segregation performance, we have observed comparable performance to that 

using a 128-channel filterbank. We have also reduced the number of channels in other algorithms 

used in our system, such as the tandem algorithm and supervised learning algorithm, to 64 and 

found similar performance. Those comparisons indicate that a 64-channel filterbank may be 

sufficient for T-F analysis in CASA systems, as in perceptual studies [35].  

Speech interference, which often occurs in a meeting or a daily conversation, is not considered 

in this study. To tackle this problem in our framework, a multipitch tracker would be needed and 

the system has to address the sequential grouping problem [29]. In [31], voiced-voiced separation 

and unvoiced-voiced (or voiced-unvoiced) separation have been studied, but not unvoiced-

unvoiced separation. Our future research will address multi-talker separation problem. 
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