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Abstract – Existing binaural approaches to speech segregation place an exclusive burden on

location information. These approaches can achieve excellent performance in anechoic con-

ditions but degrade rapidly in realistic environments where room reverberation corrupts lo-

calization cues. In this work we propose to integrate monaural and binaural processing to

achieve sequential organization and localization of speech in reverberant environments. The

proposed approach builds on monaural analysis for simultaneous organization, and combines

it with a novel method for generation of location-based cues in a probabilistic framework that

jointly achieves localization and sequential organization. We compare sequential organization

performance against a model-based system that uses only monaural cues and an exclusively

binaural system, and localization performance against two existing methods that do not utilize

monaural grouping. Results suggest that the proposed integration of monaural grouping and

binaural localization allows for improved source localization and robust sequential organization

performance in environments with considerable reverberation.

Index Terms – Sequential organization, binaural sound localization, monaural grouping, room

reverberation.
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1 Introduction

Most existing approaches to binaural or sensor-array based speech segregation have relied ex-

clusively on directional cues embedded in the differences between signals recorded by multiple

microphones [3, 31]. These approaches may be characterized as spatial filtering (or beam-

forming), which enhances the signal from a specific direction. Spatial filtering approaches can

be very effective in certain acoustic conditions. On the other hand, beamforming has well

known limitations. Chief among them is substantial performance degradation in reverberant

environments. Rigid surfaces reflect a sound source incident upon them, hence corrupting

directional cues [5].

In spite of the degradation of localization cues in reverberant environments, human listen-

ers are able to effectively localize multiple sound sources in such environments [16] and use

localization cues as one mechanism in auditory scene analysis (ASA) [4]. This perceptual

ability continues to motivate binaural approaches that attempt to utilize localization cues in

a manner that is robust to room reverberation. In this work we propose a framework that

integrates monaural and binaural analysis to achieve robust localization and segregation of

speech in reverberant environments.

In the language of ASA, the segregation problem is one of grouping sound components of the

mixture across frequency and across time into streams associated with the individual sources.

The terms simultaneous organization and sequential organization are used to refer to grouping

across frequency and across time, respectively. Our proposed system achieves simultaneous

organization using monaural cues. This allows locally extracted, unreliable binaural cues to be

integrated across frequency and short, continuous time intervals. This integration enhances

the robustness of localization cues in reverberant conditions, and robust localization cues

are in turn used to achieve sequential organization. Our computational framework is partly

motivated by psychoacoustic studies suggesting that binaural cues may not play a dominant

role in simultaneous organization, but are important for sequential organization [10–12]. Our

approach marks a significant departure from the dominant paradigm in binaural segregation

that relies solely on directional cues to achieve both simultaneous and sequential organization.

Prior work exploring the integration of monaural and binaural cues is limited. In [25],

localization cues are used to perform initial segregation in reverberant conditions. Initial

segregation provides a favorable starting point for estimating the pitch track of the target

voice, which is then used to further enhance the target signal. In [34], pitch and interaural

time difference (ITD) are used jointly in a recurrent timing neural network to achieve speech

segregation, but the focus is on speech in anechoic environments. In [9], pitch and ITD are

used to achieve localization of simultaneous speakers in reverberant environments. Our prior

work analyzes the impact of idealized monaural grouping on localization and segregation of

speech in reverberant environments [33]. The algorithm proposed here takes advantage of

recent developments in monaural segregation of voiced speech [17], provides a novel method
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for the generation of location-dependent binaural cues and integrates binaural cues within a

probabilistic framework to achieve localization and sequential organization.

Sequential organization is a challenging problem in speech segregation. Grouping compo-

nents of a mixture across disparate regions of time to form a cohesive stream associated with a

source is vital for real-world deployment of a segregation system. Using binaural cues is attrac-

tive because monaural features alone may not be able to solve the problem. For example, in a

mixture of two male speakers who have a similar vocal range, pitch-based features cannot be

used to group components of the mixture that are far apart in time. As a result, feature-based

monaural systems have largely avoided sequential organization by focusing on short utterances

of voiced speech [29] or assuming prior knowledge of the target signal’s pitch [20], or achieved

sequential organization by assuming speech mixed with non-speech interference [19].

Shao and Wang explicitly addressed sequential organization in a monaural system using a

model-based approach [27]. In this work they use feature-based monaural processing to per-

form simultaneous organization of voiced speech, and a speaker recognition-based approach to

perform sequential organization of the already formed time-frequency segments. They provide

extensive results on sequential organization performance in co-channel speech mixtures as well

as speech mixed with non-speech intrusions. However, they do not address sequential organi-

zation in reverberant environments, and mismatch between training and testing conditions is

known to cause performance degradation in model-based systems [7].

In the following section we provide an overview of the proposed architecture. In Section

3 we discuss monaural simultaneous organization of voiced speech. Section 4 outlines our

methods for extraction of binaural cues and for calculating azimuth-dependent cues, and a

mechanism for weighting cues based on their expected reliability. In Section 5, we formulate

joint sequential organization and localization in a probabilistic framework. We assess both

localization and sequential organization performance, and compare the proposed system to

existing methods in Section 6. We conclude with a discussion in Section 7.

2 System Overview

The proposed system uses both monaural and binaural processing to achieve sequential or-

ganization of voiced speech. A diagram is provided in Figure 1. The input to the system

is a binaural recording of a speech source mixed with one or more interfering signals. The

recordings are assumed to be made using a dummy head with two microphones inserted in

the ears, such as KEMAR [14]. Since a human listener is implied, we will refer to the two

mixture signals as the left ear and right ear signals, denoted by l[n] and r[n] respectively.

Both signals are first passed through a bank of 128 gammatone filters [23] with center

frequencies from 50 to 8000 Hz spaced on the equivalent rectangular bandwidth scale, where

we denote the signals for frequency channel c as lc[n] and rc[n]. Each filtered signal is processed

using 20-ms time frames with a frame shift of 10-ms to create a cochleagram of time-frequency
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Figure 1: Diagram of the proposed system. Source signals are assumed to be recorded by a binaural microphone
and are fed as input to the system. Cochlear filtering is applied to both signals. Monaural processing
generates simultaneous streams from the Better Ear Signal. Both signals are used to generate azimuth cues.
Simultaneous streams and azimuth cues are combined in the final localization and sequential organization
stage.

(T-F) units [31].

In the first stage of the system, the tandem algorithm of Hu and Wang [17, 18] is used to

process the better ear signal and form simultaneous streams. By better ear signal, we mean

the signal in which the input SNR is higher. A simultaneous stream refers to a collection of T-

F units over a continuous time interval that are thought to be dominated by the same source

signal. The tandem algorithm performs simultaneous organization of voiced speech using

monaural cues such as harmonicity and amplitude modulation. Unvoiced speech presents a

greater challenge for monaural systems and is not dealt with in this study (see [19]).

Binaural cues are extracted that measure differences in timing and level between corre-

sponding T-F units of the left and right ear signals. A set of trained, azimuth-dependent

likelihood functions are then used to map from timing and level differences to cues related

to source location. Azimuth cues are integrated over simultaneous streams in a probabilistic

framework to achieve sequential organization and to estimate the underlying source locations.

The output of the system is a set of streams, one for each source in the mixture, and the

azimuth angles of the underlying sources.

3 Simultaneous Organization

Simultaneous organization in computational auditory scene analysis (CASA) systems forms

simultaneous streams, each of which may contain disconnected T-F segments across a continu-

ous time interval. We use the tandem algorithm proposed in [17,18] to generate simultaneous

streams for voiced regions of the better ear mixture. The tandem algorithm iteratively es-

timates a set of pitch contours and associated simultaneous streams. In a first pass, T-F

segments that contain voiced speech are identified using cross-channel correlation of correl-

ogram responses. Up to two pitch points per time frame are estimated by finding peaks in

the summary correlogram created from only the selected, voiced T-F segments. For each

pitch point found, T-F units that are consistent with that pitch are identified using a set of

trained multi-layer perceptrons (one for each frequency channel). Pitch points and associated
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sets of T-F units are linked across time to form pitch contours and associated simultaneous

streams using a continuity criterion that measures pitch deviation and frequency overlap.

Pitch contours and simultaneous streams are then iteratively refined until convergence.

We focus on two talker mixtures in reverberant environments, and find that in this case the

continuity criterion used in the tandem algorithm for connecting pitch points and simultaneous

streams across time is too liberal. We find that performance improves if we break pitch

contours and simultaneous streams when the pitch deviation between time frames is large.

Specifically, let τ1 and τ2 be pitch periods from the same contour in neighboring time frames.

If | log2(τ1/τ2)| > 0.08, the contour and associated simultaneous streams are broken into two

contours and two simultaneous streams. The value of 0.08 was selected on the basis of informal

analysis, and was not specifically tuned for optimal performance on the data set discussed in

Section 6.

An example set of pitch contours and simultaneous streams are shown in Figure 2 for a

mixture of two talkers in a reverberant environment with 0.4 sec. reverberation time (T60).

There are a total of 27 contour and simultaneous stream pairs shown. The cochleagram of the

mixture is shown in 2(a). In 2(b), detected pitch contours are shown by alternating between

circles and squares, while ground truth pitch points generated from the pre-mixed reverberant

signals are shown as solid lines. In Figure 2(c), each gray level corresponds to a separate

simultaneous stream. One can see that simultaneous streams may contain multiple segments

across frequency but are continuous in time.

4 Binaural Processing

In this section we describe how binaural cues are extracted from the mixture signals and pro-

pose a mechanism to translate these cues into information about the azimuth of the underlying

source signals. We also discuss a method to weight binaural cues according to their expected

reliability.

4.1 Binaural Cue Extraction

Two primary binaural cues used by humans for localization of sound sources are interaural

time difference (ITD) and interaural level difference (ILD) [2]. We calculate ITD in individual

frequency bands using the normalized cross-correlation by first computing,

C(c, m, τ) =

∑Tn−1
n=0 lc[m

Tn

2
− n]rc[m

Tn

2
− n − τ ]

√

∑Tn−1
n=0 (lc[m

Tn

2
− n])2

√

∑Tn−1
n=0 (rc[m

Tn

2
− n − τ ])2

,

where τ is the time lag for the correlation, c and m index frequency channels and time frames,

respectively, and Tn denotes the number of samples per time frame. The ITD is then defined

as the time lag that produces the maximum peak in the normalized cross-correlation function,
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(c) Simultaneous streams

Figure 2: Example of multi-pitch detection and simultaneous organization using the tandem algorithm. (a)
Cochleagram of a two-talker mixture. (b) Ground truth pitch points (solid lines) and detected pitches (circles
and squares). Different pitch contours are shown by alternating between circles and squares. (b) Simultaneous
streams corresponding to different pitch contours are shown with varying gray-scale values.

6



OSU Dept. of Computer Science and Engineering Technical Report #50, 2009

or,

τc,m = arg max
τ∈T

C(c, m, τ), (1)

where T denotes the set of peaks in C(c, m, τ).

ILD corresponds to the energy ratio in dB between the two signals in corresponding T-F

units.

λc,m = 10 log10

(

∑Tn−1
n=0 (lc[m

Tn

2
− n])2

∑Tn−1
n=0 (rc[m

Tn

2
− n])2

)

. (2)

4.2 Azimuth-Dependent ITD-ILD Likelihood Functions

If one assumes binaural sensors in an anechoic environment, a given source position relative

to the listener’s ears will produce a specific, frequency dependent set of ITDs and ILDs for

that listener. In order to effectively integrate information across frequency for a given source

position, these patterns must be taken into account. Further, integration of ITD and ILD

cues extracted from reverberant mixtures of multiple sources should account for deviations

from the free-field patterns.

In this work we focus on a subset of possible source locations. Specifically, we restrict the

source signals to be in front with elevation of 0◦. As a result, source localization reduces to

azimuth estimation in the interval [−90◦, 90◦]. To translate from raw ITD-ILD information

to azimuth, we train a joint ITD-ILD likelihood function, Pc(τc,m, λc,m|φ), for each azimuth,

φ, and frequency channel, c. Likelihood functions are trained on single-source speech in

various room configurations and reverberation conditions using kernel density estimation [28].

The room size, listener position, source distance to listener and reflection coefficients of the

wall surfaces are randomly selected from a pre-defined set of 540 possibilities. An ITD-ILD

likelihood function is generated for each of 37 azimuths, [−90◦, 90◦] spaced by 5◦, and 128

frequency channels with center frequencies from 50 to 8000 Hz. With these functions, we can

translate the ITD-ILD cues in a given T-F unit into an azimuth-dependent likelihood curve.

Due to reverberation, we do not expect the maximum of the likelihood curve in each T-F unit

to be a good indication of the dominant source’s azimuth, but hope that a good indication of

the dominant source’s azimuth emerges through integration over a simultaneous stream.

The likelihood distributions capture the frequency dependent pattern of ITDs and ILDs

for a specific azimuth and the multi-peak ambiguities present at higher frequencies. Each

distribution has a peak corresponding to the free-field cues for that angle, but also captures

common deviations from the free-field cues due to reverberation. We show three distributions

in Figure 3 for azimuth 25◦. Note that, in addition to the above points, the azimuth-dependent

distributions capture the complementary nature of localization cues [2] in that ITD provides

greater discrimination between angles at lower frequencies (note the large ILD variation in the

400 Hz example) and ILD provides greater discrimination between angles at higher frequencies

(note the large ITD variation in the 2500 Hz example).
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Figure 3: Examples of ITD-ILD likelihood functions for azimuth 25◦ at frequencies of 400, 1000 and 2500 Hz.
Each example shows the log-likelihood as a surface with projected contour plots that show cross sections of
the function at equally spaced intervals.

Our approach is adapted from the one proposed in [24]. In that system ITD and ILD are

directly used to indicate whether or not the target source is dominant in each T-F unit. The

method is developed with a simple idea in mind: an ITD-ILD pair measured from the mixture

will be close to the target’s free-field ITD-ILD when the target is dominant. To utilize this

observation, Roman et al. train two ITD-ILD likelihood functions for each frequency channel,

Pc(τc,m, λc,m|H0) and Pc(τc,m, λc,m|H1), where H0 denotes the hypothesis that the target signal

is stronger than the interference signal in unit uc,m, and H1 that the target is weaker. Mixtures

are used for training where the pre-mixed target and interference signals are used to determine

if a T-F unit satisfies H0 or H1. The distributions Pc(τc,m, λc,m|H0) and Pc(τc,m, λc,m|H1) are

trained for each target/interference angle configuration. The ITD search space is limited

around the expected free-field target ITD in both training and testing to avoid the multi-peak

ambiguity in higher frequency channels. For a test utterance, the azimuths of both target

and interference sources are estimated. Given these angles, the appropriate set of likelihood

distributions is selected. ITDs (within the limited search range) and ILDs are calculated for

each T-F unit of the mixture and the maximum a posteriori decision rule is used to estimate

a binary mask for the target source.

There are two primary reasons for altering the method in [24] to the one proposed here.

First, our proposed approach lowers the training burden because likelihood functions are

trained for each angle individually, rather than as combinations of angles. Second, the fact

that we do not limit the ITD search space in training allows us to use the likelihood func-

tions in estimation of the underlying source azimuths, rather than requiring a preliminary

stage to estimate the angles. We show in Section 6.2 that our proposed localization method,

which utilizes the ITD-ILD likelihood functions, performs significantly better than the method

proposed in [24].

Because we do not limit the ITD search space, our approach does not attempt to resolve the

multi-peak ambiguity inherent in high frequency ITD calculation at the T-F unit level. The

lack of one-to-one mapping from phase to time in the high frequency channels is captured in the
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likelihood functions (see Figure 3). The ambiguity between sources originating from different

azimuths is naturally resolved when integrating across frequency within a simultaneous stream.

4.3 Cue Weighting

In reverberant recordings, many T-F units will contain cues that differ significantly from free-

field cues. Although these deviations are incorporated in the training of the ITD-ILD like-

lihood functions described above, including a weighting function or cue selection mechanism

that indicates when an azimuth cue should be trusted can improve localization performance.

Motivated by the precedence effect [21], we incorporate a simple cue weighting mechanism

that identifies strong onsets in the mixture signal. When a large increase in energy occurs,

and shortly thereafter, the azimuth cues are expected to be more reliable. We therefore gener-

ate a weight, wc,m, associated with uc,m that measures the change in signal energy over time.

First, we define a recursive method to measure the average signal energy in both left and right

channels as follows,

ec[n] = α(lc[n]2 + rc[n]2) + (1 − α)ec[n − 1]. (3)

Here α ∈ [0, 1] and α = 1
Tfs

, where T denotes the time constant for integration and fs is the

sampling frequency of the signals. We set T = 10-ms in this study. We then calculate the

percent of change in energy between samples and average over an integration window to get,

wc,m =
1

Tn

Tn−1
∑

n=0

ec[m
Tn

2
− n] − ec[m

Tn

2
− n − 1]

ec[m
Tn

2
− n − 1]

. (4)

wc,m is then normalized over each mixture to have values between 0 and 1.

We have found measuring change in energy using this method to provide better results than

simply taking the change in average energy from unit to unit, or taking the more traditional

derivative of the signal envelope [31]. We have also found better performance by keeping only

those weights above a specified threshold. The difficulty with a fixed threshold however, is

that one may end up with a simultaneous stream with no unit above the threshold. To avoid

this we set a threshold for each simultaneous stream so that the T-F units exceeding the

threshold retain 25% of the signal energy in the simultaneous stream. We have found that the

system is not particularly sensitive to the value of 25% and that values between about 15%

and 40% give similar performance in terms of sequential organization.

Alternative selection mechanisms have been proposed in the literature [9,13,32]. Faller and

Merimaa proposed interaural coherence (IC) as a cue selection mechanism [13]. IC is defined

as the maximal value of the cross-correlation function, or, C(c, m, τc,m). They suggest that

when the IC value is high for a given T-F unit, then the binaural cues associated with that

unit can be trusted, and propose a thresholding mechanism to select T-F units with reliable

cues. In preliminary experiments we found the proposed method to outperform selection

9
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methods based on IC as a high IC value does not necessarily ensure a reliable ITD and

ILD. Room acoustics are typically modeled using linear, time-invariant filters. If a sinusoidal

signal is passed through such a filter, the output is also sinusoidal but with altered phase

and amplitude. As a result, reverberant left and right room impulse response functions for

a certain azimuth can produce perfectly coherent sinusoids with a different relative ITD and

ILD than anechoic left and right room impulse response functions for the same azimuth. This

produces T-F units that have a high IC value with ITD and ILD cues that do not indicate

the azimuth of the underlying source.

The method proposed in [32] uses ridge regression to learn a finite-impulse response filter

that predicts localization precision for single-source reverberant speech in stationary noise.

This method essentially identifies strong signal onsets, as does our approach, but requires

training. The study in [9] finds that a precedence motivated cue weighting scheme performs

about as well as two alternatives on a database of two talkers in a small office environment.

5 Localization and Sequential Organization

As described above, the first stage of the system generates simultaneous streams for voiced

regions of the better ear mixture and extracts azimuth-dependent cues for all T-F units us-

ing the left and right ear mixtures. In this section we describe the source localization and

sequential organization process. The goal of this stage is to correctly label the simultaneous

streams as being target or interference dominant and to estimate the azimuths of the under-

lying sources. Our approach jointly determines the source angles and simultaneous stream

labels in a maximum likelihood framework, which is inspired by the model-based sequential

organization scheme proposed in [26].

Let N be the number of sources in the mixture, and I be the number of simultaneous

streams formed using monaural analysis. Denote the set of all possible azimuths as Φ and

the set of simultaneous streams as S = {s1, s2, ..., sI}. Let Y be the set of all N I sequential

organizations, or labelings, of the set S and y be a specific organization. We seek to maximize

the joint probability of a set of angles and a sequential organization given the observed data,

D. This can be expressed as,

φ̂0, . . . , φ̂N−1, ŷ = arg max
φ0,...,φN−1∈Φ,y∈Y

P (φ0, . . . , φN−1, y|D). (5)

For simplicity, assume that N = 2 and apply Bayes rule to get,

φ̂0, φ̂1, ŷ = arg max
φ0,φ1∈Φ,y∈Y

P (D|φ0, φ1, y)P (φ0, φ1, y)

P (D)
,

= arg max
φ0,φ1∈Φ,y∈Y

P (D|φ0, φ1, y), (6)

10
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assuming that all angles and sequential organizations are equally likely.

Now, let S0 be the set of simultaneous streams associated with φ0 and S1 be the set of

simultaneous streams associated with φ1 by y. Using ITD and ILD as the observed mixture

data, and assuming independence between simultaneous streams and between T-F units of

the same simultaneous stream, we can express Equation (6) as,

φ̂0, φ̂1, ŷ = arg max
φ0,φ1∈Φ,y∈Y

(
∏

si∈S0

∏

uc,m∈si

Pc(τc,m, λc,m|φ0) ·
∏

sj∈S1

∏

uc,m∈sj

Pc(τc,m, λc,m|φ1))

One can express the above equation as two separate equations that can be solved simulta-

neously in one polynomial-time operation as,

φ̂0, φ̂1 = arg max
φ0,φ1∈Φ

(

I
∑

i=1

max
k∈{0,1}

(
∑

uc,m∈si

log(Pc(τc,m, λc,m|φk)))), (7)

ŷi = arg max
k∈{0,1}

(
∑

uc,m∈si

log(Pc(τc,m, λc,m|φk))), (8)

where ŷi denotes the label of si. The key observation in moving to Equations (7) and (8) is

that the majority of sequential organizations in the set Y cannot maximize the likelihood as

expressed in Equation (7). For a given set of angles, if one assumes independence between

simultaneous streams as in Equation (7), then the sequential organization that maximizes the

likelihood is the organization where the likelihood of each simultaneous stream is maximized

independently.

Incorporating the weighting parameter defined in Section 4.3, Equations (7) and (8) be-

come,

φ̂0, φ̂1 = arg max
φ0,φ1∈Φ

(
I
∑

i=1

max
k∈{0,1}

(
∑

uc,m∈si

wc,m log(Pc(τc,m, λc,m|φk)))), (9)

ŷi = arg max
k∈{0,1}

(
∑

uc,m∈si

wc,m log(Pc(τc,m, λc,m|φk))). (10)

For the case with N > 2, use k ∈ {0, 1, . . . , N − 1} rather than k ∈ {0, 1} in both Equations

(9) and (10). The complexity of the search space is I|Φ|N , which is reasonable when the

number of sources of interest is relatively small and the size of the azimuth space is moderate.

In our experiments in Section 6, |Φ| = 37 and N = 2.
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6 Evaluation and Comparison

In this section we evaluate source localization and sequential organization of the proposed

system. We analyze localization performance with and without the proposed weighting mech-

anism and compare the proposed method to two existing methods in various reverberation

conditions. We also evaluate sequential organization performance in various reverberation

conditions and compare to a model-based approach and an exclusively binaural approach.

6.1 ITD-ILD Likelihood Training and Mixture Generation

We use the ROOMSIM package [8] to generate impulse responses that simulate binaural input

at human ears. This package uses measured head-related transfer function (HRTF) data from

a KEMAR dummy head [14] in combination with the image method for simulating room

acoustics [1]. We generate a training and a testing library of binaural impulse responses for 37

direct sound azimuths between −90◦ and 90◦ spaced by 5◦, and 7 T60 values between 0 and 0.8

seconds. In the training library, 3 room size configurations, 3 source distances from the listener

and 5 listener positions in the room are used. In the testing library, 2 room size configurations

(different from those in training), 3 source distances from the listener and 2 listener positions

(different from those in training) are used. For training the ITD-ILD likelihood distributions,

speech signals randomly selected from the TIMIT database [15] are convolved with a randomly

selected impulse response pair from the training library (for a specified angle). Training is

performed over 100 reverberated signals for each of the 37 azimuths.

For all testing mixtures we select both a target and interference speech signal from the

TIMIT database, pass the signals through an impulse response pair from the testing library

for a desired azimuth and room reverberation time, and sum the resulting binaural target and

interference signals to create a binaural mixture. Two hundred mixtures are generated for

each of 7 reverberation conditions: T60 = 0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8 seconds. Each mixture

contains two source signals, where a room, source distance and listener position are randomly

selected and applied to both sources, and source azimuths are selected randomly to be between

10◦ and 120◦ apart. The average azimuth spacing over each set of 200 mixtures is about 53◦.

Speech utterances, azimuths and room conditions remain constant across different T60 times.

Only the reflection coefficient of the wall surfaces was changed to achieve the selected T60. The

SNR of each mixture is set to 0 dB using the dry, monaural TIMIT utterances. This results

in better ear mixtures that average 2.8 dB in anechoic conditions down to 1 dB in 0.8 sec.

T60. Mixture lengths are determined using the target utterance with the interference signal

either truncated or concatenated with itself to match the target length. In order to make a

comparison to the model-based approach (discussed further in Section 6.3), the speakers used

for the test mixtures are drawn from the set of 38 speakers in the DR1 dialect region of the

TIMIT training database.
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Figure 4: Azimuth estimation error averaged over 200 mixtures, or 400 utterances, for various reverberation
times. Results are shown using the proposed approach with and without cue weighting, and two alternative
approaches.

6.2 Localization Performance

In this section we analyze the localization accuracy of the method described in Section 5.

Specifically, we measure average azimuth estimation error with or without cue weighting. We

also compare localization performance to two existing methods for localization of multiple

sound sources, as proposed in [22, 24].

The approach proposed by Liu et al. in [22], termed the stencil filter, uses Fourier anal-

ysis and assumes two omni-directional microphones. ITDs are detected for each frequency

bin and time frame and are counted as evidence for a particular azimuth if the ITD falls

along the angle’s “primary” or “secondary” traces. The primary trace is simply the predicted

ITD for that angle, which is a constant function of frequency if one assumes omni-directional

microphones. The secondary traces are due to the time/phase ambiguity at higher frequen-

cies where the wavelengths of the signal are shorter than the distance between microphones.

For comparison on the database described, some changes were necessary to account for the

(somewhat) frequency-dependent nature of ITDs as detected by a binaural system and the

discrete azimuth space. Further, because angles are assumed constant over the length of the

mixture, azimuth responses from the stencil filter were integrated over all time frames for

added accuracy and the two most prominent peaks were selected as the underlying source

angles.

The method proposed in [24] computes a “skeleton” cross-correlogram of the mixture sig-

nal in which the time-lag dimension is warped to azimuth using a learned set of monotonic

functions. The response is then integrated across time and frequency and again, the two most

prominent peaks in the response are selected as the underlying source angles. The skeleton

aspect of the approach narrows broad peaks in a cross-correlogram in order to increase the

estimation resolution, primarily for when more than one source azimuth is being estimated.
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Average azimuth error using all four approaches is shown in Figure 4. Estimation is per-

formed for 400 source signals (2 in each of 200 mixtures) and for 7 reverberation times. The

results indicate that including weights associated with signal onsets improves azimuth estima-

tion when significant reverberation is present. We can also see that both proposed methods

outperform the existing methods for reverberation times of 200 ms or larger. The improvement

relative to the skeleton cross-correlogram method is over 15◦ in highly reverberant conditions,

and over 5◦ relative to the stencil filter approach. In anechoic conditions and 0.1 sec. T60, all

methods achieve roughly 1◦ average error.

The advantage of the proposed system is that azimuth-dependent cues are not integrated

over the entire mixture, as they are in the two existing systems used for comparison. The com-

bination of monaural grouping, and localization within the sequential organization framework

integrates azimuth-dependent cues over a subset of the mixture in which a single source is con-

sidered dominant. In this way, voiced speech segregation and localization are jointly achieved.

We found that simply integrating the azimuth cues across time and frequency to form an

azimuth-dependent curve and selecting the two most prominent peaks yielded performance

comparable to the stencil filter approach.

6.3 Sequential Organization Performance

The primary task of our proposed system is to perform sequential organization, or to generate

a set of source-dependent labels for the simultaneous streams formed using monaural analysis.

To measure performance on this task we use the ideal binary mask (IBM). The IBM has been

proposed as the computational goal of CASA systems [30] and has been shown to dramatically

improve speech intelligibility when applied to noisy mixtures [6]. The IBM is a binary labeling

of mixture T-F units such that when target energy is stronger than interference energy, the

T-F unit is labeled with 1, and when target energy is weaker, the T-F unit is labeled with

0. Note that the IBM labels not only T-F units corresponding to voiced speech, but also

those corresponding to unvoiced speech. We evaluate sequential organization performance

by finding the percentage of mixture energy contained in the simultaneous streams that is

correctly labeled by the proposed approach, where ground truth labeling of a T-F unit in a

simultaneous stream is generated using the IBM of the better ear mixture. We measure the

mixture energy in dB.

We compare performance against two “ceiling” measures that incorporate ideal knowledge,

to a recent model-based system [27], and to a system that exclusively uses binaural cues. We

refer to the first ceiling performance measure as ideal sequential organization (ISO). In this

case, a target/interference decision is made for each simultaneous stream based on whether

the majority of the mixture energy is labeled target or interference by the IBM. We refer

to the second ceiling performance measure as ground truth pitch (G.T. Pitch). In this case,

we label each simultaneous stream based on the proximity of its associated pitch contour
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Table 1: Percent of correctly labeled simultaneous stream energy in various reverberation conditions.

T60 (sec.) 0 0.1 0.2 0.3 0.4 0.6 0.8

ISO 88.0 88.4 88.7 88.9 88.7 88.2 87.8

G.T. Pitch 86.7 87.1 87.0 87.2 86.8 85.7 85.1

Model-based 77.6 78.3 78.1 77.1 75.1 72.1 71.4

Binaural 89.4 90.4 84.5 79.0 75.1 70.1 66.9

Proposed 85.1 85.8 86.9 86.4 85.2 82.4 79.7

to the ground truth target or interference pitch points. We generate ground truth target

and interference pitch points by feeding the pre-mixed, reverberant target and interference

signals into the tandem algorithm. Each detected pitch point from the mixture receives a

target/interference label based on its proximity to the ground truth target and interference

pitches in that frame. To account for octave errors, if a detected pitch point is not close

enough (within a specified threshold) to either the ground truth target or interference pitch

points, but a doubling or halving of the detected value is close enough, we label that pitch

point according to the doubled or halved value. The label of the contour takes the label of

the majority of the frame based labels for that contour.

The model-based system uses pre-trained speaker models to perform sequential organi-

zation of simultaneous streams for voiced speech [27]. Speaker models are trained using

an auditory feature, gammatone frequency cepstral coefficients, and the system incorporates

missing data reconstruction and uncertainty decoding to handle simultaneous streams that

do not cover the full frequency range. The system is designed for anechoic speech trained

in matched acoustic conditions. To account for both the azimuth-dependent HRTF filtering

and reverberation contained in the mixture signals used in our database, some adjustments

were made. First, we train speaker models for each of the reverberation conditions that will

be seen in testing. For each of the 38 speakers, we select 7 out of 10 utterances for training,

generate 10 variations of each of these utterances with randomly selected azimuths for each of

the 7 reverberation times. This helps to minimize the mismatch between training and testing

conditions, although as mentioned above, the impulse responses used in training are differ-

ent from those in testing. We found this approach to give better performance than feature

compensation methods (e.g. cepstral mean subtraction, and cepstral mean subtraction and

variance normalization) for mismatched training and testing conditions.

In [27], a background model is used to allow the system to process speech mixed with

multiple speech intrusions or non-speech intrusions. Since we focus on the two-talker case, we

found that assuming both speakers are known produces better results than using a generic

background model. Incorporating this prior knowledge into the model-based system ensures

that we are comparing to a high level of performance potentially achievable by the model-based

system.
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The binaural system we use for comparison incorporates the azimuth-dependent likelihood

functions described in Section 4.2, but labels each T-F unit independently. Although the

training paradigm for the likelihood functions is different, this is similar to the system in [24],

but more appropriate for reverberant environments. This system does not incorporate the

simultaneous streams generated using monaural processing. Whereas our proposed system

makes a binary decision about each simultaneous stream as a whole, the binaural system

makes a binary decision about each T-F unit independently. For the purpose of comparison,

we still measure the percentage of correctly labeled mixture energy within the simultaneous

streams, even though the exclusively binaural approach is able to generate a binary mask

for the entire mixture. This comparison is informative in terms of revealing the amount of

reverberation necessary to corrupt binaural cues, and indicates the usefulness of monaural

analysis.

In Table 1 we show the sequential organization performance of the proposed system, the

model-based system, the binaural system and the two ideal labeling schemes. The ceiling

performance measurement achieved by ISO indicates the quality of the simultaneous streams

themselves. Any decrease below 100% when using the IBM to generate labels at the simul-

taneous stream level indicates that the simultaneous streams do not exclusively contain units

dominated by the same source. At all levels of reverberation the simultaneous streams have, on

average, 88.4% correctly grouped mixture energy. In low to moderate reverberation conditions,

the error introduced by our system is, on average, about 2.7%. In the two most reverberant

conditions, our system introduces about 7% of the error. The performance improvement over

the model-based system is significant, ranging between about 9.5-14% relative improvement

depending on the amount of reverberation. This is notable, especially considering that the

model-based results incorporate prior knowledge of the two speakers contained in the mixture

and training on reverberant mixtures. We can also see that in conditions with T60 of 0.2 sec.

and above, the proposed system outperforms the exclusively binaural labeling. The transition

between 0.1 and 0.2 sec. T60 marks the point at which the binaural cues become corrupted

enough that monaural analysis improves performance. In anechoic and T60 = 0.1 sec. con-

ditions, the binaural labeling outperforms even the ideal sequential organization. Note that

this is possible because the binaural labeling operates on the individual T-F units whereas

the ISO is applied at the simultaneous stream level. This confirms why it is so attractive to

use binaural cues at the exclusion of monaural cues in constrained acoustic conditions. At

T60 = 0.1 sec., the average direct-to-reverberant energy ratio is over 45 dB, which although

not entirely anechoic, still represents very unreverberant conditions. In the test cases that

resemble conditions found in everyday life, where average direct-to-reverberant energy ratio

ranges from 5.8 dB at 0.3 sec. T60 to -4.1 dB at 0.8 sec. T60, the proposed method provides a

relative improvement of 14.6% over the exclusively binaural method.

We provide further analysis of the proposed method and the exclusively binaural method

in Figure 5. Here we show performance of each approach as a function of spatial separation
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Figure 5: Performance for the proposed method (solid) and the binaural method (dotted) as a function of
spatial separation between sources.

between sources. Results are calculated over the 800 mixtures with T60 between 0.3 and 0.8

sec. Boxplots are shown for mixtures with spatial separation of less than or equal to 30◦,

between 30◦ and 60◦, between 60◦ and 90◦, and separation of greater than 90◦. The upper

and lower edges of each box represent the upper and lower quartile ranges, the middle line

shows the median value and the whiskers extend to the most extreme values within 1.5 times

the interquartile range. Results for the proposed system are shown with solid lines, and

those for the binaural system are shown with dotted lines. We can see that beyond improved

performance overall, the proposed method is less sensitive to close spatial proximity. For our

system, only the performance of mixtures with 30◦ or less shows notable degradation relative

to the other groups. When using binaural cues alone, the azimuth separation between sources

has a much larger impact on performance.

7 Concluding Remarks

The results in the previous section illustrate that integration of monaural and binaural analysis

allows for robust localization performance, which enables sequential organization of speech in

environments with considerable reverberation. The proposed method outperforms a model-

based approach that utilizes only monaural cues and an exclusively binaural approach in all

but the least reverberant conditions. We have also shown that incorporation of monaural

grouping improves localization performance over two existing methods.

The discrete azimuth space used in this study avoids two potential issues. First, the

azimuth-dependent ITD-ILD likelihood functions are manageable in number (37 for each fre-

quency channel in this study). Second, the joint search over all possible azimuths is com-
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putationally feasible. In the case of a more finely sampled or continuous azimuth space,

or a localization space that includes elevation, one would need to carefully consider how to

overcome both issues. To overcome the need for training an unwieldy amount of likelihood

functions in a variety of acoustical conditions, parametric likelihood functions could be used

without considerable performance sacrifice. In analyzing the trained ITD-ILD likelihood func-

tions, clear patterns emerge that could be utilized to formulate a parametric model. Certain

key parameters, such as the primary peak locations and spread of the distributions, could

be learned from training data from a discrete set of source positions and extrapolated to a

continuous space. The second issue of joint search over all possible angles in a finely sampled

or continuous space could be avoided by doing an initial search in a discretized space (such

as the one used here), then refining the source positions in a limited range.

The development in Section 5 makes two assumptions that should be carefully examined

in future work. First, we propose a maximum likelihood framework in which all sequential

organizations are equally likely. For mixtures in which the input SNR is significantly different

from 0 dB, maximum a posteriori estimation is more appropriate and it should not be assumed

that P (y) is uniform. Second, we assume that all simultaneous streams are conditionally

independent. While this may be reasonable for simultaneous streams that are separated in

time, this assumption is questionable when two simultaneous streams overlap in time. In

the majority of cases, simultaneous streams that overlap in time are due to different sources.

Incorporating dependence between simultaneous stream labels should improve performance,

but with increased computational cost.

Finally, since the proposed system only processes voiced speech, it is essential to develop

methods to handle unvoiced speech. Binaural cues are likely a powerful tool for handling

unvoiced speech, which is challenging with only monaural cues (see [19]). Future work must

also analyze performance with different types of interfering signals, from multiple speech

signals to non-speech intrusions.
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