
A New Topological Landscape Algorithm for Visualization of

Scalar-Valued Functions

William Harvey Yusu Wang

October 2, 2009

Abstract

Visual representation techniques enable perception and exploration of scientific data. Following the topo-
logical landscapes metaphor proposed in [1], we provide a new algorithm for visualizing scalar functions
defined on manifolds of arbitrary dimension. For a given input function our algorithm produces a col-
lection of two-dimensional terrain models whose critical points and topological feature persistence are
identical to those of the input function. The algorithm exactly preserves the volume ratios of correspond-
ing topological features. We also introduce an efficiently computable metric on terrain models that is
useful in exploring the space of possible terrain models for a given function and can be used to augment
the data visualization pipeline in other ways.

1 Introduction

Visualization and analysis of scalar functions f : D→ R for various domains D constitutes a significant facet
of the scientific process. Scalar functions are prevalent in a variety of disciplines and occasionally admit
simple and natural visualizations when D takes certain forms. For example, grayscale digital images with
dimensions (w × h) are scalar functions with domain D = {(x, y) ∈ N2 | 0 ≤ x < w, 0 ≤ y < h} ⊂ R2 and
range R and are directly and easily visualized via rendering to a raster display.

As D assumes different forms, visualizing its scalar functions can become more difficult. Moving from the
world of easily-visualized 2D digital images to 3D volumetric data poses new challenges, including possible
occlusion of regions of the data under analysis, and additional data processing and storage requirements. As
the number of dimensions of D becomes large, an effective visualization technique may no longer be obvious.

Various dimensionality reduction techniques including principal component analysis (PCA) [13], ISOMAP
[24], Laplacian eigenmaps [4], locally-linear embedding (LLE) [20] and others are often useful for scalar
function visualization, especially when the function is available as samples in the form of point cloud data.
There is significant variety of dimensionality reduction techniques to choose from, providing a degree of
flexibility in terms of which geometric properties of the original data will be preserved; cf. [26]. However, there
is no guarantee that dimensionality reduction will preserve the topological structure of f . This shortcoming
can limit their usefulness in understanding the structure of scalar functions on some domains.

Fortunately, a variety of computational approaches for topological analysis of scalar functions have been
cultivated. The contour tree [5] is one such object, and has found applications in geographic information
systems [22, 10], volume visualization and segmentation [2, 9, 6], among other areas. Figure 1 displays a
simple example of a contour tree for a scalar function defined on a two-dimensional domain. An O(n log n)
algorithm for computing the contour tree on two-dimensional manifolds (but O(n2) for higher dimensions)
was presented by de Berg and Van Kreveld [27]. Here, n is the number of vertices in the input mesh. Tarasov
and Vyalyi [23] improved the algorithm of [27] to yield a time complexity of O(n log n) for three dimensional
domains. Carr et al. [7] presented an O(n) algorithm that is simple to implement and works on input meshes
of arbitrary dimensions. Recently Shigeo et al. [21] proposed a method for approximating the structure of
the contour tree by applying a novel metric to point cloud data and then performing standard dimensionality
reduction to yield a new point cloud whose structure approximates the structure of the contour tree.

1



(a) (b)

(c) (d)

Figure 1: A simple contour tree example. A detailed exposition is reserved for section 3. (a) A simple function
defined on a subset of the plane. The black curves indicate a few of the contours of the function. (b) Nadir
image of the function. From this perspective the structure and nesting relationships of the contours are
clearly visible. (c) The critical points of the function; red indicates a local maximum, blue a local minimum,
and yellow a saddle point. (d) The contour tree of the function, derived by contracting each contour to a
single point.

2



Another powerful and widely used visualization technique is the treemap [14]. Treemaps are useful for
visualizing hierarchically-organized datasets by recursively subdividing a subset of R2 such that the area of
each subset corresponds to a given attribute of the dataset. These techniques have been applied to a variety
of problem domains, cf. [3, 25, 28]. The basic treemap construction algorithm (dubbed slice-and-dice) uses
horizontal and vertical lines to partition the plane into a collection of rectangular regions. Other methods
have been proposed for computing the treemap layout including voronoi treemaps [3] and a method [18] using
convex polygons with provable bounds on the aspect ratios of subregions. While treemap algorithms have
not to our knowledge been used explicitly for visualization of scalar fields, they are an integral component
in the approach proposed in this paper.

While we adopt the topological landscapes metaphor proposed in [1], our work addresses several short-
comings. First, unlike the algorithm in [1], our method exactly preserves the volume ratios of the topological
components the input function f . Second, our algorithm does not use nonlinear optimization techniques
and has a guaranteed time complexity of O(nk2), where n is the number of critical points of f and k is an
integer parameter controlling complexity of the output mesh. Third, our method is general in that different
treemap-style algorithms can be chosen to achieve desired aesthetic or geometric properties of the resulting
visualization.

Finally, in contrast to [1], our method is not limited to generating a single visualization of f . Rather, we
combine dimensionality reduction techniques with a novel metric on the space of the possible visualizations
of f to enable realtime interactive exploration of the possible views of f . This additional mechanism is a
powerful and useful augmentation to the visualization process. We conduct several experiments to illustrate
the effectiveness of our terrain generation and exploration method on both low-dimensional (R3) and high-
dimensional (R>1000) datasets.

2 Related Work

Since this work is directly inspired by the topological landscapes algorithm of [1], we summarize it in this
section.

The topological landscapes algorithm takes as input a contour tree T of a function f , and produces a
meshed terrain model M where the height of each vertex reflects its corresponding function value of f . M is
constructed such that it has identical critical point function values and persistence of topological structures
as f . The first step is to compute a branch decomposition of T , which groups the edges of T such that each
group is a path through T with monotone function value, and the union of all branches is T . When a root
branch is selected in the contour tree, the branch decomposition takes on a hierarchical structure (and is
constructed recursively), where the child branches C of a given branch b are those non-parent branches that
are incident to b.

The next step is to recursively construct a terrain mesh (a SOAR hierarchy [16]) using the structure
of the branch decomposition as a guide. Each branch in the branch decomposition is mapped to a square
region on the terrain mesh, and the mesh within this square region is refined to ensure that there is room to
insert the child branches with enough space between them to preserve the topological structure of f . This
process continues until every branch in the branch decomposition has been mapped to a square region on
the terrain mesh.

An optional contour tree rebalancing algorithm can be used to reduce the depth of the branch decomposi-
tion hierarchy and reduce the resulting terrain complexity by making its topological structure more obvious.
However, performing this rebalancing operation results in a branch decomposition that no longer exactly
reflects the nesting relationships of the contour lines of f .

Once the terrain mesh has been constructed, the areas of the square regions are adjusted using an iterative
optimization procedure. The goal of this optimization is to match the area of each square region with the
area of its corresponding branch in the branch decomposition. [1] reports that the maximum error of a single
branch encountered in all attempted experiments was 8.8%, and the largest average error for a dataset was
1.4%. The authors report that the runtime of this optimization procedure is parameter and data dependent,
and with inappropriate parameters may not converge.

3



3 Preliminaries

In this section we formally introduce the contour tree and its relationship to a scalar function defined on a
manifold. For a detailed exposition of the theoretical underpinnings we refer the reader to [17].

Definition Let f : M→ R be a scalar function defined on a manifold M. An isosurface of f is a subset of
the domain for which f holds some constant value called an isovalue. More specifically, given an isosurface
Sf(x) ⊂ M corresponding to an isovalue f(x), Sf(x) = f−1(x). A contour is a single connected component
of a given isosurface.

Definition The contour tree T of f corresponds to a continuous contraction of each possible contour of f
to a single point [19], i.e. it is the quotient space of points belonging to the same contour of f .

There is a 1-to-1 correspondence between the points of T and the contours of f . The leaves of T
correspond to local extrema (contours of f with genus zero), with lower leaves of T corresponding to the
local minima of f and upper leaves of T corresponding to the local maxima of f . Points of T with degree
two such as those found along the branches of T correspond to contours of f with genus one. Finally, points
of T with degrees greater than two correspond to contours of f with genera greater than one whose single
point of self-intersection corresponds to a saddle point of f .

Definition Let τf : M→ T be the map taking each point in the domain of f to its corresponding point in the
contour tree. Let x be a critical point of f . Let (U, V ) be a partition of T at point x, i.e. U ∪V = T,U ∩V =
∅, x ∈ U , with U connected. The topological feature corresponding to U is defined as ΦU = τ−1

f (U). The
topological persistence of ΦU is p(ΦU ) = �(f(ΦU ), where � denotes the diameter of an interval in R.

Thus T captures all critical points of f as well as the persistence of topological features formed by its
contours. Due to this fact, the contour tree data structure is a useful tool for scalar field visualization.

One disadvantage of the contour tree as a visualization tool is that it is an abstract structure without
a natural embedding and it can be difficult to interpret in its entirety, especially when it is very large or
complex. A common approach to dealing with this problem include symbolic alteration of f by directly
modifying the structure of T to achieve a desired degree of simplification [8], or balancing the contour tree
[1].

4 Algorithm

The proposed algorithm takes as input a contour tree T of a function f : M → R defined on a manifold
M and produces a function g : (I = [0, 1])2 → R defined on the unit square such that the contour tree of
g is precisely T . Additionally, the areas of the topological components of g are exactly proportional to the
volumes of the topological components of f . Throughout this paper, the term ‘terrain model’ is used to refer
to the function g.

First, it may be necessary to apply topological perturbation to f in the form of small structural changes
to T to ensure that the sum of the indices of the critical points of f is 2; i.e. it must be possible to embed
f in S2 without introducing any degenerate critical points.

Next, a single local extremum x∞ of f must be chosen to map to the boundary ∂(I2) under an implicit
sphere projection π : S2 → I2. Different choices of x∞ will yield different layouts of the topological structures,
which allows for some flexibility in which terrain model to choose for visualizing f . For example, one could
choose the terrain model with the lowest average aspect ratio of topological components or the model which
maps a particular topological feature to the perimeter of I2.

To assist in choosing x∞, we propose an efficiently computable metric on terrain models that can be used
to interactively explore the space of possible terrain models via dimensionality reduction. This metric can
also be used to cluster and summarize the possible terrain models or to perform various kinds of geometric
analysis or processing.

4



Once x∞ has been chosen, the contours of f are embedded in I2 using an efficient recursive algorithm.
We then extend the function values of the embedded contours to the rest of I2 by meshing the interior region
bounded by adjacent nested contours and interpolating g in a manner that facilitates visual interpretation
of the resulting terrain model.

4.1 Contour Tree Perturbation and Simplification

Since the algorithm relies on the assumption that of f can be embedded in S2 without introducing degenerate
critical points, we may need to perturb f (via operations on T ) to ensure that the sum of the indices of
the critical points of f is χ(S2) = 2. Each saddle node si in T with a degree deg(si) greater than two is
topologically perturbed by transferring its incident edges to nearby noncritical nodes in Tf . The perturbation
of si ceases when deg(si) = 3. This process simulates breaking apart clusters of coincident saddle points of
f until all saddle points are isolated.

At the end of the perturbation process, the sum of the indices of the critical points is 2, all nodes in
the contour tree have degrees 1 (leaf nodes) or 3 (saddle nodes), and f can be embedded in S2 without
introducing degenerate critical points.

Optionally, the contour tree can be simplified by eliminating branches corresponding to topological fea-
tures whose persistence is below a user-specified threshold. This simplification process is used in [1] to reduce
the visualization clutter of highly complex contour trees.

4.2 Embedding Contours in I2

To embed the contours of f in I2, we take advantage of the idea that f can be embedded in S2, and a
sphere projection can then be used to embed the contours in I2. To begin, it is worthwhile to investigate the
relationship between the inclusion pattern of the embedded contours and the structure of the contour tree.

Recall that π(x∞) = ∂(I2). Thus, π(x∞) is the outer-most embedded contour, and contains all other
contours in its interior. The contours along any edge of T form nested rings on I2. A contour corresponding
to a saddle node of T can assume one of two possible configurations depending on the relative position of
x∞. Figure 3 illustrates these two possible configurations.

The inclusion relationships of all contours of f can be summarized by imposing edge directions on T to
yield an inclusion arborescence of T . Under this representation, a directed path from node xi to xj indicates
that π(xi) contains π(xj). Choosing a different x∞ will yield a different inclusion arborescence, as illustrated
in figure 2.

Although there are two configurations of saddle node contours (see figure 3) the algorithm embeds both
types of contours identically. Figure 4 illustrates how contours corresponding to type I and II bifurcations
are embedded in I2 when using a simple slice-and-dice approach. The rectangular contours of figure 4 can
assume other shapes by employing a different treemap algorithm.

The algorithm for embedding the contours of f in I2 begins by mapping x∞ to the square boundary of
I2. The contours are then embedded in a recursive fashion corresponding to a depth-first traversal of T .
After processing node xi of T and creating embedded contour ri, there are two possibilities: (1) If the next
node xj encountered during recursion is a saddle node, then rj is generated by scaling ri such that the area
of the region bounded by ri and rj is in proportion to the volume of the topological structure corresponding
to edge eij of T . At this point, rj is then split into two sub-regions rj0 and rj1 with areas proportional to
the topological structures that they bound. Recursive processing of rj0 and rj1 ensues. (2) If the next node
xj encountered during recursion is a leaf node, then recursion terminates.

4.3 Choice of x∞

The choice of x∞ can impact the overall appearance of the generated terrain model, and should be guided
according to the application. It may be known a priori which local extremum of f would be the ideal x∞,
e.g. when there is some topological feature of f that is well suited as a boundary for the terrain model.
However, such domain knowledge is not always readily available, especially when analyzing unfamiliar data.

5



(a) (b) (c)

Figure 2: (a) A contour tree T for a function f . Upper and lower leaves correspond to local maxima and
minima of f , respectively; nodes with degree 3 correspond to saddle points of f . (b) Arborescence of T
when a local minimum is selected as x∞. The edge directions indicate the inclusion relationships of the
contours of f when embedded in I2. (c) Arborescence of T when a different local extremum is selected
as x∞. Note that when x∞ changes, the inclusion relationships of the embedded contours reverse only for
contours corresponding to the path connecting the old and new x∞ as shown in red.

(a) (b)

Figure 3: The inclusion relationships of contours at saddle nodes of T for a given choice of x∞. Edge
directions indicate the inclusion relationships of the embedded contours. (a) Example of a type I contour
bifurcation. (b) Example of a type II contour bifurcation.

6



(a) (b)

Figure 4: Scheme for embedding contours. In both cases, the region between curves a and b is proportional
to the volume of the topological feature of f corresponding to edge eab of T .(a) Embedding a contour with
a type I bifurcation. (b) Embedding a contour with a type II bifurcation. Note that the embeddings are
identical, providing a simple algorithm for producing the embeddings.

To assist a user in exploring the space of possible terrain models of f and in making appropriate choices
of x∞, we propose an efficiently computable metric on terrain models which captures the visual difference
between two models as the total weighted area of one terrain model that must be inverted to produce the
other terrain model.

Let gi be a terrain model which maps point xi to infinity under the map π, and having inclusion arbores-
cence Ii. Let gj be another terrain model which maps point xj to infinity under the map π, and having
inclusion arborescence Ij . The inclusion arborescences are identical except that the path connecting xi to
xj in Ii is reversed in Ij . When the point at infinity is changed from xi to xj , the inclusion relationships of
the contours separating xi from xj are reversed. The total area that must be inverted to transform gi into
gj is the sum of the areas of the contour tree edges connecting them. Taking the product of the area of an
edge and its range of function values yields a relaxed earth mover’s distance which intuitively encodes the
amount of soil which must be transported to convert one terrain into another.

This metric can be efficiently computed by first assigning a weight wij to each edge eij of T :

wij = Area(eij) | f(xi)− f(xj) | (1)

The unique path P (i, j) = {eiα1 , eα1α2 , ..., eαmj} connecting xi to xj in T is calculated using breadth-first
search. Then the distance between gi and gj can be computed as follows:

d(gi, gj) =
∑

eαβ∈P (i,j)

wαβ (2)

For our experiments, we compute d(gi, gj) for all pairs of local extrema (xi, xj) and use ISOMAP [24]
to represent each terrain model gi as a 2D point yi ∈ R2. Since the difference in appearance of two terrain
models is captured by the metric d, the resulting 2D point cloud provides a visualization of the variations
in appearance of the terrain models and can facilitate selection of one or more representative models from
the pool of all choices. We provide a user interface in which a user may click on any point x in the 2D
point cloud to instantly bring up a terrain model that uses x = x∞. This allows a user to rapidly find a
visualization which accentuates any features of interest.

7



4.4 Mesh Generation

With x∞ chosen, the contours of f can be embedded in I2; the values of g along these embedded contours
are now defined. The remaining values of g can be recovered by interpolation guided by the embedded
contours. A simplicial mesh S is constructed on I2 with the embedded contours preserved as a subset of
the 1-simplices of S. For this discussion, we assume without loss of generality that the contours have been
embedded using the slice-and-dice treemap approach.

In the first case, the region R ⊂ I2 is a rectangular annulus with an outer boundary rectangle r1 and inner
boundary rectangle r2. The values of g between r1 and r2 are linearly interpolated, so a simple triangulation
of the interior of R is performed which connects each edge segment of r1 to a point of r2 and vice versa.

In the second case, the region R forms a rectangle. Such regions correspond to terminal edges in the
contour tree, and will contain a single local extremum somewhere in their interior. In this case, we place
the local extremum at the center of R and add additional vertices and edges in a rectangular k by k lattice
pattern to the interior of R. The parameter k is user-specified parameter and trades visual quality for mesh
simplicity. We have found that 11 ≤ k ≤ 21 provides a sufficient range of visual quality while maintaining
mesh economy. Note that k should be odd, as we would like R to have a single vertex at its center to
represent its local extremum. The additional vertices will provide some flexibility in how the values of g(R)
are interpolated, as is discussed in section 4.5.

4.5 Function Interpolation

Recall that values of g within rectangular annuli are computed using simple linear interpolation of their
inner and outer boundary function values.

Consider the set of vertices V of a rectangular region R corresponding to a leaf edge of T . Let B = ∂V be
the vertices on the boundary of V , vc the vertex at the very center of R, and U = V \ (B ∪{vc}) be all other
vertices of R. The quantities g(B) and g(vc) are defined, taking on the values of the critical points of f to
which they correspond. However, g(ui), ui ∈ U are still undefined and must be calculated via interpolation
of g(B) and g(vc).

This interpolation can be addressed as an instance of the discrete Dirichlet problem [12]. More specifically,
we wish to determine a quantity αui ∈ [0, 1] for each ui ∈ U and define g(ui) as a convex combination of
g(B) and g(vc):

g(ui) = αuig(vc) + (1− αui)g(B) (3)

We first construct the graph Laplacian matrix L for region V given by

Li,j :=

{∑
i6=k wik if i = j

−wij otherwise.
(4)

The Laplacian weight wij of vertices vi and vj of R is formulated:

wij = e
−

d2ij
4k3/2 (5)

where dij is the distance between the rectangular lattice coordinates of vi and vj . The last step is to compute
the alpha values for the nodes in U using the method described in [12], which amounts to solving a small
system of |U | linear equations. This interpolation process using the weighting scheme in equation 5 yields
smooth dome-like structures that facilitate visual interpretation. We have found that by scaling down the
unknown alpha values by 5% allows the local extremum within R to be clearly visible as a salient peak at
the center of the dome. This peak provides an additional visual cue to facilitate visualization.

Note that this alpha mask only needs to be computed once, as all rectangular regions contain the same
rectangular lattice pattern of interior vertices. With the alpha mask in hand, g is interpolated to undefined
regions of R using equation 3.

8



5 Discussion

Given a contour tree T with n nodes, and provided x∞ is specified, the time complexity for producing a
terrain model is O(nk2), where n is the number of nodes of T and k is the parameter specifying the width
and height of the vertex lattice to insert within rectangular regions corresponding to the leaf edges of T .
This marks a notable difference from [1] for which a computational complexity is unknown due to reliance
on a data and parameter dependent optimization technique.

Another advantage of the proposed technique is availability of the metric d for computing the distance
between two terrain models. While we use this metric as a means of selecting various values of x∞ for a
dataset, there are multiple ways that it could be applied throughout the visualization pipeline.

6 Results

6.1 3D Volume Datasets

As in [1], a collection of 3D volume datasets available from http://www.volvis.org was processed using the
proposed algorithm. For these experiments, we choose x∞ to match the outer components of the terrain
models of [1]. We also illustrate the usefulness of computing embeddings of the possible terrain models
in terms of exploring the space of visualizations. Finally, we generate terrain models using both the slice-
and-dice and voronoi treemap embeddings of the contours to demonstrate the flexibility of the proposed
approach.

Figures 5, 6, 7, and 8 illustrate the terrain models generated for these datasets and compare with results
from [1]. For these experiments, we choose x∞ to match the outer components of the terrain models of [1].

One should note that minor differences may occur between the topology of terrains generated by [1] and
the proposed method. We hypothesize that these differences may be a result of cancellation of insignificant
topological features by [1], whereas we do not perform any sort of topological cancellation. Also, one
should note the difference between using the slice-and-dice contour embedding method and the voronoi
contour embedding method. Using other treemap algorithms to perform the contour embedding provides
some flexibility in how the floorplan (the orthogonal projection of all contours onto the ground plane) is
constructed; for example, the algorithm proposed in [18] could provide theoretical guarantees on the aspect
ratios of all contours.

6.2 Protein Folding

One interesting application of this algorithm is for visualizing functions defined on manifolds of dimensions
4 or more. The objective of the experiments on protein folding data was to try to recover the energy
landscape of the conformational space of a particular protein. A replica exchange molecular dynamics
(REMD) simulation was performed to simulate a protein folding from various starting conformations under
fluctuating environmental temperature, yielding a dataset of 20000 protein conformations. The backbone
of each conformation consists of n = 46 carbon atoms which we use to compute a

(
n
2

)
= 1035 dimensional

vector of pairwise distances describing the protein shape. For these experiments, we reduce the set of protein
conformations to 2000 samples using the method of Gonzales [11].

Initial experiments were conducted using traditional dimensionality reduction techniques such as PCA,
ISOMAP, and Laplacian eigenmaps to try to visualize the energy landscape of the protein. However, the
resulting landscapes were difficult to interpret visually as the topological structure of the original function
was not well preserved using these techniques. Figure 9 illustrates an attempt at generating an energy
landscape using a combination of PCA and Delaunay triangulation.

The proposed method provides a framework that facilitates interpretation of the protein folding data and
helps to discover the funnel shape of the energy landscape.

The proposed algorithm produced an terrain model that is easy to interpret and captures the hypothesized
structure of the energy landscape and folding funnel. Figure 10 illustrates terrain models of the protein energy

9



(a)

(b) (c)

Figure 5: Hydrogen dataset. (a) Results of [1] with average volume-to-area projection error of 1.1%. (b)
Results using the proposed algorithm with slice-and-dice contour embedding. (c) Results using the proposed
algorithm with voronoi contour embedding.

10



(a)

(b) (c)

Figure 6: Nucleon dataset. (a) Results of [1] with average volume-to-area projection error of 0.6%. (b)
Results using the proposed algorithm with slice-and-dice contour embedding. (c) Results using the proposed
algorithm with voronoi contour embedding.

11



(a)

(b) (c)

(d) (e) (f)

Figure 7: Neghip dataset. (a) Results of [1] with average volume-to-area projection error of 0.6%. (b)
Results using the proposed algorithm with slice-and-dice contour embedding. (c) Results using the proposed
algorithm with voronoi contour embedding. (d-e) Floorplans of (b-c), respectively. (f) Space of possible
terrain visualizations. Each thumbnail represents a nadir view of a possible terrain model.

12



(a)

(b) (c)

(d) (e) (f)

Figure 8: Fuel dataset. (a) Results of [1] with average volume-to-area projection error of 0.6%. (b) Results
using the proposed algorithm with slice-and-dice contour embedding. (c) Results using the proposed algo-
rithm with voronoi contour embedding. (d-e) Floorplans of (b-c), respectively. (f) Space of possible terrain
visualizations. Each thumbnail represents a nadir view of a possible terrain model.

13



landscape produced using the proposed algorithm as well as the algorithm of [1]. The contour tree of the
high-dimensional point cloud was computed by first approximating the (assumed) underlying manifold using
a k-nearest neighbor graph followed by the contour tree algorithm of Carr et al [7].

(a) (b)

(c)

Figure 9: An attempt at producing an energy landscape visualization of the protein conformational space
using PCA. (a) Conformational points reduced to 2 dimensions using PCA. (b) Terrain produced from points
of figure (a) via Delaunay triangulation. (c) Additional view of the energy funnel containing the global energy
minimum.

7 Conclusions and Future Work

We adopt the topological landscape paradigm proposed in [1] and propose a new algorithm for visualizing
scalar-valued functions defined on manifolds of arbitrary dimension. Given a contour tree T of a function
f : M → R, our algorithm produces a new function g : I2 → R with the same critical point values and
persistence of topological structures as f . Additionally, the areas of the topological structures of g exactly
mimic the volumes of their counterparts in f . We propose a metric on the possible terrain models of T that
facilitates the process of exploring the space of possible visualizations of f .

Going forward, we are focusing our attention on using the technique for visualization and analysis of high-
dimensional data such as protein folding and biomedical applications. We plan on extending the algorithm
to incorporate additional geometric information that might be obtained through dimensionality reduction
techniques.

14



(a)

(b) (c)

(d) (e)

Figure 10: (a) Space of possible visualizations for the protein dataset, revealing how different choices of x∞
can impact the discovery of certain features of the dataset such as the funnel structure. (b) Result of the
proposed method that reveals the folding funnel. (c) An alternative view of the data that accentuates the
folding funnel and the structures surrounding local maxima. (d) Result of the proposed algorithm which
accentuates local maxima at the expense of revealing the folding funnel. (e) Result of [1] which maps the
global minimum to the boundary of the terrain, and is directly comparable to (d).

15



8 Acknowledgements

This work is supported in part by the Department of Energy (DOE) under grant DE-FG02-06ER25735, by
the National Science Foundation (NSF) under grants CCF-0747082 and DBI-0750891. We would like to
thank Gunther Weber and Peer-Timo Bremer for donating their time and effort to produce terrain models
of the protein datasets. We would also like to thank Rich Lehoucq, Kristi Maschhoff, Danny Sorensen, and
Chao Yang for making available the ARPACK software [15] publicly, Josh Levine and Issam Safa for fruitful
discussions, and Rephael Wenger for feedback and assistance with volumetric datasets. The background
image used in the terrain models of this paper was provided by Arun Kulshreshtha under the Creative
Commons Attribution 3.0 United States license (http://creativecommons.org/licenses/by/3.0/us/).

References

[1] Topological landscapes: A terrain metaphor for scientific data. IEEE Transactions on Visualization and
Computer Graphics, 13(6):1416–1423, 2007. Member-Weber, Gunther and Member-Bremer, Peer-Timo
and Member-Pascucci, Valerio.

[2] Chandrajit L. Bajaj, Valerio Pascucci, and Daniel R. Schikore. The contour spectrum. pages 167–173,
1997.

[3] Michael Balzer, Oliver Deussen, and Claus Lewerentz. Voronoi treemaps for the visualization of software
metrics. In Thomas L. Naps and Wim De Pauw, editors, SOFTVIS, pages 165–172. ACM, 2005.

[4] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data repre-
sentation. Neural Computation, 15(6):1373–1396, 2003.

[5] Roger L. Boyell and Henry Ruston. Hybrid techniques for real-time radar simulation. In AFIPS ’63
(Fall): Proceedings of the November 12-14, 1963, fall joint computer conference, pages 445–458, New
York, NY, USA, 1963. ACM.

[6] Hamish Carr and Jack Snoeyink. Path seeds and flexible isosurfaces using topology for exploratory
visualization. In VISSYM ’03: Proceedings of the symposium on Data visualisation 2003, pages 49–58,
Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[7] Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing contour trees in all dimensions. Comput.
Geom, 24(2):75–94, 2003.

[8] Hamish Carr, Jack Snoeyink, and Michiel van de Panne. Simplifying flexible isosurfaces using local
geometric measures. In IEEE Visualization, pages 497–504. IEEE Computer Society, 2004.

[9] Scott E. Dillard. Topology-controlled volume rendering. IEEE Transactions on Visualization and
Computer Graphics, 13(2):330–341, 2007. Member-Weber, Gunther H. and Member-Carr, Hamish and
Member-Pascucci, Valerio and Member-Hamann, Bernd.

[10] Christopher Gold and Sean Cormack. Spatially ordered networks and topographic reconstruction. In
Duane Marble, editor, Proceedings of the Second International Symposium on Spatial Data Handling,
pages 74–85, Seattle, Washington, 1986.

[11] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer
Science, 38(2–3):293–306, June 1985.

[12] Leo Grady, Thomas Schiwietz, Shmuel Aharon, and Rüdiger Westermann. Random walks for interactive
alpha-matting. In J. J. Villanueva, editor, Proceedings of the Fifth IASTED International Conference
on Visualization, Imaging and Image Processing, pages 423–429, Benidorm, Spain, Sept. 2005. ACTA
Press.

16



[13] Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal of
Educational Psychology, 24:417–441, 498–520, 1933.

[14] B. Johnson and Ben Shneiderman. Tree maps: A space-filling approach to the visualization of hierar-
chical information structures. In IEEE Visualization, pages 284–291, 1991.

[15] R. B. Lehoucq, D. C. Sorensen, and C Yang. ARPACK USERS GUIDE: Solution of large scale eigenvalue
problems by implicitly restarted arnoldi methods. Available at
http//www.caam.rice.edu/software/ARPACK/index.html, 1997.

[16] Peter Lindstrom and Valerio Pascucci. Terrain simplification simplified: A general framework for view-
dependent out-of-core visualization. IEEE Trans. Vis. Comput. Graph, 8(3):239–254, 2002.

[17] J. Milnor. Morse Theory, volume 51 of Annals of mathematics studies. Princeton University Press,
Princeton, 1963.

[18] Krzysztof Onak and Anastasios Sidiropoulos. Circular partitions with applications to visualization and
embeddings. In Monique Teillaud, editor, Symposium on Computational Geometry, pages 28–37. ACM,
2008.

[19] Valerio Pascucci. On the topology of the level sets of a scalar field. In CCCG, pages 141–144, 2001.

[20] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science,
290(5500):2323–2326, December 2000.

[21] Shigeo Takahashi, Issei Fujishiro, and Masato Okada. Applying manifold learning to plotting approxi-
mate contour trees. IEEE Transactions on Visualization and Computer Graphics, 15(6), 2009.

[22] Shigeo Takahashi, Tetsuya Ikeda, Yoshihisa Shinagawa, Tosiyasu L. Kunii, and Minoru Ueda. Algo-
rithms for extracting correct critical points and constructing topological graphs from discrete geograph-
ical elevation data. Comput. Graph. Forum, 14(3):181–192, 1995.

[23] Tarasov and Vyalyi. Construction of contour trees in 3D in O(n log n) steps. In COMPGEOM: Annual
ACM Symposium on Computational Geometry, 1998.

[24] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimen-
sionality reduction. Science, 290(5500):2319–2323, December 2000.

[25] David Turo and Walter-Alexander Jungmeister. Adapting treemaps to stock portfolio visualization.
Technical Report CS-TR-2996, University of Maryland, College Park, November 1992.

[26] L. J. P. van der Maaten, E. O. Postma, and H. J. van den Herik. Dimensionality reduction: A com-
parative review. Technical report, MICC, Maastricht University, P.O. Box 616, 6200 MD Maastricht,
Netherlands, February 2008.

[27] van Kreveld, van Oostrum, Bajaj, Pascucci, and Schikore. Contour trees and small seed sets for isosur-
face traversal. In COMPGEOM: Annual ACM Symposium on Computational Geometry, 1997.

[28] Wattenberg, Martin. Visualizing the stock market. In Proceedings of ACM CHI 99 Conference on
Human Factors in Computing Systems, volume 2 of Late-breaking results: seeing is understanding: new
visualization techniques, pages 188–189, 1999.

17


