
Compiler and Runtime Support for Enabling
Generalized Reduction Computations on
Heterogeneous Parallel Configurations

Vignesh T. Ravi Wenjing Ma Gagan Agrawal
Department of Computer Science and Engineering
The Ohio State University Columbus OH 43210

{raviv,mawe,agrawal}@cse.ohio-state.edu

Abstract
In the last 3-4 years, there has been very high research interest in ef-
fectively utilizing multi-cores for various domains of applications.
At the same time, researchers have attempted to unleash the power
of GPU for general-purpose computations. Nowadays, it is very
common for a desktop or a notebook to be shipped with a multi-
core CPU and GPU, either on-chip or connected to a PCI-Express.
Today, typically when an application is ported to a multi-core ar-
chitecture or a GPU, the other resource, with its high processing
capabilities, remains idle.

This paper describes a compiler and runtime framework that can
map a class of applications to a cluster of nodes, with a multi-core
CPU and GPU on each node. The class of applications we sup-
port are the ones involving generalized reductions. Starting with
C functions with added annotations, we automatically generate a
cluster middleware API code, as well as the CUDA code for ex-
ploiting the GPU. The runtime system dynamically partitions the
work between CPU cores and the GPU. Our experimental results
from two applications, whose processing structure follows the gen-
eralized reduction structure, shows that by using a heterogeneous
architecture, we can achieve significantly improved performance,
as compared to the performance using only the GPU or the multi-
core CPU. Moreover, dynamic partitioning of the work achieves
much better performance than the two static schemes we have con-
sidered.

1. Introduction
Starting within the last 3-4 years, it is no longer possible to improve
the processor performance by simply increasing clock frequencies.
As a result, multi and many-core architectures and/or accelerators
have become the cost-effective means for scaling performance. So
far, a large effort has been made to study and understand the diffi-
culties involved with multi-core programming. Particularly, library
support and programming models are being developed for efficient
programming on multi-core platforms [9, 29].

[Copyright notice will appear here once ’preprint’ option is removed.]

Figure 1. A Popular Heterogeneous Computing Platform

At the same time, many research efforts have focused on us-
ing the high computing power of graphics hardware (GPUs) for
general-purpose computations [4, 30, 13, 33]. While a variety of
application classes have been very successfully mapped to GPUs,
programmability remains a challenge. Nvidia’s CUDA, the most
widely used programming language for GPUs to date [27], requires
relatively low-level programming and manual memory manage-
ment. Furthermore, obtaining high performance on a GPU clearly
requires a very detailed understanding of the GPU architecture, and
memory hierarchy optimizations.

One trend that is emerging, but has received very limited atten-
tion, is that computing platforms are becoming increasingly hetero-
geneous. Nowadays, it is very common for a desktop or a notebook
to be shipped with a multi-core CPU and GPU(s), either on-chip
or connected to the PCI-Express card. Figure 1 shows this archi-
tecture. Recently, the Larrabee architecture proposed by Intel [32]
has indicated that many-core CPU/GPU can be a promising plat-
form for optimized data-parallel processing. Furthermore, there is
also a trend towards clusters of multi-core machines with a GPU on
each node. One example is clusters used for visualization of very
large datasets, where a GPU on each node is needed for support-
ing graphics operations. Such a cluster can have excellent perfor-
mance/price ratio for general purpose processing as well.

It has been shown that for most applications, and with some
programming effort, we can effectively utilize either the multi-core
CPU, or the GPU, separately. But, in almost all studies so far, while
doing so, the other resource, with its very high peak performance,
remains idle.

Effectively exploiting a heterogeneous architecture involves a
number of challenges. Particularly, three important issues are, pro-
grammability, work distribution, and performance.
Programmability: Today, an effort which wants to exploit the
power of a multi-core and a GPU will require programming in a
combination of OpenMP or Pthreads with CUDA. Besides high
programming effort, this requires programmer(s) with expertise in
both. Programming a cluster of heterogeneous cores is even more
challenging. OpenCL, initially developed by Apple, and now being
standardized by Khronos group, is still in its very early stages [19].
Furthermore, it still requires explicit parallel programming. Re-
cently, Saha et. al [31] have proposed a programming model for
heterogeneous parallel computing, but it still requires low-level
programming and memory management. Clearly, it will be desir-
able if a heterogeneous platform can be used starting from a high-
level language or API.
Work Distribution: Dividing work between processing units in
a heterogeneous setting is challenging. Furthermore, today’s CPU
core and GPU core differ considerably in processing capabilities,
memory availability, and communication latencies. Developing
schemes that can work across many different applications is clearly
desirable.
Performance: Given a lack of efforts in this area, it is not clear
what kind of performance gain can be obtained from such hetero-
geneous configurations, and for what kind of applications. Venkata-
subramanian et. al [34] have implemented stencil kernels on a hy-
brid CPU/GPU system. Though they were not able to get much
performance gain out of the hybrid system, they believe that perfor-
mance gains are possible with a different hardware configuration,
based on their prediction model. Understanding the performance
potential of such platforms requires detailed experimentation with
more applications.

This paper addresses the above three issues, focusing on a par-
ticular class of applications. The applications we consider are the
ones where the communication pattern is limited to generalized re-
ductions [14]. In recent years, they have also been referred to as the
map-reduce class of applications. Applications with these patterns
have been considered as one of the dwarfs in the Berkeley view on
parallel processing 1.

In our work, we have developed compiler and run-time support
for heterogeneous configurations. Applications following the gen-
eralized reduction structure can be programmed using a simple C
interface, where some additional annotations are needed. Our code
generation system automatically generates the CUDA code, and the
required API for an existing runtime system, which allows execu-
tion on cluster of multi-core nodes. The framework internally han-
dles the mapping of CUDA code to GPU and multi-core code to
CPUs. The memory management involved with the GPU is also
handled by our code generation. Dynamic load balancing support is
extended by our runtime system for effective distribution of work-
load between the CPU and the GPU.

Our evaluation has been performed using two popular data
mining algorithms. We show that the heterogeneous configuration
can improve the performance significantly over the CPU-only and
GPU-only results. We have also studied the factors that are critical
to the performance of the heterogeneous version. Our dynamic
load balancing scheme performs better than the two static policies
we have considered, and achieves a near-perfect work distribution
between the two computing resources, i.e. the CPU and the GPU.

The rest of the paper is organized as follows. In Section 2 we
describe our approach on handling reduction based computations
for heterogeneous configurations. In Section 3, we elaborate on the
language and compiler support we provide. In Section 4, we present

1 Please see http://view.eecs.berkeley.edu/wiki/Dwarf Mine

our experimental results using two applications. In Section 5, we
discuss the related work and conclude in Section 6.

2. Approach and System Design
This section gives a description of the class of generalized reduc-
tion applications we focus on, a cluster middleware we had devel-
oped in the past, and our approach for supporting this class of ap-
plications on a heterogeneous platform.

2.1 Generalized Reductions and a Cluster Middleware

/ * Outer Sequential Loop * /
While () {

/ * Reduction Loop * /
Foreach (element e) {

(i,val) = process(e);
Reduc(i) = Reduc(i) op val;

}
/ * operation on the combined Reduc * /
Finalize();
}

Figure 2. Generalized Reduction Processing Structure

The processing structure we focus on is summarized in Figure 2.
The function op is an associative and commutative function. Thus,
the iterations of the foreach loop can be performed in any order.
The data-structure Reduc is referred to as the reduction object. The
reduction performed is, however, irregular, in the sense that which
elements of the reduction objects are updated depends upon the
results of the processing of an element.

In our earlier work, we had made the observation that parallel
versions of several well-known data mining, OLAP, and scientific
data processing algorithms share this generalized reduction struc-
ture [17, 18]. This observation has some similarities with the moti-
vation for the map-reduce paradigm that Google has developed [9].

For algorithms following such generalized reduction structure,
parallelization can be done on both shared memory and distributed
memory platforms by dividing the data instances among the pro-
cessing threads and/or nodes. A copy of the reduction object is cre-
ated for each thread. The computation performed by each thread
will be iterative and will involve reading the data instances in an ar-
bitrary order, processing each data instance, and performing a local
reduction. After such local processing, a global combination is per-
formed. In distributed memory settings, such global combination
requires interprocessor communication.

In our earlier work, we had developed a middleware focusing
on these applications, targeting cluster of multi-core machines [17,
18]. The middleware API exploits the common processing struc-
ture, and the middleware enables parallelization on both shared
memory and distributed memory configurations. In the middleware
API, the following functions need to be written:
Reduction: The data instances owned by a processor and belong-
ing to the subset specified are read. A reduction function specifies
how, after processing one data instance, a reduction object (initially
declared by the programmer), is updated. The result of this process-
ing must be independent of the order in which data instances are
processed on each processor. The order in which data instances are
read from the disks is determined by the runtime system.
ProcessNextIteration: This is an optional function that can be im-
plemented by an application programmer. Typically, this function
should include a program logic specific to an application that would
control the number of iterations for which the application should
run.
Finalize: After final results from multiple nodes are combined into
a single reduction object, the application programmer can read and

2 2009/9/30

Figure 3. High-level Architecture of the System

perform a final manipulation on the reduction object to summarize
the results, in a manner that is specific to the application.

2.2 GPU Computing for Generalized Reductions
GPUs support SIMD shared memory programming. For shared
memory systems, one simple approach for avoiding race conditions
is that each thread keeps its own replica of the reduction object on
the device memory, and the work is done separately by each thread.
At the end of each iteration, a global combination is done either by a
single thread, or using a tree structure and involving a large number
of threads. Then, the finalized reduction objects are copied to host
memory.

Three steps are then involved in the local reduction phase: read
a data block, compute a reduction object update based on the data
instance, and write the reduction object update. A more detailed
approach of what has to be performed on the GPU is as follows:

Data read: The data to be processed is copied from host to device
memory, followed by allocation of reduction objects and other
data structures to be used during the course of computation.

Computing update: Multi-threaded reduction operation executed
on the device. The data block is divided into small blocks
such that each thread only processes 1 data transaction. Since
each thread has its own replica of the reduction object, race
conditions while accessing the same object are avoided.

Writing update: Copy the reduction objects back to host memory,
and do a global combination if necessary.

2.3 Approach for a Heterogeneous Platform
Based on the approaches for parallelizing generalized reductions
on a cluster (using our middleware) and on a GPU, as we described
above, we have developed a framework for mapping these applica-

Figure 4. Dynamic Load Balancing Scheme

tions to a heterogeneous platform. The approach and the design of
the system for enabling it are shown in Figure 3.

Our system takes generalized reductions written in C with some
added annotations. A code generation module automatically gener-
ates the API code for our cluster middleware, and CUDA code. The
language and compiler approach is elaborated in Section 3.

On each node of the cluster, our runtime system creates one
thread for each CPU core to be used for processing, and another
thread for managing the GPU. A separate copy of the reduction
object is created for each thread. A key component of the runtime
system is the dynamic load balancing module, which divides the
work between different threads, including the thread that manages
the GPU. This module is further elaborated on in Subsection 2.4.

After the processing is finished by different CPU threads, a local
combination is performed to obtain the final results on this node. If
the processing is being performed on a cluster, this is followed by
a global combination of the reduction object.

2.4 Dynamic Load balancing Scheme
One of the most important challenges is the efficient work load
balancing. This is a difficult problem, because CPU and GPU
cores have different capabilities, and their relative performance can
depend upon the application.

Clearly, there are two alternatives for load balancing, i.e. a static
scheme or a dynamic scheme. We believe that a static scheme can-
not be effective, and thus, a dynamic scheme is needed. Therefore,
we have taken a simple and light-weight dynamic load balancing
approach. Later in this paper, we will show that this scheme clearly
outperforms two static options we have considered.

Our dynamic load balancing scheme resembles a classical
master-slave model, implemented with a pull strategy. The dataset
is divided into chunks. The scheduling decision is made for each
chunk, thus, the chunk size or the split size is an important parame-
ter that can impact the performance of the application. The master
acts as a job scheduler. The scheduling policy used by the master is
a simple First Come First Served (FCFS) policy. Instead of master
flooding the workers with jobs, the workers pull jobs from mas-
ter whenever they are finished with the assigned work. The master
assigns the jobs in the order of request. The rationale behind choos-
ing such a simple policy is that, a faster worker ends up requesting
more data to process when compared to the slower worker. This
approach makes sure that a faster worker gets a fair share of work
for its superior speed, while a reasonable amount of work is also

3 2009/9/30

completed by a slower worker. By keeping the policy simple, the
overhead of load balancing remains insignificant.

Each worker in the system has a private work queue. When
the worker polls the scheduler for more work, the scheduler fills
the queue of the worker. The worker retrieves the job from the
queue for further processing. The choice of separate queue for each
worker is justified, since this will avoid any contention among the
workers for the work. A simple description of this load balancing
scheme is shown in the Figure 4.

3. Language Support and Code Generation
This section describes how the code for our cluster middleware and
CUDA is automatically generated. Initially, we describe the input
that we expect from application developers.

3.1 System API
Using the generalized reduction structure of our target class of ap-
plications, we provide a convenient API for the user. There are mul-
tiple reduction functions, and a user can specify them by including
labels for each. For each function, the following information is
needed.
Variables for Computing: The declaration of each variable fol-
lows the following format:

name, type, size[value]
name is the name of the variable, type can be either a numeric

type like int or pointer type like int* , which indicates an array.
If this is a pointer, size is the size of the array, which can be a list
of numbers and/or integer variables, and the size of the array is the
multiplication of these terms; otherwise, this field denotes a default
value.
Sequential Reduction Function: The user can write the sequen-
tial code for the main loop of the reduction operation in C. Any
variable declared inside the reduction function should also appear
in the variable list, and memory allocation for these variables is not
needed.
User Defined Finalize Function: After the reduction objects are
combined at the end of each iteration, there might be some extra
work to do with the reduction objects. This work can be done by
providing a finalize function.

3.2 Program Analysis
There are two main components in the program analyzer, the code
analyzer and the variable analyzer. The code analyzer accomplishes
two tasks: obtaining the access pattern and extracting the reduction
objects with their combination operation.

These two tasks are performed in the following way:
Obtaining Variable Access Features: We classify each variable
as one of input, output and temporary. An input variable
is input to the reduction function, which is not updated in the func-
tion, and does not need to be returned. An output variable is up-
dated and to be returned in the reduction function. A temporary
variable is declared inside the reduction function for temporary
storage. Thus, an input variable is read-only, and output and
temporary variables are read-write. Variables with different ac-
cess patterns are treated differently in declaration, memory alloca-
tion strategies, and result combination, as described in the rest of
this section.

Such information can usually be obtained from simple inspec-
tion of a function. However, since we are supporting C language,
complications can arise because of the use of pointers and aliasing.
In our implementation, we first generate an Intermediate Repre-
sentation (IR) for the sequential reduction function using LLVM.
Second, we used Anderson’s point-to analysis [3] to obtain the
point-to set for each variable in the function’s argument list.

Finally, we trace the entire function. When a store operation is
found, if the destination of the store belongs to a point-to set
of any variable in the function’s argument list, and the source is
not in the same set, we conclude that it is an output variable. All
the other variables in the argument list are denoted as input vari-
ables, and all the variables that do not appear in the argument list
are considered temporary variables.

void kmeans count(float* data, float* cluster, float* update,
int k, int n)
{

for(int i=0;i<5*k;i++)update[i]=0; /* initialize the output variable */
for(int i=0;i<n;i++)
{

float min=65536*65, dis;
float* mydata=data+i*DIM;
int min index=0;
for (int i=0;i<k;i++) {

float x1,x2,x3;
x1 = cluster[i*DIM];
x2 = cluster[i*DIM+1];
x3 = cluster[i*DIM+2];
dis = sqrt((mydata[0]-x1)* (mydata[0]-x1)+
(mydata[1]-x2)* (mydata[1]-x2)+
(mydata[2]-x3)* (mydata[2]-x3));
if (dis<min)
{

min=dis;
min index=i;

/* find the cluster with minimum distance */
}

}
/* update the output variable */
update[5*min index] += mydata[0];
update[5*min index+1] += mydata[1];
update[5*min index+2] += mydata[2];
update[5*min index+3] += 1;
update[5*min index+4] += min;

}
}

Figure 5. User-defined Reduction Function for K-means

Extracting Reduction Objects and Combination Operations:
The output variables are identified as the reduction objects. At
the end of each iteration, the reduction objects on each node are
combined into a single one, by using the MPI calls automatically
invoked by our cluster middleware. Because we are focusing on
reduction functions where output variables are updated with
associative and commutative functions only (see Figure 2), the
output variables updated by each computing node (and different
threads in GPU) can be correctly combined in the end. However, we
need to identify the particular operator that is being used. Earlier,
we have generated the point-to sets for each parameter of the
reduction function. We now conduct a new scan on the IR to find
the reduction operator for each reduction object. In the combination
function, the values for a reduction object from each thread is
combined using this function.

After the above information has been extracted, the variable
analyzer will proceed to summarize the variable information and
extract the parallel loops.
Analysis for Parallelization: We map the structure of the loop
being analyzed to the canonical reduction loop we had shown
earlier in Figure 2. We focus on the main outer loop and extract
the loop variable. We also identify (symbolically) the number of
iterations in the loop, and denote it as num iter. If there are nested
loops, for simplicity, we only parallelize the outer loop.

4 2009/9/30

The variable analyzer focuses on the variables accessed in the
loop. If a variable is only accessed with an affine subscript of the
loop variable, it is denoted as a loop variable. Note that this variable
could be an input, output, or temporary variable. The significance
of denoting it is that when run on GPU, a loop variable can be
distributed among the threads, while all the other variables need to
be replicated, if they are written in the loop.

3.3 Code Generation for Cluster Middleware
The issues in generating code for the API of our cluster middle-
ware, which we had described earlier in Section 2.1, are as fol-
lows. The base class for any application is a template MIDDLE-
WARE TECH. For a particular application, we derive its corre-
sponding class from MIDDLEWARE TECH, with the variables in
each reduction function declared as class members. There are three
main functions in the class. We discuss the code generation for each
of them as below.
Initialization: After variable analysis, we already know which
variables form the reduction object. In the Initialization() function,
these variables are declared and initialized with the default values
given by the user. Arrays are allocated with the given size. One
thing that needs attention for a heterogeneous version is the reduc-
tion objects that are to be computed with CUDA. Since each thread
needs its own copy, the size of the variable is the declared size mul-
tiplied with a block number and a thread number within the block.
The block here refers to thread block in CUDA.
Reduction: The Reduction() function is the main processing func-
tion for the data blocks. The computation in the sequential reduc-
tion function given by the user is included in this function. At the
end of the function, the reduction objects are updated with the out-
put of the local reduction. For each reduction function, the user can
denote whether to use GPU or not in the input file. If GPU is cho-
sen, a CUDA version for the reduction function is generated, as
described in the next subsection.
Finalize: As described previously, after one iteration, every data
block has been processed, and the reduction objects have been com-
bined with MPI message passing at the back end. Thus, they are
copied to the corresponding local variables, and the user provided
functions are added after that, if any.

void reduc class::kmeans(void *block)
{

float* data=(float*)block;
kmeans func(step,endcondition,k,n,
MSE,data,update,cluster);
for (int RO i=0;RO i<1;RO i++)
{

for (int RO j=0;RO j<1*5*k;RO j++)
reductionobject->reduction(RO i,RO j,
update[RO j]);

}
}

Figure 6. System Generated Reduction Function of K-means

To show how the code generation is done, let us take k-means as
an example. A part of the user input was shown earlier in Figure 5.
After code analysis, we find that update is an output variable, so
it is determined as the reduction object for this reduction function.
Then, reduction object is allocated according to its size. In the
system generated code, reductionobject is updated with the value
of update, as shown in Figure 6.

3.4 Code Generation for CUDA
Using the user input and the information extracted by the variable
and code analyzer, the system next generates corresponding CUDA

code and the host functions invoking CUDA-based parallel reduc-
tions.
Grid Configuration and Kernel Invocation: The host reduction
function host reduc() which invokes the kernel on device has
3 parts:

Declare and Copy: We allocate device memory for vari-
ables to be used by the computing function on the GPU. We copy
the ones that are needed to be read from host memory to device
memory. Currently, we allocate memory for all variables except
the temporary variables that are going to use shared memory. As
we described earlier, loop variables are distributed across threads,
depending upon how they are accessed across iterations. The read-
write variables not denoted as loop might be updated simultane-
ously by multiple threads, so we create a copy for each thread.
Again, because of the nature of the loops we are focusing on, we
can assume that a combination function can produce the correct
final value of these variables.

Compute: We configure the thread grid on the device, and
invoke the kernel function. Different thread grid configurations
can be used for different reduction functions in one application.
Currently, we configure the thread grid manually. In our future
work, we hope to develop cost models that allow us to configure
thread grids automatically.

Copy updates: We copy the variables needed by the host
function. We perform the global combination for output vari-
ables which are not loop variables.
Generating Kernel Code: This task includes generating global
function reduc() and device function device reduc(), as well as
device functions init() and combine(), if necessary. reduc() is the
global function to be invoked by the host reduction function. It per-
forms the initialization for the variables involved. The device main
loop function device reduc() is then invoked. Finally, one thread
will execute combine() which performs the global combination.
Between invocation of each function and at the end of reduc(), a

syncthreads() is inserted.
Generating Local Reduction Function: device reduc() is the
main loop to be executed on the GPU. This function is generated
by rewriting the original sequential code in the user input, accord-
ing to the information generated by the code and variable analyzer
phases. The modifications include: 1) Dividing the loop to be par-
allelized by the number of blocks and number of threads in each
block. 2) Rewriting the index of the array which are distributed.
For example, we have an access to data[i], it is changed to
data[i+index n], where index n is the offset for each thread
in the entire grid. 3) Optimizing the use of shared memory. We
sorted the variables according to their sizes, and allocate shared
memory for variables in the increasing order, until no variable can
fit in. The details of the shared memory layout strategy can be
found in our previous work [26].

4. Experimental Results
In this section, we report on the results from a number of exper-
iments we conducted for evaluating the performance scalability
for two applications that involve generalized reductions. The main
goals of our experiments are as follows.

• Examine the performance benefits of using the heterogeneous
platform, compared to parallel but CPU-only and GPU-only
versions.

• Study how varying input data chunk or split size impacts the
performance on heterogeneous platform.

• Show how the dynamic load balancing scheme compares
against two different static schemes, and how the distribution

5 2009/9/30

Figure 7. Scalability of k-means - Base Version

Figure 8. Scalability of PCA - Base Version

of the work between CPU and GPU is impacted by the choice
of the chunk size.

• Finally, we evaluate the scalability of these two applications on
a cluster of 8 nodes, with each node having a multi-core CPU
and a GPU.

Our experiments were conducted on a 8 node cluster with AMD
Opteron 8350 machines, each with 8 cores. Each of the nodes is
equipped with a GeForce 9800 GX2 graphic card. The amount of
memory on each node is 16 GB, and the interconnect network in
the cluster is Infiniband.

The two applications we considered are as follows. The first
application is k-means clustering. Clustering is one of the key data
mining problems and k-means [16] is one of the most popular algo-
rithms. The clustering problem is as follows. We consider transac-
tions or data instances as representing points in a high-dimensional
space. Proximity within this space is used as the criterion for classi-
fying the points into clusters. Four steps in the sequential version of
k-means clustering algorithm are as follows: 1) start with k given

centers for clusters; 2) scan the data instances, for each data in-
stance (point), find the center closest to it and assign this point to
the corresponding cluster, 3) determine the k centroids from the
points assigned to the corresponding center, and 4) repeat this pro-
cess until the assignment of points to cluster does not change.

The second application is principal component analysis or
(PCA), which is a popular dimensionality reduction method. This
method was developed by Pearson in 1901. There are three passes
on the dataset. First, the mean value of the column vectors are de-
termined. Next, the standard deviation of column vectors
are calculated. In the third pass, the correlation matrix is computed,
and then, triangular decomposition is done, and the eigenvalues are
computed.

4.1 Scalability of Applications on the Heterogeneous
Platform

In this experiment, we compare three different versions. The first is
the CPU-only version, the second is GPU-only version, and the
third is the hetero or heterogeneous version, where a combina-
tion of one GPU and certain number of CPU cores are used. When
not stated otherwise explicitly, the hetero version would refer to
the use of 8 CPU threads and the GPU.

For all results with GPU, we report results that are obtained only
from the best thread block configuration. In the hetero version,
if K CPU cores are used, only K − 1 cores are used for actual
computations, while the last core is used for coordination with the
GPU thread.
Results from K-means: For experimenting with k-means, we used
a dataset of size 6.4 GB. The dataset contains 3-dimensional points.
The number of clusters, k, was set to 125. For this set of exper-
iments, the dataset was divided into 512 chunks. The results are
presented in the Figure 7. The GPU-only version is identical ir-
respective of the number of threads. With 1 thread, the hetero
version cannot be executed. Thus, results for the hetero version
are shown 2 thread onwards only.

Our results show that, with the CPU-only version, there is a very
good scalability with the increasing number of cores. The CPU-
only version speedup with 8 threads is about 8.8 times. This super-
linear speedup is because of the very small size of the reduction ob-
ject in k-means, that leads to a very effective utilization of caches.
The GPU-only version also has a very good speedup when com-
pared to the single thread CPU version, i.e. 5.71 times, including all
data movement times between the host and device and vice-versa.

The hetero version is able to get a significant performance
improvement when compared to the CPU-only and GPU-only ver-
sions. The speedup achieved with 8 CPU cores and 1 GPU, when
compared to a single thread CPU version and GPU-only version
are 15.6 and 2.72, respectively. Moreover, as compared to the per-
formance of the 8-thread CPU-only version, there is more than a
factor of 2 performance improvement. The speedups are very good
because, both CPU-only and GPU-only versions have very good
scalability. Hence, one resource does not turnout to be a bottleneck
for the other in this application. Moreover, since the size of reduc-
tion object is very small, the overhead of local combination phase
between CPU and GPU is also quite low.
Results from Principle Component Analysis (PCA): For exper-
iments with PCA, we used a dataset of size 2.1 GB. The entire
dataset was divided into 512 chunks. The number of columns, m,
was set to 64. The observed results from PCA are shown in Fig-
ure 8. The results from PCA are quite different from the results
with k-means. First, the scalability achieved with CPU-only ver-
sion is not linear. The speedup achieved with 8 CPU threads, when
compared to a single thread version, is about 3.8 only. This is be-
cause, the algorithm runs for three passes. The first and the second
passes have very little computation when compared to the third

6 2009/9/30

Figure 9. k-means - Impact of Varying No. of Chunks

Figure 10. PCA - Impact of Varying No. of Chunks

pass. Moreover, local combination of reduction objects has to be
performed at the end of each pass. This leads to a sub-linear scala-
bility.

The speedup of the GPU-only version is quite good, about 3.9
times when compared to a single thread CPU version. For the
hetero version, with 8 CPU cores and a GPU, we were able to
achieve a speedup of 6.42 over the 1-thread CPU version. When
compared to a 8-thread CPU-only version and the GPU-only ver-
sions, the hetero version (with 8 CPU threads) has a performance
improvement of 69% and 65%, respectively. Though, these perfor-
mance improvements are significant, they are not as good as for
k-means. This is consistent with the sub-linear scalability of the
CPU-only version.

We consider the above two sets of results as the base-version for
the rest of this section.

4.2 Impact of Number of Chunks
In this subsection, we study the impact of chunk-size, or alterna-
tively, the number of chunks a dataset is divided into, on the perfor-

mance of the heterogeneous platform. We are comparing the perfor-
mance results of 8-thread CPU-only, and the hetero (with 8 CPU
threads) versions for varying chunk numbers. We used the same
dataset size for both the applications as in the previous subsection.
Results from k-means: For k-means, the results in the previous
subsection involved 512 chunks from the 6.4 GB dataset. This cor-
responded to 12.8 MB data chunk. We increased and decreased
the number of chunks for the same dataset size. With increasing
chunk numbers, we were not able to achieve any gain in the per-
formance of the hetero version. When we decreased the number
of the chunks, we observed a performance gain. The results are
shown in Figure 9. With decreasing number of chunks, or increas-
ing chunk size, the performance of the CPU-only version does not
change. This is because the work is still evenly divided among the
CPU cores, and communication latency is also not a factor. For the
hetero version, fewer chunks imply fewer function calls to the
GPU device, resulting in lesser overhead and better overall perfor-
mance. But, as we decrease the chunk numbers, we were able to
improve performance only up to a certain point. The performance
of the hetero version started to decrease at 32 chunks. With k-
means, for a dataset of 6.4 GB, the optimal number of chunks was
found to be 64. With 64 chunks, the speedup of the hetero ver-
sion, when compared to a 1-thread CPU version, is about a factor
of 24.5. Overall, as compared to the case with 512 chunks, we in-
creased the performance by about a factor of 1.5.
Results from PCA: Again for PCA, we considered 512 chunks to
be the base version. This corresponds to a data chunk size of 4 MB.
Similar to what we observed with k-means, increasing the number
of chunks did not result in any performance improvements, thus
we show results only from 512 and fewer chunks. The results are
shown in Figure 10. Again, the performance of CPU-only version
did not change. The hetero version saw significant performance
improvements as the number of chunks was reduced. For PCA,
with a dataset size of about 2.1 GB, 128 chunks, or a chunk size
of 16 MB, resulted in the best performance. Further reducing the
number of chunks resulted in a decreased performance. This is
because, with an increase in the chunk size, I/O time for reading
a data chunk increases, and hence, the worker threads spend more
time waiting for the work. For PCA, with 128 chunks, the speedup
of hetero version when compared to a 1-thread CPU version is
about 12. Also, we had about a 87% increase in performance by
decreasing the number of chunks from 512 to 128.

4.3 Evaluation of Load Balancing Schemes
In this subsection, we evaluate the performance of our dynamic
load balancing scheme, comparing it against two static load balanc-
ing schemes, and further examine, the role the number of chunks
play in the performance of the dynamic scheme. The two static
load balancing schemes are Naive and Smart. In the naive static
scheme, the data is partitioned equally between the group of CPU
cores and the GPU. Smart static scheme is a computational-power-
aware scheme. Here, the data is partitioned based on the process-
ing power ratio between a CPU core and the GPU. This ratio is
obtained by actual execution of the application on one core of the
CPU and the GPU. If GPU is X times faster than the 1-thread CPU
version, then, for the hetero version, if each CPU thread takes n

chunks, GPU thread takes n ∗ X chunks.
For each of the load balancing schemes, we show the two

components that constitute the total computation time, the work-
time, and the idle-time. The former refers to the time when both
CPU and GPU are simultaneously busy, whereas, the latter includes
any time windows when either of the resources is idle.

The comparison of different load balancing schemes for k-
means and PCA are shown in Figures 11 and 12. All results are
from the hetero version, with 8 CPU threads. The important ob-

7 2009/9/30

Figure 11. K-means: Comparison of Dynamic and Static Load
Balancing Schemes

Figure 12. PCA: Comparison of Dynamic and Static Load Balanc-
ing Schemes

Figure 13. K-means - Distributed of Work

Figure 14. PCA - Distributed of Work

servations are as follows. For all the thread configurations, the per-
formance of the dynamic scheme is better than both the static ver-
sions. For some of the thread configurations, smart static scheme
performs better than naive scheme, while naive scheme outper-
forms smart scheme at other times. This shows that, it is hard to de-
sign a static scheme that performs well for all configurations. Both
the static schemes suffer from large idle time for most of the thread
configurations. Therefore, a dynamic load balancing system is re-
quired to find a near-perfect work share between the CPU threads
and the GPU thread.

In the previous subsection, we had seen the impact of the num-
ber of chunks on the overall performance. To further understand
this in the context of the dynamic scheme, we show the variation
in the fraction of work performed by the group of CPU threads and
the GPU thread over different number of chunks. The results are
shown in Figure 13 and 14. For k-means, with the base-version,
CPU threads perform more work than the GPU thread. This is be-
cause, with a higher number of chunks, GPU spends more time
copying the data back and forth between the host and the device

8 2009/9/30

Figure 15. K-means: Scalability on 8 Nodes

Figure 16. PCA: Scalability on 8 Nodes

memory. But, with decreasing number of chunks, work share of
GPU thread increases. Beyond 64 chunks, the threads start to spend
more time waiting for the chunks to arrive. So, for k-means, for this
particular dataset size, the fraction of work share resulting in best
performance was, 33% for CPU and 67% for GPU. For PCA, for
the dataset size we considered, the best performance was obtained
with 128 chunks, when the fraction of work performed by the CPU
was 26%, and the remaining 74% of the work was performed by
the GPU.

4.4 Scalability On a Cluster
We next demonstrate that the hetero version we generate could
be scaled on a cluster of nodes with multi-core CPU and a GPU.
We used a cluster of 8 nodes, with each node containing 8-CPU
cores and a GPU. For k-means, we used a dataset of size 12.8 GB.
For PCA, we used a dataset of size 8.5 GB. The number of chunks
in the dataset was chosen in such a way that, when the dataset is
partitioned between 8 nodes, each node gets a number of chunks

that results in best possible performance, as chosen by the previous
experiments.

The results for the experiments on the cluster are shown in
Figures 15 and 16. We consider two versions, a CPU-only and
a hetero version, on 1, 2, 4, and 8 nodes of the cluster. Both
versions have a total of 8 CPU threads on each node. For k-means,
using 8 nodes, with 8 CPU threads on each node, but no GPU, we
get a speedup of about 56, over a single threaded CPU version. This
shows a high parallel efficiency (about 88%). On the same 8 nodes,
using 8 CPU cores and the GPU, we obtain a speedup of about
95 over a sequential version. This again shows that the hetero
version can be scaled on a cluster, and use of GPUs can enhance
performance even on a cluster.

For PCA, the CPU only version, with 8 nodes, and 8 cores
on each node, achieves a speedup of 22.1 over a sequential single
threaded version. The main reason for the limited speedup is that a
single node, 8 thread version has only a speedup of 3.6. On 8 nodes,
the hetero version achieves a speedup of 45.8. Again, this shows
that we can continue to scale the hetero version on a cluster, and
the use of GPU gives a substantial performance benefit.

5. Related Work
We now compare our work with related work on language sup-
port and application development on heterogeneous architectures,
compiler support for GPU programming, and runtime and compiler
support for reductions.

Recently, many research efforts have focused on exploiting the
combined power of both CPU and GPU. Open Computing Lan-
guage (OpenCL) [19] is a programming language based on C and
C++ for heterogeneous programming with CPU, GPU, and other
computing resources. This was initially developed by Apple and
is currently being standardized by Khronos Group. Chamberlain
et. al [8] have discussed their vision for application development
for hybrid computing systems. But, there are no concrete design
or implementation yet. Exochi [35] is a programming environment
that utilizes a heterogeneous platform for media kernels, showing
performance improvements. Recently, after Larrabee model was in-
troduced, Intel has developed a programming model for heteroge-
neous computing of the x86 platform [31]. Here, they also describe
a new memory model, but programming API is still relatively low-
level. Venkatasubramanian et. al [34] have studied a stencil kernel
for a hybrid CPU/GPU platform. They have evaluated their hybrid
performance on two different hardware configurations.

Our effort is distinct in supporting a very high-level program-
ming API, and showing significant performance gains from the use
of a heterogeneous platform.

In the last 2 years or so, many research efforts have focused on
easing programming on the GPUs. At UIUC, CUDA-lite [4] is be-
ing developed with the goal of alleviating the need for explicit GPU
memory hierarchy management by the programmers. The same
group also investigated optimization on CUDA programming [30].
Baskaran et al. use the polyhedral model for converting C code into
CUDA automatically [6]. Their system is limited to affine loops. A
version of Python with support of CUDA, Pycuda, has also been
developed, by wrapping the CUDA functions and operations into
classes that are easy to use [20]. The work at Purdue is focusing on
translating OpenMP to CUDA [22]. Tarditi et al. have developed
an approach for easing the mapping of data-parallel operations on
GPUs [33]. Rapidmind offers somewhat similar approach targeting
both GPUs and multi-cores2. Also, AMD has come up with their
own streaming SDK [2], with higher level API, for programming
their GPUs. The key distinct aspect of our work is that we focus on
exploiting the computing power of both multi-cores and GPUs.

2 http://www.rapidmind.net/

9 2009/9/30

Analysis and code generation for reduction operations has
been studied by a number of distributed memory compilation
projects [1, 5, 10, 15, 21, 37] as well as shared memory paral-
lelization projects[7, 11, 12, 24, 25, 28, 36]. More recently, reduc-
tions on emerging multi-cores have also been studied [23]. Our
automatic code generation work has many similarities, but is dis-
tinct in considering a different computing platform. Map-reduce
is a widely used parallel computing runtime system developed
by Google [9]. Phoenix [29] is an implementation of map-reduce
for shared-memory systems that includes a programming API for
multi-core CPUs. As we stated earlier, there is already a GPU ver-
sion of map-reduce, called Mars [13]. Our work targets the same
class of applications, but considers the computing power of both
GPUs and multi-core CPUs in a cluster. Furthermore, we offer a
higher-level API (almost sequential).

6. Conclusions
Because of the growing popularity of both multi-cores and accel-
erators, common computing platforms today have heterogeneous
processing components. Exploiting the processing power of such
configurations is a growing challenge. In this paper, we have devel-
oped compiler and runtime support targeting a particular class of
applications for such a heterogeneous configuration.

The key aspects of our approach and results are as follows. We
have shown that targeting a limited class of applications eases the
code generation challenge for both multi-core clusters and GPUs.
Overall, we have shown that performance using a heterogeneous
platform can be significantly better than performance using only a
multi-core CPU or a GPU. Moreover, we have shown that dynamic
work distribution clearly outperforms static schemes. Furthermore,
the granularity in performing such dynamic distribution, i.e., the
chunk or split size, is a critical factor for achieving high perfor-
mance.

In the future, we will like to develop models for predicting
the optimal chunk size. We will also like to expand our work to
consider applications with other communication patterns.

References
[1] V. Adve and J. Mellor-Crummy. Using integer sets for data-parallel

program analysis and optimization. In Proceedings of the SIGPLAN
’98 Conference on Programming Language Design and Implementa-
tion, June 1998.

[2] AMD. AMD Stream SDK. ati.amd.com/technology/streamcomputing.

[3] P. Anderson, D. Binkley, G. Rosay, and T. Teitelbaum. Flow Insensi-
tive Points-To Sets. scam, 00:0081, 2001.

[4] S. Baghsorkhi, M. Lathara, and W. mei Hwu. CUDA-lite: Reducing
GPU Programming Complexity. In LCPC 2008, 2008.

[5] P. Banerjee, J. A. Chandy, M. Gupta, E. W. H. IV, J. G. Holm, A. Lain,
D. J. Palermo, S. Ramaswamy, and E. Su. The Paradigm Compiler for
Distributed-Memory Multicomputers. IEEE Computer, 28(10):37–47,
Oct. 1995.

[6] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan. A Compiler Framework for Optimiza-
tion of Affine Loop Nests for GPGPUs. In International Conference
on Supercomputing, pages 225–234, 2008.

[7] W. Blume, R. Doallo, R. Eigenman, J. Grout, J. Hoelflinger,
T. Lawrence, J. Lee, D. Padua, Y. Paek, B. Pottenger, L. Rauchw-
erger, and P. Tu. Parallel programming with Polaris. IEEE Computer,
29(12):78–82, Dec. 1996.

[8] R. D. Chamberlain, J. M. Lancaster, and R. K. Cytron. Visions
for application development on hybrid computing systems. Parallel
Comput., 34(4-5):201–216, 2008.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In OSDI, pages 137–150, 2004.

[10] M. Gupta and E. Schonberg. Static analysis to reduce synchronization
costs in data-parallel programs. In Conference Record of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 322–332. ACM Press, Jan. 1996.

[11] M. Hall, S. Amarsinghe, B. Murphy, S. Liao, and M. Lam. Maxi-
mizing multiprocessor performance with the SUIF compiler. IEEE
Computer, (12), Dec. 1996.

[12] H. Han and C.-W. Tseng. Improving compiler and runtime support
for irregular reductions. In Proceedings of the 11th Workshop on
Languages and Compilers for Parallel Computing, Aug. 1998.

[13] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: A
MapReduce Framework on Graphics Processors. In PACT08: IEEE
International Conference on Parallel Architecture and Compilation
Techniques 2008, 2008.

[14] High Performance Fortran Forum. High Performance Fortran lan-
guage specification. Scientific Programming, 2(1–2):1–170, 1993.

[15] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling Fortran D
for MIMD distributed-memory machines. Commun. ACM, 35(8):66–
80, Aug. 1992.

[16] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice
Hall, 1988.

[17] R. Jin and G. Agrawal. A middleware for developing parallel data
mining implementations. In Proceedings of the first SIAM conference
on Data Mining, Apr. 2001.

[18] R. Jin and G. Agrawal. Shared Memory Parallelization of Data Mining
Algorithms: Techniques, Programming Interface, and Performance. In
Proceedings of the second SIAM conference on Data Mining, Apr.
2002.

[19] Khronos. OpenCL 1.0. http://www.khronos.org/opencl/.

[20] A. Klockner. PyCuda. http://mathema.tician.de/software/pycuda,
2008.

[21] C. Koelbel and P. Mehrotra. Compiling global name-space parallel
loops for distributed execution. IEEE Transactions on Parallel and
Distributed Systems, 2(4):440–451, Oct. 1991.

[22] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: a compiler
framework for automatic translation and optimization. In PPoPP ’09:
Proceedings of the 14th ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 101–110, New York, NY,
USA, 2008. ACM.

[23] S.-W. Liao. Parallelizing user-defined and implicit reductions globally
on multiprocessors. In C. R. Jesshope and C. Egan, editors, Asia-
Pacific Computer Systems Architecture Conference, volume 4186 of
Lecture Notes in Computer Science, pages 189–202. Springer, 2006.

[24] Y. Lin and D. Padua. On the automatic parallelization of sparse
and irregular Fortran programs. In Proceedings of the Workshop on
Languages, Compilers, and Runtime Systems for Scalable Computers
(LCR - 98), May 1998.

[25] B. Lu and J. Mellor-Crummey. Compiler optimization of implicit
reductions for distributed memory multiprocessors. In Proceedings
of the 12th International Parallel Processing Symposium (IPPS), Apr.
1998.

[26] W. Ma and G. Agrawal. A translation system for enabling data
mining applications on gpus. In ICS ’09: Proceedings of the 23rd
international conference on Conference on Supercomputing, pages
400–409, New York, NY, USA, 2009. ACM.

[27] NVidia. NVIDIA CUDA Compute Unified De-
vice Architecture Programming Guide. version 2.0.
http://developer.download.nvidia.com/compute/cuda/2.0-
Beta2/docs/Programming Guide 2.0beta2.pdf, June 7 2008.

[28] W. M. Pottenger. The Role of Associativity and Commutativity in the
Detection and Transformation of Loop-Level Parallelism. In Confer-
ence Proceedings of the 1998 International Conference on Supercom-
puting (ICS), pages 188–195. ACM Press, July 1998.

[29] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating mapreduce for multi-core and multiproces-

10 2009/9/30

sor systems. In Proceedings of International Symposium on High Per-
formance Computer Architecture, 2007, pages 13–24, 2007.

[30] S. Ryoo, C. Rodrigues, S. Stone, S. Baghsorkhi, S.-Z. Ueng, J. Strat-
ton, and W. mei Hwu. Program Optimization Space Pruning for a Mul-
tithreaded GPU. In Proceedings of the 2008 International Symposium
on Code Generation and Optimization, April 2008, pages 195–204.
ACM, April 2008.

[31] B. Saha, X. Zhou, H. Chen, Y. Gao, S. Yan, M. Rajagopalan, J. Fang,
P. Zhang, R. Ronen, and A. Mendelson. Programming model for a
heterogeneous x86 platform. SIGPLAN Not., 44(6):431–440, 2009.

[32] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: a many-core x86 architecture for
visual computing. ACM Trans. Graph., 27(3):1–15, August 2008.

[33] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data paral-
lelism to program gpus for general-purpose uses. In J. P. Shen and
M. Martonosi, editors, ASPLOS, pages 325–335. ACM, 2006.

[34] S. Venkatasubramanian and R. W. Vuduc. Tuned and wildly asyn-
chronous stencil kernels for hybrid cpu/gpu systems. In ICS ’09:
Proceedings of the 23rd international conference on Supercomputing,
pages 244–255, New York, NY, USA, 2009. ACM.

[35] P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang, X. Tian, M. Girkar,
N. Y. Yang, G.-Y. Lueh, and H. Wang. Exochi: architecture and pro-
gramming environment for a heterogeneous multi-core multithreaded
system. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN con-
ference on Programming language design and implementation, pages
156–166. ACM Press, 2007.

[36] H. Yu and L. Rauchwerger. Adaptive reduction parallelization tech-
niques. In Proceedings of the 2000 International Conference on Su-
percomputing, pages 66–75. ACM Press, May 2000.

[37] H. P. Zima and B. M. Chapman. Compiling for distributed-memory
systems. Proceedings of the IEEE, 81(2):264–287, Feb. 1993. In
Special Section on Languages and Compilers for Parallel Machines.

11 2009/9/30

