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Abstract

The increasing popularity of multi-core processors has made MPI intra-node communication, including the intra-

node RMA (Remote Memory Access) communication, a critical component in high performance computing. MPI-2

RMAmodel defines one-sided communication facilitated with synchronization operations. The existing designs for

intra-node RMA communication are built on top of two-sided send/recv operations. They suffer from the two-sided

inherent overhead and the close dependency on the remote side. In this paper, we propose two kernel based direct

copy alternatives, i.e., the basic kernel-assisted approach and the I/OAT-assisted approach, to design the truly

one-sided intra-node communication. In addition, we utilize the shared memory mechanism to achieve the truly

one-sided synchronization. The new design eliminates the overhead of two-sided operations and removes the in-

volvement from the remote side. We also propose a series of benchmarks to evaluate various performance aspects

over multi-core-based architectures (Intel Clovertown, Intel Nehalem and AMD Barcelona). The results show that

the new design obtains up to 39% lower latency for small and medium messages and demonstrates 29% improve-

ment in large message bandwidth. The performance is quite stable irrespective of the intra-node communication

types. Moreover, it presents superior performance in terms of better scalability, less cache misses, more resilience

to process skew and higher computation and communication overlap. Finally, up to 10% performance benefits is

demonstrated for a real scientific application AWM-Olsen.

1. Introduction

Parallel scientific computing has been growing dramatically these years. It drives the faster devel-

opment of newer technologies, the massive deployment of workstation clusters and the revolutionary

improvement of programming models.

Multi-core technology is one of the main contributors to this trend. As it becomes mainstream, more

and more clusters are deploying multi-core processors. Quad-core and Hex-core processors are quickly

gaining ground in many applications. In fact, more than 87% of the systems in the June 2009 ranking

of the Top500 supercomputers belong to the multi-core processor family. In this scenario, it is expected

that considerable communication will take place within a node. It suggests that the intra-node commu-

nication design of a programming model will play a key role in the overall performance.

In the last decade MPI (Message Passing Interface) [22] has evolved as one of the most popular

programming models for distributed memory systems. MPI-1 specification defines the message passing

based on send-receive operations. It is generally referred to as two-sided communication model, as both
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the sender and receiver are involved in the communication. The synchronization is done implicitly in

progress engine. To fulfill the need of many scientific applications that have dynamically changing data

distributions and data access patterns, MPI-2 [23] standard introduces the one-sided communication

model also known as Remote Memory Access (RMA) model. In this model, ideally only one process

participates in the communication, so it has to specify all the communication parameters including the

parameters (such as memory address) on the remote side. Synchronization is done explicitly to guarantee

the communication completion. Here the process initiating the communication is called origin, and the

remote peer process is called target. MPI-2 currently supports three one-sided operations, i.e.,MPI Put,

MPI Get and MPI Accumulate, and two synchronization modes, i.e., active mode and passive mode.

There can be different ways to design and implement the one-sided model. One way is to build it on

top of the existing two-sided operations. This approach has good portability, but meanwhile suffers from

some overhead. It includes intermediate layer handover, two-sided inherent overhead (including more

data copies, send/recv matching and rendezvous negotiation etc.) and the remote process involvement.

Several popular MPI implementations such as MPICH2[2] and LAM/MPI [1] use this two-sided based

approach. The second approach is to utilize special functions such as RDMA operations to achieve

direct one-sided communication. MVAPICH2 [21, 3] uses this design and shows better performance.

However, all of these designs mainly focus on optimizing the inter-node RMA communication. Even in

the second direct one-sided approach, it falls back to the two-sided based design if it is the intra-node

communication. This could significantly degrade the overall performance due to the increasing impor-

tance of intra-node communication and higher overhead of the two-sided based approach. Therefore, it

is necessary to design more efficient intra-node one-sided communication.

In this paper we design and implement a truly one-sided RMA model for intra-node communication,

and carry out comprehensive evaluations and analysis. We propose two alternatives for truly one-sided

data communication. One is based on the kernel-assisted direct copy and the other one further takes

help from the modern I/OAT [17] technology to offload this copy. MPI Put and MPI Get are naturally

mapped to the direct copy without interrupting the target. This design eliminates the two-sided opera-

tion related overhead. More importantly, since the target is not involved, its progress does not block the

communication. 1 For synchronization, as the passive mode has been investigated in [19, 26], we only

deal with the active mode. Shared memory mechanism is utilized to realize the one-sided property in

synchronization. We come up with several benchmarks running on three multi-core-based architectures,

i.e., Intel Clovertown, Intel Nehalem and AMD Barcelona. From the experimental results we observe

that our new design provides much better performance in terms of latency and bandwidth as compared

to the existing two-sided based designs. Particularly, the basic kernel-assisted approach improves the

latency for small and medium messages by 39%, and the I/OAT based approach yields up to 29% im-

provement in large message bandwidth. Also, the performance is not much affected by the intra-node

communication types (i.e., inter-socket, intra-socket or shared-cache). Further, we see that the new de-

sign achieves better scalability, less cache misses and more computation and communication overlap. It

is also more tolerant to the process skew and offers more benefits in real applications.

The rest of this paper is organized as follows. In Section 2, we provide the introduction on MPI-2 one-

sided RMA communication model and the common mechanisms for intra-node communication. Then

we analyze the drawbacks of the existing designs in Section 3. In Section 4, we describe the proposed

design in detail. We present and analyze the experimental results in Section 5, discuss the related work

in Section 6, and summarize conclusions and possible future work in Section 7.

1Please note that currentlyMPI Accumulate is not considered. We plan to incorporate it in the future.



2. Background

In this section, we briefly describe the required background knowledge for this work.

2.1. MPI-2 RMA Communication

MPI-2 RMA communication (i.e., one-sided communication) model defines that the origin process

can directly access the memory area on the target process. This memory area is called window which

is defined in MPI Win create. Ideally the origin process specifies all the parameters including the target

memory address and target data types, etc, so the target is unaware of the on-going communication.

As mentioned in Section 1, MPI-2 defines three RMA operations. MPI Put and MPI Get transfer the

data to and from a window on a target. MPI Accumulate combines the data movement to target with

a reduce operation. The operations are not guaranteed to complete when these functions return. The

completion must be ensured using explicit synchronization primitives. In other words, MPI semantics

allows one-sided operations only within an epoch which is the period between two synchronization

events. The synchronization is classified as passive (requiring no explicit participation of the target) and

active (involving both origin and target). In the passive mode, the origin process uses MPI Win lock and

MPI Win unlock to define an epoch. The active mode is further classified into two types: a) collective

MPI Win fence on the entire group; and b) collective on a smaller user-defined group, i.e., origin process

uses MPI Win start and MPI Win complete to specify an access epoch to a group of targets, and the

target calls MPI Win post and MPI Win wait to specify an exposure epoch to a group of origins. The

origin can issue RMA operations only when it knows that the target window has been posted, and

the target can complete an epoch only when it knows that all the origins in the group have finished

accessing on its window. Normally multiple one-sided operations are issued in an epoch to amortize the

synchronization overhead. In this paper, we primarily concentrate on the active synchronization and use

the post-wait/start-complete synchronization as the example in the following sections.

2.2. Generic Mechanisms for Intra-node Communication

There are several common mechanisms for intra-node communication. The easiest one is user space

shared memory approach. Two processes sharing a buffer can communicate with copy-in (from sender

buffer to shared memory) and copy-out (from shared memory to receiver buffer) operations. This ap-

proach usually provides benefits for small messages, while not for large messages due to the two copies

overhead. As it must involve two parties, normally it is not a good candidate for designing one-sided

communication.

The second category of mechanisms take help from the kernel to save one copy. In the kernel space,

the data is directly copied from the sender’s address space to the receiver’s address space. Some such

kernel modules have been developed for MPI two-sided large message communication. For example,

LiMIC2 [20] is used in MVAPICH2 [21] and KNEM [9] is used in MPICH2 [2]. Based on this approach,

another alternative is to further offload the direct copy to DMA (Direct Memory Access) engine. I/OAT

[17] developed by Intel is such a DMA engine. It is a PCI resource having multiple independent DMA

channels with direct access to main memory. It copies the data asynchronously while releasing the CPU

for other work. These two kernel-assisted direct copy approaches both fit the one-sided model very well.

As long as the origin provides the kernel or I/OAT with the buffer information about itself and target,

the data can be directly copied to the target without interrupting it. On the other hand, they have the cost

of trapping into the kernel, pinning down the memory, and polling the completion (for I/OAT), etc.
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3. Analysis of Existing Designs

As illustrated in Figure 1(a), various MPI implementations 2 design MPI-2 RMA communication us-

ing two means, i.e., based on two-sided send/recv operations 3 and direct one-sided. Direct one-sided ap-

proach bypasses the two-sided operations to directly build the RMA communication over the underlying

remote memory access mechanisms (e.g., RDMA mechanism available on some modern interconnects,

or node level RMA mechanisms). This approach is truly one-sided and usually offers more benefits.

While the inter-node direct one-sided design has been incorporated into some implementations, to the

best of our knowledge the intra-node truly one-sided design is still missing.

Regarding the existing two-sided based designs for intra-node RMA, let us see an example in MPICH2.

It employs a deferred method [27] as shown in Figure 1(b) where the dotted lines represent synchroniza-

tion steps and the solid lines mean data communication steps. At the origin, MPI Win start and the

put’s/get’s return immediately. The put/get operations are just queued locally and will be issued in

MPI Win complete after it checks that the target window has been posted (by calling MPI Recv which

matches with MPI Send issued in MPI Win post by the target). The completion is marked by adding

a special flag in the last put/get packet. Even though this design has minimized synchronization as

compared to other two-sided based designs, it is not one-sided in nature and still has several drawbacks.

Since all the synchronization and data communication go through the send/recv path, it is unavoidable

to inherit the two-sided overhead. For instance, short messages will need copy-in and copy-out through

the shared memory. Large messages require sending buffer information (in MPICH2) or even rendezvous

handshake (in MVAPICH2) before the data is actually transferred. It not only adds latency, but also

leads to the direct dependency on the target process’s progress, which is contrary to the goal of one-

sided model. This together with the fact that all the one-sided operations are deferred to be issued could

result in very bad performance if the origin and target processes are skewed. We experimented this with

a benchmark in which some amount of computation (in the form of matrix multiplication) is inserted

between MPI Win post and MPI Win wait on the target to emulate the skew. The origin performs a

sequence of MPI Win start, 16 back-to-back MPI Put operations and MPI Win complete. We measure

the time to finish these operations when running two processes within a node. It is essentially the latency

before the origin can proceed with other work. Table 1 lists the results for put message size of 256

KB using several popular MPI-2 implementations. The basic latency without any process skew is also

presented for reference. We can see that as the computation time at the target increases (more skew), the

2Strictly speaking Open-MX is not a MPI implementation, but it can be ported to several MPI implementations.
3Please note that I/OAT support for two-sided communication is not officially included in the current MVAPICH2 release.

It is on the scheduled plan.



execution time at the origin shoots up quickly. This is resulted from its dependency on the target. All of

these observations suggest the great demand on designing a truly one-sided intra-node communication.

Table 1. Execution time (usec) of 16 put with increasing process skew

Matrix size 0x0(base) 32x32 64x64 128x128 256x256

MVAPICH2 3404 3780 6126 27023 194467

MPICH2 4615 4675 4815 24906 192848

OpenMPI 3804 3898 6563 27381 194560

4. Proposed Design and Implementation

In this section, we describe the details of our design and implementation. In the following, we use

post, wait, start, complete, put and get as the abbreviations for the corresponding MPI functions.

4.1. Goal of the New Design

First we present the design goal and overall architecture. Figure 2 shows the new design we intend to

target. Basically we aim to realize the truly one-sided nature for both synchronization operations (post

and complete) and the communication operations (put and get), thereby removing the two-sided related

overhead and alleviating the impact of process skew. All the functions should be able to proceed as

soon as they are called, independent of the remote side response. ”start” operation still returns without

doing anything. A ”put/get” can be issued immediately if the ”post” has been there, or be issued in

later functions as soon as ”post” is detected. As the communication is within a node, we utilize the

aforementioned (in Section 2.2) mechanisms as the basis for the design.
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get()
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User Program MPI Lib
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Figure 2. Goal of the new design

Our design is implemented in MVAPICH2[21] which currently uses the send/recv based deferred

approach as described in Section 3. We make changes on CH3 layer to design a customized interface for

intra-node direct one-sided communications. It utilizes the underlying intra-node communication means

that are specially designed for this situation.

4.2. Design of Truly One-Sided Synchronization

As mentioned earlier, we use the post-wait and start-complete synchronization as the example. At the

beginning, the target informs the origin that its window has been posted for access, and at the end the

origin notifies the target that all the one-sided operations on the window have finished.

We utilize shared memory for the direct one-sided design, as illustrated in Figure 3(a) using 4 pro-

cesses for instance. Every process creates two shared memory buffers used by others to write ”post” and

”complete” notifications, respectively. Then each process attaches to the shared memory of other pro-

cesses within the same node. Shared memory creation, information exchange and attachment operations
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take place in MPI Win create which is not in the communication critical path. Also, since these buffers

are actually bit vectors whose size is very small, the scalability will not be an issue. Using this structure,

a target can directly write ”post” in the corresponding shared memory. When an origin starts an epoch,

it checks its post buffer and knows which processes have posted their windows. Consequently, it can

immediately initiate the put/get on those windows instead of queuing them. Similarly, upon finishing all

the operations, the origin simply writes a ”FIN” message to the completion shared memory where the

corresponding target will check for the completion. It is to be noted that for the processes in the group

that do not end up being the real target, the origin still needs to notify the completion to them so that

those processes will not be blocked in this epoch.

The advantages of this design are two folds. One is that it requires only one copy for ”post” step.

The other is that it is truly one-sided without depending on remote side’s participation. Additionally, the

put/get operations are not deferred.

4.3. Design of Truly One-Sided Data Communication

Different from the synchronization operations, the one-sided data communication (put/get) cannot

make use of shared memory mechanism, because the buffers where these operations perform are passed

from user programs. Usually they are not shared memory. Although MPI standard defines a function

MPI Alloc mem allowing users to allocate special memory that is shared by other processes on a SMP

node, we should not assume that the users will always use it. Henceforth, we take advantage of the

kernel-assisted means.

With the help of kernel, put or get operations can directly transfer the data to or from the target

window. Operations are transparent to the target. Figure 3(b) presents our design. Every process calls

kernel module function to extract the information about its own window and maps this back to a user

space structure. Then all the intra-node processes exchange this information. These two steps happen

in MPI Win create. After target posts the window and an origin tries to issue a get/put (e.g., process 1

issues a put to process 0 in Figure 3(b)), it only needs to find the target window information (w0), thereby

providing both this information and its local buffer information to the kernel. Regarding the actual data

copy, as mentioned in Section 2.2, there are two direct copy approaches, i.e., the basic kernel-assisted

approach and the I/OAT-assisted approach. We implement both the versions. It is to be noted that in

the original design, the data transfer uses two-sided send/recv operations which also employs the basic

kernel-assisted one-copy method for large messages [20], but every time it has to go through rendezvous

handshake prior to copy.



4.4. Other Design Issues

We have to address several additional issues to obtain good performance with kernel-assisted ap-

proach.

First, during the copy operation, the buffer pages should be locked in main memory to avoid them

to be swapped to disk. This is mandatory for I/OAT based copy, because DMA engine directly deals

with physical addresses. Thus, both the buffers at origin and the window at target are locked. While

for the basic kernel-assisted approach, only the target window buffer is locked. We use the kernel API

get user pages for this locking step.

The high cost of locking pages may degrade the performance if every time the buffers are first locked

before the copy. In order to alleviate this, the locked pages are cached inside the kernel module upon

being added for the first time. Then next time the same buffer is not locked again. However, only the

pages of window memory are cached. The local sending or receiving buffer are not cached, considering

that they usually change as the application proceeds. For the memory allocated by malloc(), the cached

pages must be released before the memory is freed, so we simply do not cache these pages.

Another issue about I/OAT is the completion notification. After issuing copy requests, I/OAT returns

cookies that can be polled for completion. Frequent polling is not desirable, so polling is performed only

after the last put/get operation and before the origin writes completion to the target.

The last issue is that I/OAT copies the data from page to page. If the buffers are not aligned, the

number of copy operations could be two times of the number of pages. Thus, we can expect much better

performance using aligned buffers. In our experimental evaluations, all of the microbenchmarks have

aligned memory while the real application is not guaranteed on this.

5. Experimental Evaluation

In this section, we present comprehensive experimental evaluations and analysis. We first present the

basic put/get latency and bandwidth. Then we characterize the scalability performance, the cache effect,

the impact of process skew, and the computation and communication overlap. Finally, we use a real

application AWM-Olsen [12] to show the application level performance. In all of the following figures,

”Original” represents the existing design in MVAPICH2, ”T1S-kernel” and ”T1S-i/oat” represent the

basic kernel-assisted version and the I/OAT-assisted version of our truly one-sided design. We primarily

compare the performance of these three designs. In Section 5.1, we also show the results of MPICH2

and OpenMPI for more comparative study.

Experimental Test Bed: We use three types of multi-core hosts. Type A is Intel Clovertown node

with dual-socket quad-core Xeon E5345 processor (2.33 GHz). It has shared L2 cache between each

pair of two cores. Type B is Intel Nehalem node with dual-socket quad-core Xeon E5530 processor

(2.40 GHz) which has exclusive L2 cache for each core. Type C is AMD Barcelona host with quad-

socket quad-core Opteron 8350 processor having exclusive L2 cache. Based on these different multi-

core architectures, there are various kinds of intra-node communication. Type A node has inter-socket

(processes are on different sockets), intra-socket (two processes on the same socket without shared L2

cache) and shared-cache communication. Nodes of type B and C only have inter-socket and intra-socket

communication. Most of our experiments are carried out using type A nodes.

5.1. Latency and Bandwidth Performance

We use the RMA microbenchmarks in OMB [24] suite to measure the latency and bandwidth of intra-

node one-sided put/get by running two processes on a single node. The performance with MPICH2

(using their latest Nemesis channel) and OpenMPI (using the best run-time tuning we can get for their

one-sided communication-OSC component) is also measured for comparison.



In the ping-pong latency test, one process performs a sequence of post-wait-start-get(put)-complete

(two epochs). Correspondingly, the other process performs start-get(put)-complete-post-wait. This pat-

tern repeats for many iterations. The benchmark reports the averaged latency for one epoch. We experi-

ment with all aforementioned intra-node communication types. Figures 5(a), (b) and (c) show the results

for intra-socket get on an Intel Clovertown host. Comparing with the existing designs, our basic kernel-

assisted design greatly reduces the latency for small and medium messages by more than 39% and 30%,

respectively, while showing similar performance as MVAPICH2 for large messages. This is because that

for small and medium messages, our design saves one copy of synchronization and data messages. The

locked page caching also improves the performance. However, for large messages, the data commu-

nication dominates the latency, and the send/recv in MVAPICH2 also uses kernel-assisted direct copy

underneath. MPICH2 and OpenMPI show worst performance starting from medium messages, because

they use the two-copy shared memory mechanism. On the other hand, our I/OAT-assisted design per-

forms the worst for small and medium messages due to the high start up cost, but it yields much better

performance (by up to 29%) for very large messages (beyond 1 MB). We believe it is because that I/OAT

copies data in blocks larger than that in the general copy. We see the similar results for put latency which

is not presented in this paper due to the space limit. For inter-socket and shared-cache communication,

the performance trends remain the same, except that MPICH2 and OpenMPI perform better in shared-

cache case while degrade in inter-socket case as compared to their performance in the intra-socket case,

which is mainly due to the different data access time. The results are shown in Figures 7 and Figures 9.
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Figure 4. Latency of get: (a) small messages, (b) medium messages and, (c) large messages (Intel

Clovertown, Intra-socket)
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Figure 5. Latency of put: (a) small messages, (b) medium messages and, (c) large messages (Intel

Clovertown, Intra-socket)

Figures 6 (a) and (b) show the bandwidth of get and put in the intra-socket case. In the bandwidth test,

one process is always the target who calls post and wait, while the other process calls start-get’s(put’s)-

complete. In each iteration the get/put are issued for multiple times (named as burst size) on non-

overlapped locations in the target window, e.g., here we use 32 continuous put/get. We see that the

basic kernel-assisted design improves the bandwidth dramatically for small to medium message range



where the I/OAT-assisted design performs the worst. However, beyond the message size of 256K, I/OAT-

assisted design performs the best with the improvement up to 64%, thanks to the multiple channels in

I/OAT for parallel copies. It is also because I/OAT has less CPU consumption and it operates directly on

memory without being affected by cache contention, but other designs will have a lot of cache misses

with messages larger than 128 KB (128KB*32=4MB is the L2 cache size shared by two cores). MPICH2

and OpenMPI have very low bandwidth limited by the two-copy overhead and cache-cache transaction

time. We observe very similar comparison in the inter-socket case in Figures 8. However, the shared-

cache case displays some differences as shown in Figures 10 (a) and (b). Two versions of our new design

and MVAPICH2 still remain the similar performance. MPICH2 and OpenMPI get higher bandwidth than

that they obtain in the inter-socket case, mainly due to the greatly reduced data copy time inside cache.
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Figure 6. Bandwidth of one-sided operations: (a) get, and (b) put (Intel Clovertown, Intra-socket)
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Figure 7. Latency of get: (a) small messages, (b) medium messages and, (c) large messages (Intel

Clovertown, Inter-socket)
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Figure 8. Bandwidth of one-sided operations: (a) get, and (b) put (Intel Clovertown,Inter-socket)

To examine the impact of different multi-core architectures, we also measured the latency and band-

width on Type B and C nodes under inter-socket and intra-socket situations. The chipsets on these two

nodes do not support I/OAT, so we do not examine the performance of the I/OAT-assisted design. Here
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Figure 9. Latency of get: (a) small messages, (b) medium messages and, (c) large messages (Intel

Clovertown, Shared-cache)
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Figure 10. Bandwidth of one-sided operations: (a) get, and (b) put (Intel Clovertown, Shared-cache)

we only present part of the results. Figures 12 (a), (b) and (c) present the inter-socket get latency on Ne-

halem host. Our design still exhibits lower latency. Owing to the improved multi-core architecture, the

absolute latency is much lower than that on the Clovertown architecture. Figures 13 (a) and (b) show the

get bandwidth in inter-socket and intra-socket cases, respectively. As the tests on type A host, our new

design has stable highest throughput. Similarly, Figures 15 (a), (b) and (c) show the get latency, and Fig-

ures 16 (a) and (b) show the bandwidth on AMD Barcelona node. We also find that our kernel-assisted

direct one-sided design performs the best for most cases.

All of the above results demonstrate that our new design can obtain significantly improved latency

and throughput on various multi-core architectures, and the performance stays quite stable irrespective

of the intra-node communication types.

Our new design is implemented in MVAPICH2. For the remaining part of the paper, we mainly

compare our new design (”T1S-kernel”, ”T1S-i/oat”) with the ”Original” MVAPICH2 design.
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Figure 11. Latency of get: (a) small messages, (b) medium messages and, (c) large messages (Intel

Nehalem, Inter-socket)
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Figure 12. Latency of get: (a) small messages, (b) medium messages and, (c) large messages (Intel

Nehalem, Intra-socket)
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Figure 13. Bandwidth of one-sided get of (a) Inter-socket and (b) Intra-socket. (Intel Nehalem)
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Figure 14. Latency of get: (a) small messages, (b) medium messages and, (c) large messages (AMD

Barcelona, Intra-socket)
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Figure 15. Latency of get: (a) small messages, (b) medium messages and, (c) large messages (AMD

Barcelona, Inter-socket)
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Figure 16. Bandwidth of one-sided get of (a) Inter-socket and (b) Intra-socket.(AMD Barcelona)

5.2. Scalability Performance

In some applications, multiple origin processes communicate with one target process. It is very im-

portant for a design to provide salable good performance in this situation. We use two experiments to

evaluate this aspect.

The first experiment is to measure the synchronization overhead. One target process creates different

windows for different origin processes and performs post and wait. Each origin process issues start and

complete without any put/get in between. This test runs on one AMD Barcelona host. We measure the

average time at target process as presented in Figure 17(a). Because the two versions of our new design

have the same synchronization mechanism, we use ”new design” to represent both of them. We see that

the new design has much lower synchronization overhead. The improvement consistently remains about

50% with increasing number of origin processes. The truly one-sided nature decouples the origin and

the target and reduces the work on the target, so it is more capable of handling multiple processes. We

observe similar behavior using multiple targets and one origin.

The second experiment also consists of multiple origin processes and one target process. The differ-

ence is that now each origin issues a burst of 16 put operations to the target and the aggregated bandwidth

is reported. It is tested on a type A node. Figures in 17(b) ((L) and (R)) illustrate the results for the mes-

sage size of 64 KB and 512 KB, respectively. We find that the original design actually has decreasing

bandwidth as the number of origin processes increases. It is because that both the synchronization and

data communication require the participation from the target. As the number of origin processes in-

creases, the target becomes the bottleneck. On the contrary, the kernel-assisted direct one-sided design

provides increasing aggregate bandwidth until it reaches the peak. After that, it also tends to decrease

because of the cache and memory contention. The I/OAT based design has the consistently low (for

64 KB) or high (for 512 KB) bandwidth. It is due to the reason that I/OAT copy does not consume

many CPU cycles and does not pollute cache, so its performance is not disturbed as the number of origin

processes increases. These results prove that the new design offers more scalable performance.

5.3. Cache Effect

Our work emphasizes on the intra-node communication, so the cache effect also plays an important

role. We used the Linux oprofile tool (with sampling rate of 1:500) to measure the L2 cache misses

during the aggregated bandwidth test used in the last section. The test runs with seven origin processes

and one target to occupy all the cores. Figure 18 compares the L2 cache miss samples with varying

put message sizes. Obviously, the I/OAT-assisted design has the least cache misses, because it greatly

decreases the cache pollution. The basic kernel-assisted design reduces the copies in synchronization,

caches the locked pages and removes the inter-dependent interaction between the origin and target,

therefore it also has much less cache misses. Note that for the 1 MB message, we use the label instead
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Figure 17. Scalability performance

of a full bar for original MVAPICH2 design, as the number is too large.
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Figure 18. L2 Cache misses

5.4. The Impact of Process Skew

We have presented in Section 3 that the existing designs perform bad under the process skew situation.

We ran the same benchmark on a type A host to examine this effect on the new design. Please note that

since we study the intra-node communication, the method of inserting computation on the target not

only introduces process skew but also adds more background workload.

As representative examples, we list the results for put message of 256 KB in Table 2. For the original

design, earlier we have seen that the latency shoots up as two processes become more skewed. Here

we see that our new design is more robust against the process skew. The basic kernel-assisted design

only has small degradation, and the I/OAT-assisted design has even less change. It means that the origin

can proceed with the followed work irrespective of whether the target is busy or not. It is because that

our design is truly one-sided in which the delay on the target does not block the progress on the origin.

Furthermore, I/OAT based design offloads the data copy so that increasing background workload has

little impact. It shows larger opportunity to hide the latency which will be detailed in the next section.

We also measure the time on the target (included in Table 3) which still shows that our design has better

performance.

Table 2. Put time (usec) with increasing process skew

Matrix size 0x0(base) 32x32 64x64 128x128 256x256

MVAPICH2 3404 3780 6126 27023 194467

T1S-kernel 3365 3333 3398 3390 3572

T1S-i/oat 2291 2298 2310 2331 2389



Table 3. Put time (usec) with increasing process skew at target

Matrix size 0x0(base) 32x32 64x64 128x128 256x256

MVAPICH2 3400 3775 6121 27018 194461

T1S-kernel 3369 3236 3401 23570 190663

T1S-i/oat 2294 2288 2696 23328 190740

5.5. Computation and Communication Overlap

Latency hiding and computation/communication overlap are one of the major goals in parallel com-

puting. We investigate this through a put/get bandwidth test. At the origin side, some amount of compu-

tation is added after a burst of 16 continuous get/put operations for overlapping purpose. For a particular

message size, the latency of 16 put/get is first measured. This basic latency is used as the reference for

the inserted computation time. For example, if the basic latency is Tcomm, the computation time Tcomp

should be equal or larger than Tcomm to achieve good overlap. The actual total latency is reported as

Ttotal. We tested this experiment on a type A host. The origin side overlap is defined as:

Overlap = (Tcomm + Tcomp - Ttotal)/Tcomm

If the computation and communication are completely overlapped, we should get the overlap of 1

(because Tcomp=Ttotal in this case). Otherwise, the smaller the value is, the less overlap it has.

Figure 19(a) compares the overlap efficiency with varying messages and Tcomp=1.2*Tcomm. It

clearly shows that the I/OAT based design can provide close to 90% overlap, but the original design

and the basic kernel-assisted design have no overlap at all. The reason is that I/OAT offloading releases

the CPU so that the computation and the copy can be executed simultaneously. Figure 19(b) illustrates

the overlap ratio change with the increasing Tcomp for message of 1 MB. It conveys the same informa-

tion that only I/OAT based design provides the origin side overlap.
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Figure 19. Computation and communication overlap ratio

Similarly, to examine the target side overlap, some computation is inserted between post and wait just

as we did in Section 5.4, but here we measure the time on the target. The overlap with Tcomp=1.2*Tcomm

is shown in Figure 19(c). We find that both versions of our new design can achieve almost full overlap,

while the original design has no overlap. This is expected as our design aims at truly one-sided where

the target can do its own computation while the communication is going on implicitly.

5.6. Application Performance

We use a real scientific application AWM-Olsen to evaluate the design. AWM-Olsen is stencil-based

earthquake simulation from the Southern California Earthquake Center [12]. Processes are involved in



nearest-neighbor communication followed by a global sum and computation. They execute on a three-

dimensional data cube. AWM was originally written in MPI send-receive. We modified it to use MPI-2

one-sided semantics and arranged the computation and communication for higher overlap potential.
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Figure 20. Performance of AWM-Olsen application

We run the application on Clovertown hosts with 8 processes on each node, and measure the execution

time of the main step. Figure 20(a) shows the performance of 32 processes with varying data cube sizes.

Our kernel-assisted design outperforms the original design about 15% for medium range of data cube,

while the I/OAT-assisted version provides around 10% benefits for very large data cube. Figure 20(b)

shows the weak scaling performance with varying process counts. The data cube increases as the the

processes increase such that the data grid per process remains 128x128x128 elements. We see our new

design provides stable improvement as the system size increases.

6. Related Work

Ever since the one-sided RMA communication was introduced into MPI-2 standard, many implemen-

tations have incorporated the complete or partial design. MPICH2 [27] and LAM/MPI [1] designed the

RMA communication on top of two-sided operations. MVAPICH2 has implemented a direct one-sided

design [18] with special optimization on passive synchronization [19, 26], but it only applies to the inter-

node communication. Open MPI also exploits alternate ways including send/recv, buffered and RMA

[5], but again it also focuses on the inter-node communication. SUN MPI provides the SMP based one-

sided communication [8], but it requires all the processes be on the same node and use MPI Alloc mem.

NEC-SX MPI [28] implements truly one-sided communication specially making use of global shared

memory over Giganet cluster. There are some other works exploiting the direct RMA possibilities on

particular platforms [6, 4]. Researchers in [13] compare some existing implementations. Besides MPI,

there are other one-sided programming models such as ARMCI[25], GASNET[7] and BSP[16].

The papers [11, 10, 20, 9, 15] present different approaches including the kernel-assisted approaches

to design two-sided intra-node communication. Authors study various uses of I/OAT technology in

[29, 30, 14].

Our work in this paper differentiates from these previous works by focusing on designing intra-node

truly one-sided communication for both synchronization and data communication over the generic ar-

chitecture.

7. Conclusions and Future Work

Ever increasing popularity of multi-core processors has demonstrated the importance of intra-node

communication in MPI design, which is also true for MPI-2 one-sided RMA communication. In this

paper, we propose the design of truly one-sided communication within a node. We first analyzed the

inadequacy of the existing two-sided based design, based on which, we designed and implemented two

alternatives (the basic kernel-assisted direct copy approach and the I/OAT-assisted direct copy approach)



for truly one-sided data communication, and utilized the shared memory mechanism for truly one-sided

synchronization. The new design eliminates the overhead related with two-sided operations. It also

realizes the truly one-sided property by removing the interactive dependency between origins and targets.

We evaluated our design over three multi-core-based architectures. The results show that our new design

greatly decreases the latency over 39% for small and medium messages and increases the large message

bandwidth by up to 29%. The performance is stable irrespective of the processes distribution within a

node. We further designed a series of experiments to characterize the scalability performance, the L2

cache effect, the resilience to process skew, and the computation and communication overlap. In all of

these experiments, our new design presents superior performance than the existing designs. Finally, we

use a real scientific application AWM-Olsen to demonstrate its application level benefits.

In the future we plan to study more aspects of one-sided communication (i.e., design truly one-sided

MPI Accumulate) and to investigate more efficient hybrid design. In addition, we plan to do evalua-

tion and analysis on other platforms and do large-scale evaluations. We also plan to use some other

applications to carry out more in-depth studies on how the improvements in intra-node one-sided com-

munication can benefit the application performance.

Software Distribution: The proposed new design is planned to be made available to community in

the next MVAPICH2 [3] release.
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