
 1

UNDECIDABILITY AND DECIDABILITY
REGARDING

SUBSTRING REPLACEMENT
by

Harvey M. Friedman*
Ohio State University
September 9, 2009

There is a vast subject which we call "existential theories
of character strings", which is based on the basic
operations used in the JAVA string libraries.

In this subject, we obtain undecidability and decidability
results for the set of existential sentences with various
primitives.

We believe that there many opportunities for obtaining
practical decision procedures that can be used in
conjunction with tools like JAVA Pathfinder. However,
obtaining useful decidability results takes considerable
research effort.

As indicated in the report, it seems promising to examine
code in order to identify the most relevant combinations of
basic operations from the JAVA string libraries - and
restrictions on the path conditions (sets of literals).

1. UNDECIDABILITY.

We show that there is no algorithm for determining whether
an existential sentence holds in the following interpreted
language:

variables over character strings.

= between character strings.

(),0,1,2 for these four character strings.

x[y/z] for the result of successively replacing all
occurrences of the character string y as a substring of the
character string x, by the character string z, as in
Replace in the JAVA library. If y = () then we take x[y/z]
to be x.

 2

We quote from
http://java.sun.com/javase/6/docs/api/java/lang/String.html

replace
public String replace(CharSequence target,
 CharSequence replacement)

Replaces each substring of this string that matches the literal target sequence with
the specified literal replacement sequence. The replacement proceeds from the
beginning of the string to the end, for example, replacing "aa" with "b" in the string
"aaa" will result in "ba" rather than "ab".

Parameters:
target - The sequence of char values to be replaced
replacement - The replacement sequence of char values

Returns:
The resulting string

Throws:
NullPointerException - if target or replacement is null.

Since:
1.5

Thus = is a binary relation symbol, (),0,1,2 are constant
symbols, and x[y/z] is a ternary function symbol.

Variables range over character strings, which are finite
sequences of bytes. The undecidability proof works for any
character set (finite or infinite) with at least three
characters.

Obviously, requiring that any specific string that is to be
mentioned in the language has to be among (),0,1,2, is
rather restrictive. However, we are proving undecidability,
and hence being restrictive strengthens the result. In the
second section on decidability, we will allow any specific
character string to be mentioned.

Below, we will also need to use the character strings
01,02,12.

We would like to define 01,02,12 by a term in this
language. This apparently cannot be done. However, we can
get close enough.

We define A(x) if and only if x[0/()] = 1 ∧ x[1/()] = 0.

 3

LEMMA 1.1. A(x) if and only if x = 01 ∨ x = 10.

Proof: Since x[0/()] = 1, we see that if we remove 0's in x
then we are left with 1. Hence x consists of 0's and
exactly one 1. Since x[1/()] = 0, we see that x consists of
1's and exactly one 0. Hence x is 01 or 10. QED

Let B(x) ↔ x[0/()] = (). Let C(x) ↔ B(x[1/0]).

LEMMA 1.2. B(x) if and only if x consists entirely of 0's.
C(x) if and only if x is a bit string.

Proof: Suppose B(x). If we remove all 0's from x, we are
left with nothing. Hence x consists of all 0's. Suppose
C(x). Then x[1/0] consists of all 0's. Hence x must consist
entirely of 0's and 1's. QED

Let D(x,y) ↔ y[2/()] = x ∧ y[x/()] = 2.

LEMMA 1.3. Let x be a bit string. Then D(x,y) ↔ (y = 2x ∨ y
= x2).

Proof: Let x be a big string, where D(x,y). If x = () then
y = 2.

Assume x ≠ 2. By y[x/()] = 2, there is exactly one
occurrence of 2 in y.

We claim that 2 occurs at the front or the end of y. To see
this, let y = z2w, where z,w ≠ (). Then zw = x. Hence x is
not a substring of y.

So write y = 2u or y = u2. Then u = x. QED

LEMMA 1.4. Let x,y,z be bit strings. Then z = xy if and
only if y = 2z[2x/()] ∨ y = 2z[x2/()] ∨ y = z2[2x/()] ∨ y =
z2[x2/()].

Proof: Let x,y,z be bit strings. Suppose y = 2z[2x/()].
Then 2x is a substring of 2z. Hence 2x is an initial
substring of 2z. Therefore x is an initial substring of z.
Hence y is the remaining part of z.

Suppose y = 2z[x2/()]. Then x2 is a substring of 2z. Hence
x = z = (), y = ().

Suppose y = z2[2x/()]. Then 2x is a substring of z2. Hence

 4

x = z = (), y = ().

Suppose y = z2[x2/()]. Then x2 is a substring of z2.
Therefore x = z. Hence y = (). QED

Let E(x,y,z) ↔ (∃u,v)(D(x,u) ∧ D(z,v) ∧ y = v[u/()].

LEMMA 1.5. Let x,y,z be bit strings. Then z = xy ↔
E(x,y,z).

Proof: By Lemmas 1.3 and 1.4. QED

LEMMA 1.6. (∃n ≥ 0)(x = 10n) ↔ x is a bit string and
x[01/()] = x. (∃n ≥ 0)(x = 0n1) ↔ x is a bit string and
x[10/()] = x.

Proof: By x[01/()] = x, then 01 is not a substring of x.
Since x is a bit string, x must be of the required form. By
x[01/()] = x, then 01 is not a substring of x. Since x is a
bit string, x must be of the required form. QED

Let J(x) ↔ (∃y)(x is a bit string ∧ A(y) ∧ x[y/()] = x).

LEMMA 1.7. J(x) ↔ (∃n ≥ 0)(x = 10n ∨ x = 0n1).

Proof: By Lemmas 1.1 and 1.7. QED

We now view each positive integer n as being represented by
the strings 10n-1. and 0n-11. Thus the "positive integers"
are the x with J(x).

Let K(x,y,z) ↔ J(x) ∧ J(y) ∧ J(z) ∧
E(x[1/0],y[1/0],z[1/0]).

LEMMA 1.8. K(x,y,z) if and only if there exists n,m ≥ 1 such
that x = 10n-1 ∨ x = 0n-11, y = 10n-1 ∨ y = 0n-11, z = 10n+m-1 ∨
z = 0n+m-11.

Proof: Let J(x), J(y), J(z), E(x[1/0],y[1/0],z[1/0]). By
Lemma 1.8, x = 10n-1 ∨ x = 0n-11, y = 10n-1 ∨ y = 0n-11. By
Lemma 1.5, z[1/0] = xy[1/0]. Since x,y are bit strings, z
and xy have the same length. QED

Thus K is an existential definition of addition for
"positive integers".

We now give an existential definition of squaring of

 5

"positive integers".

LEMMA 1.9. Let x be nonempty. Then xy = yx if and only if
there exists n ≥ 0 such that y = xn.

Proof: Fix nonempty x. We argue by induction on the length
of y. Suppose xy = yx. Then y starts with x. Write y = xy'.
Then xxy' = xy'x, and so xy' = y'x. By the induction
hypothesis, let y' = xm. Then y = xxm = xm+1. QED

LEMMA 1.10. Let x = 10n-1, where n ≥ 1. Then xn is the unique
y such that xy = yx and y[0/()] = x[0/1].

Proof: Let x = 10n-1, n ≥ 1. We can clearly set y = xn, since
the condition y[0/()] = x[0/1] asserts that the number of
1's in y is the same as the length of x (assuming x,y are
bit strings).

Now let xy = yx and y[0/()] = x[0/1]. Then x,y are bit
strings, and by Lemma 1.9, y is of the form (10n-1)m, m ≥ 0.
The number of 1's in y is obviously m. Hence m = n. QED

Let L(x,y) ↔ J(x) ∧ J(y) ∧ xy = yx ∧ y[0/()] = x[0/1].

LEMMA 1.11. L is an existential definition of the squaring
relation SQ(x,y) ↔ J(x) ∧ J(y) ∧ len(y) = len(x)2.

Proof: By Lemma 1.10. Use Lemma 1.4. QED

According to the solution to Hilbert's 10th problem, it is
undecidable whether a polynomial equation with positive
integer coefficients, in positive integer unknowns, has a
solution.

This undecidability can be put into many well known forms.
Here is one.

LEMMA 1.12. There is a fixed set S of equations of the form
x+y = z and x2 = y, such that the following holds. The set
of all positive integers n such that S has a solution in
positive integers, with x = n, is not recursive.

Proof: By the usual method of unraveling polynomials, with
extra variables. This does require also equations of the
form x•y = z. But we can use

x = y•z if and only if

 6

x = (y+z)2 - y2 - z2 if and only if
x + y2 + z2 = (y+z)2

and introduce more variables. QED

LEMMA 1.13. There is a fixed existential formula ϕ(x,...)
in this language, such that the set of character strings x
for which ϕ(x,...) is true, is not recursive.

Proof: By transformation using Lemma 1.12. QED

THEOREM 1.14. There is a fixed set S of literals in this
language, with distinguished variable x, such that the set
of character strings x for which S is realizable, is not
recursive.

Proof: Use Lemma 1.13. Write ϕ(x,...) as a disjunction of
existential formulas whose matrix is a conjunction of
literals. If we have recursivity for each of this
disjuncts, then we would have recursivity for ϕ(x,...),
contrary to Lemma 1.13. QED

This negative result is obviously not of direct practical
importance. It does tell us that a potentially useful kind
of decidability result is impossible.

What happens if we ask for realizability by character
strings of limited length, say 264?

Of course, we then have decidability, with the obvious
method of enumerating all character strings of length at
most 2^64. Of course, this is entirely unfeasible. Perhaps
it can be proved that there is no feasible algorithm for
determining realizability by strings of length at most 264,
where the size of the path conditions are reasonable.

2. CORRESPONDING DECIDABILITY.

We discuss the kind of decidability investigations that are
suggested by the undecidability result in the previous
section. We only establish a weak decidability result.
However, we expect much stronger decidability results,
which will require considerably more effort.

For these decidability questions, it is not reasonable to
restrict the actual strings to be mentioned to merely the
strings 0,1,2. We now allow any character strings to be

 7

mentioned.

To avoid any ambiguity, let us carefully define the terms,
atomic formulas, literals, and path conditions.

The terms are inductively defined as follows.

1. All variables are terms.
2. All character strings are terms.
3. If r,s,t are terms then r[s/t] is a term.

The atomic formulas are of the form s = t, where s,t are
terms.

The literals are the atomic formulas and their negations.

The path conditions are the finite sets of literals.

The degree of a term, a literal, or a path condition, is
the total number of left brackets that appear.

A path condition is called realizable if there exists an
assignment of character strings to the variables such that
the statements in the path condition are all true.

There is a well known decision procedure for determining
whether a path condition of degree 0 is satisfiable. The
procedure depends only on their being infinitely many
character strings.

We now give an efficient decision procedure for determining
whether a path condition of degree 1 is realizable.

LEMMA 2.1. It suffices to give an efficient decision
procedure for determining whether a path condition of the
following form is realizable:

r[s/t] = p
x1 ≠ a1
...
xn ≠ an

where n ≥ 0, r,s,t,p are variables or character strings,
x1,...,xn are variables among r,s,t,p, and a1,...,an are
variables among r,s,t,p or character strings, and no xi is
ai.

 8

Proof: If the sole use of brackets is r[s/t] ≠ p, then we
replace this by r[s/t] = v, v ≠ p, where v is a new
variable. We can obviously remove literals without
variables, and literals whose left and right sides are the
same. If we have x = a (or a = x), where x is a variable,
then we remove this equation and replace all occurrences of
x by a. These operations converge in a path condition of
the above form, except that some of the xi may not be among
r,s,t,p. These inequations can be removed. Note that these
operations do not change realizability. QED

Here is the general form of Lemma 2.1 that we will not use,
but forms the basis for further, more difficult,
decidability results.

LEMMA 2.2. Let n ≥ 1. In order to give an efficient decision
procedure for determining whether a path condition of
degree n is realizable, it suffices to give an efficient
decision procedure for determining whether a path condition
of the following form is realizable:

r1[s1/t1] = p1
...
rn[sn/tn] = pn
x1 ≠ a1
...
xm ≠ am

where m ≥ 0, the r's,s's,t's,p's are variables or character
strings, x1,...,xm are variables among the r's,s's,t's,p's,
and a1,...,am are variables among the r's,s's,t's,p's or
character strings, and no xi is ai.

We define the normal path conditions to be the path
conditions of the form given in Lemma 2.2.

According to Lemma 2.1, we will give a decision procedure
for realizability of normal path conditions of degree 1.

It will be very convenient to work with what we call rich
path conditions, C. We say that C is a rich path condition
if and only if C is a normal path condition as in Lemma
2.2, such that for every distinct u,v among the
r's,s's,t's,p's, where u is a variable, u ≠ v is present in
C.

LEMMA 2.3. It suffices to give a decision procedure for

 9

determining whether a rich path condition of degree 1 is
realizable.

Proof: Let r[s/t] = p, x1 ≠ a1, ..., xn ≠ an be a normal path
condition of degree 1. This is realizable if and only if it
is realizable if we add some complete combination of u = v
or u ≠ v, for u,v distinct elements of {r,s,t,p}, and u a
variable. These equations can be removed so that each of
these path conditions become rich path conditions. QED

We say that a rich path condition C is freely realizable if
and only if for all finite sets E of character strings, we
can realize C by character strings outside E.

The significance of freely realizable rich path conditions
C is that every path condition C' obtained by adding
inequations v ≠ α, where v is a variable and α is a
character string, is realizable.

We now proceed according to the shape of the leading
equation in rich path conditions of degree 1. We use Greek
letters for particular character strings used in the
leading equation.

x[x/x] = x. Freely realizable.
x[x/x] = y, x,y distinct. Not realizable.

x]x/y] = x, x,y distinct. Not realizable.
x[x/y] = y, x,y distinct. Freely realizable.
x[x/y] = z, x,y,z distinct. Not realizable.

x[y/x] = x, x,y distinct. Freely realizable. Set x = an, y =
a2n.
x[y/x] = y, x,y distinct. Not realizable.
x[y/x] = z, x,y,z distinct. Freely realizable. Set x = a2n.
y = an. z = a4n.
x[y/y] = x, x,y distinct. Freely realizable.
x[y/y] = y, x,y distinct. Not realizable.
x[y/y] = z, x,y,z distinct. Not realizable.

x[y/z] = x, x,y,z distinct. Freely realizable. Set x = an, y
= a2n, z = a3n.
x[y/z] = y, x,yi,z distinct. Freely realizable. x = anb2n, y
= anbn, z = an.
x[y/z] = z, x,y,z distinct. Not realizable.
x[y/z] = w, x,y,z,w distinct. Freely realizable. Set x =
anbn, y = an, z = a2n, w = a2nbn.

 10

α[y/z] = w, α,y,z,w distinct. See below.
α[y/z] = z, α,y,z distinct. Not realizable.
α[y/z] = y, α,y,z distinct. See below.
α[y/y] = w, α,y,w distinct. Not realizable.
α[y/y] = y, α,y distinct. Not realizable.

x[α/z] = w, x,α,z,w distinct. Freely realizable. Set x =
anα, z = bn, w = anbn.
x[α/z] = z, x,α,z distinct. Not realizable.
x[α/z] = x, x,α,z distinct. Not realizable.
x[α/x] = w, x,α,w distinct. If α ≠ () then freely
realizable. Let x = αn, w = αn^2. If α = () then not
realizable.
x[α/x] = x, x,α distinct. Freely realizable. If α = () then
obviously free realizable. If α ≠ () then let α not begin
with c. Set x = cn.

x[y/α] = w, x,y,α,w distinct. Freely realizable. Set x =
anbn, y = an, w = αbn.
x[y/α] = y, x,y,α distinct. Freely realizable. Set x = αn^2,
y = α^n.
x[y/α] = x, x,y,α distinct. Set x = an, y = bn.
x[x/α] = w, x,α,w distinct. Not realizable.
x[x/α] = x, x,α distinct. Not realizable.

x[y/z] = α, x,y,z,α distinct. See below.
x[y/y] = α, x,y,α distinct. Not realizable.
x[y/x] = α, x,y,α distinct. See below.
x[x/y] = α, x,y,α distinct. Not realizable.
x[x/x] = α, x,α distinct. Not realizable.

x[y/α] = β, x,y,α distinct, x,y,β distinct. See below.
x[x/α] = β, x,α distinct, x,β distinct. If α = β then freely
realizable, by setting x = αn. If α ≠ β then not realizable.
x[α/z] = β, x,z,α distinct, x,z,β distinct. See below.
x[α/x] = β, x,α distinct, x,β distinct. See below.
x[α/β] = w, x,w,α distinct, x,w,β distinct. If α = () or α
= β, then not realizable. Suppose α ≠ (), α ≠ β. Let α not
begin with c. Then freely realizable by setting x = αcn, w =
βcn.
x[α/β] = x, x,α distinct, x,β distinct. If α = () then
freely realizable. Suppose α ≠ (), and let α not begin with
c. Freely realizable. Set x = cn.
α[y/z] = β, y,z,α distinct, y,z,β distinct. See below.
α[y/y] = β, y,α distinct, y,β distinct. If α = β then freely
realizable. If α ≠ β then not realizable.

 11

α[y/β] = w, y,w,α distinct, y,w,β distinct. See below.
α[y/β] = y, y,α distinct, y,β distinct. See below.
α[β/z] = w, z,w,α distinct, z,w,β distinct. See below.
α[β/z] = z, z,α distinct, z,β distinct. If β is not a proper
substring of α, or β = (), then not realizable. If β is a
nonempty proper substring of α, then not realizable.
x[α/β] = γ, x ≠ α,β,γ. See below.
α[y/β] = γ, y ≠ α,β,γ. See below.
α[β/z] = γ, z ≠ α,β,γ. See below.
α[β/γ] = w, w ≠ α,β,γ. See below.

So it remains to consider only the following lead
equations.

1. α[y/z] = w, α,y,z,w distinct.
2. α[y/z] = y, α,y,z distinct.
3. x[y/z] = α, x,y,z,α distinct.
4. x[y/x] = α, x,y,α distinct.
5. x[y/α] = β, x,y,α distinct, x,y,β distinct.
6. x[α/z] = β, x,z,α distinct, x,z,β distinct.
7. x[α/x] = β, x ≠ α,β.
8. α[y/z] = β, y,z,α distinct, y,z,β distinct.
9. α[y/β] = w, y,w,α distinct, y,w,β distinct.
10. α[y/β] = y, y ≠ α,β.
11. α[β/z] = w, z,w,α distinct, z,w,β distinct.
12. x[α/β] = γ, x ≠ α,β,γ.
13. α[y/β] = γ, y ≠ α,β,γ.
14. α[β/z] = γ, z ≠ α,β,γ.
15. α[β/γ] = w, w ≠ α,β,γ.

In each of these 15 cases, we must give a decision
procedure for determining whether any extension by v1 ≠ a1,
..., vn ≠ an, where v1,...,vn are variables among those
appearing in the case, and the a's are character strings,
is realizable.

In some of these cases, we give very crude algorithms, a
few of which are even exponential. We have no doubt that
efficient linear time algorithms can be given with much
more careful analyses.

LEMMA 2.4. Let n ≥ 0. No nonempty proper initial substring
of anbn is a tail of anbn.

Proof: Any nonempty proper initial segment has more a's
than b's. Any nonempty proper tail has more b's than a's.
QED

 12

1. α[y/z] = w, α,y,z,w distinct. Then y is a nonempty
proper substring of α. There are only finitely many
relevant y. Thus it suffices to determine realizability of
extensions of

α[β/z] = w, α,β,z,w distinct.

This is handled in 11.

2. α[y/z] = y, α,y,z distinct. Then y is a nonempty proper
substring of α. There are only finitely many relevant y.
Thus it suffices to determine realizability of extensions
of

α[β/z] = β, α,β,z distinct.

This is handled in 14.

3. x[y/z] = α, x,y,z,α distinct. Then y is a nonempty
proper substring of x, and so z is a proper substring of α.
There are only finitely many relevant y,z. Thus it suffices
to determine realizability of extensions of

x[β/γ] = α, x,β,γ,α distinct.

This is handled in 12.

4. x[y/x] = α, x,y,α distinct. Then y is a nonempty proper
substring of x, and so x is a proper substring of α. There
are only finitely many relevant x,y. Thus it suffices to
determine realizability of extensions of

β[γ/β] = α.

Since there are no variables left, there are no proper
extensions, in which case realizability is the same as
truth.

5. x[y/α] = β, x,y,α distinct, x,y,β distinct. Then y is a
nonempty proper substring of x.

case 1. α = β = (). Freely realizable. Set x = a2n, y = an.

case 2. α = (), β ≠ (). Freely realizable. Let β not begin
with c. Set x = cnβ, y = cn.

 13

case 3. α ≠ (). For realizability, it is necessary to be
able to write β as γ1αγ2α...γk, k ≥ 2. Let β = γ1αγ2α...γk, k ≥
2. We have free realizability, since we can set x =
γ1anbnγ2anbn...γk, y = anbn. Apply Lemma 2.4, to see that the
successive copies of y in x are as displayed.

6. x[α/z] = β, x,z,α distinct, x,z,β distinct. Then α is a
nonempty proper substring of x, and z is a nonempty
substring of β. There are only finitely many relevant z.
Thus it suffices to determine realizability of extensions
of

x[α/γ] = β, x ≠ α,β,γ.

This is handled in 12.

7. x[α/x] = β, x ≠ α,β. Then α is a nonempty proper
substring of x, and so x is a substring of β. There are only
finitely many relevant x. Thus it suffices to determine
realizability of extensions of

γ[α/γ] = β.

Since there are no variables left, there are no proper
extensions, in which case realizability is the same as
truth.

8. α[y/z] = β, y,z,α distinct, y,z,β distinct.

case 1. α = β. Then we have free realizability, by setting y
= an, z = bn.

case 2. α ≠ β. Then y is a nonempty proper substring of α.
There are only finitely many relevant y. Thus it suffices
to determine realizabilty of extensions of

α[γ/z] = β, z ≠ α,γ,β.

This is handled in 14.

9. α[y/β] = w, y,w,α distinct, y,w,β distinct. Then y is a
nonempty proper substring of α. There are only finitely
many relevant y. Thus it suffices to determine
realizability of extensions of

α[γ/β] = w.

 14

This is handled in 15.

10. α[y/β] = y, y ≠ α,β. Then y is a nonempty proper
substring of α. There are only finitely many relevant y.
Thus it suffices to determine realizability of extensions
of

α[γ/β] = γ.

Since there are no variables, there are no proper
extensions, in which case realizability is equivalent to
truth.

11. α[β/z] = w, z,w,α distinct, z,w,β distinct.

case 1. β is a nonempty proper substring of α. Then freely
realizable, by setting z = an, w = α[β/an].

case 2. Otherwise. Then α = w, and hence not realizable.

12. x[α/β] = γ, x ≠ α,β,γ. Then α is a nonempty proper
substring of x.

case 1. β = (). If we have realizability, then we have free
realizability, since we add any number of α's at the end of
x. Note that if the number of α's that are being replaced
exceeds the length of γ, then there are two adjacent α's
that are being replaced. One of these can be removed. This
establishes a bound on the x of least length.

case 2. β ≠ (). Note that the number of copies of α that are
being replaced must be at most len(γ), and what is left over
in α must have length at most len(γ). So the length of x
must be at most len(α)(len(γ)+1). This bounds the lengths of
the relevant x.

13. α[y/β] = γ, y ≠ α,β,γ. Then y is a nonempty substring of
α. There are only finitely many relevant y.

14. α[β/z] = γ, z ≠ α,β,γ.

case 1. β is a nonempty substring of α. The relevant z are
of length at most that of γ.

case 2. Otherwise. We have free realizability, since z can
be arbitrary.

 15

15. α[β/γ] = w, w ≠ α,β,γ. The only w to be considered is
α[β/γ].

* This material is based upon work supported by the
National Science
Foundation under Grants No. DMS-0701260 and CCF-0811737.
Any opinions,
findings, and conclusions or recommendations expressed in
this material are
those of the author(s) and do not necessarily reflect the
views of the
National Science Foundation.

