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There is a vast subject which we call "existential theories 
of character strings", which is based on the basic 
operations used in the JAVA string libraries.  
 
In this subject, we obtain undecidability and decidability 
results for the set of existential sentences with various 
primitives.  
 
We believe that there many opportunities for obtaining 
practical decision procedures that can be used in 
conjunction with tools like JAVA Pathfinder. However, 
obtaining useful decidability results takes considerable 
research effort.  
 
As indicated in the report, it seems promising to examine 
code in order to identify the most relevant combinations of 
basic operations from the JAVA string libraries - and 
restrictions on the path conditions (sets of literals).    

 
1. UNDECIDABILITY.  
 
We show that there is no algorithm for determining whether 
an existential sentence holds in the following interpreted 
language:  
 
variables over character strings. 
 
= between character strings. 
 
(),0,1,2 for these four character strings.  
 
x[y/z] for the result of successively replacing all 
occurrences of the character string y as a substring of the 
character string x, by the character string z, as in 
Replace in the JAVA library. If y = () then we take x[y/z] 
to be x.  
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We quote from 
http://java.sun.com/javase/6/docs/api/java/lang/String.html 

replace 
public String replace(CharSequence target, 
                      CharSequence replacement) 

Replaces each substring of this string that matches the literal target sequence with 
the specified literal replacement sequence. The replacement proceeds from the 
beginning of the string to the end, for example, replacing "aa" with "b" in the string 
"aaa" will result in "ba" rather than "ab".  

Parameters: 
target - The sequence of char values to be replaced 
replacement - The replacement sequence of char values  

Returns: 
The resulting string  

Throws:  
NullPointerException - if target or replacement is null. 

Since:  
1.5  

Thus = is a binary relation symbol, (),0,1,2 are constant 
symbols, and x[y/z] is a ternary function symbol.  
 
Variables range over character strings, which are finite 
sequences of bytes. The undecidability proof works for any 
character set (finite or infinite) with at least three 
characters.  
 
Obviously, requiring that any specific string that is to be 
mentioned in the language has to be among (),0,1,2, is 
rather restrictive. However, we are proving undecidability, 
and hence being restrictive strengthens the result. In the 
second section on decidability, we will allow any specific 
character string to be mentioned.  
 
Below, we will also need to use the character strings 
01,02,12.  
 
We would like to define 01,02,12 by a term in this 
language. This apparently cannot be done. However, we can 
get close enough.  
 
We define A(x) if and only if x[0/()] = 1 ∧ x[1/()] = 0.  
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LEMMA 1.1. A(x) if and only if x = 01 ∨ x = 10. 
 
Proof: Since x[0/()] = 1, we see that if we remove 0's in x 
then we are left with 1. Hence x consists of 0's and 
exactly one 1. Since x[1/()] = 0, we see that x consists of 
1's and exactly one 0. Hence x is 01 or 10. QED 
 
Let B(x) ↔ x[0/()] = (). Let C(x) ↔ B(x[1/0]). 
 
LEMMA 1.2. B(x) if and only if x consists entirely of 0's. 
C(x) if and only if x is a bit string. 
 
Proof: Suppose B(x). If we remove all 0's from x, we are 
left with nothing. Hence x consists of all 0's. Suppose 
C(x). Then x[1/0] consists of all 0's. Hence x must consist 
entirely of 0's and 1's. QED 
 
Let D(x,y) ↔ y[2/()] = x ∧ y[x/()] = 2.  
 
LEMMA 1.3. Let x be a bit string. Then D(x,y) ↔ (y = 2x ∨ y 
= x2). 
 
Proof: Let x be a big string, where D(x,y). If x = () then 
y = 2.  
 
Assume x ≠ 2. By y[x/()] = 2, there is exactly one 
occurrence of 2 in y. 
 
We claim that 2 occurs at the front or the end of y. To see 
this, let y = z2w, where z,w ≠ (). Then zw = x. Hence x is 
not a substring of y.  
 
So write y = 2u or y = u2. Then u = x. QED  
 
LEMMA 1.4. Let x,y,z be bit strings. Then z = xy if and 
only if y = 2z[2x/()] ∨ y = 2z[x2/()] ∨ y = z2[2x/()] ∨ y = 
z2[x2/()].  
 
Proof: Let x,y,z be bit strings. Suppose y = 2z[2x/()]. 
Then 2x is a substring of 2z. Hence 2x is an initial 
substring of 2z. Therefore x is an initial substring of z. 
Hence y is the remaining part of z.  
 
Suppose y = 2z[x2/()]. Then x2 is a substring of 2z. Hence 
x = z = (), y = (). 
 
Suppose y = z2[2x/()]. Then 2x is a substring of z2. Hence 
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x = z = (), y = (). 
 
Suppose y = z2[x2/()]. Then x2 is a substring of z2. 
Therefore x = z. Hence y = (). QED 
 
Let E(x,y,z) ↔ (∃u,v)(D(x,u) ∧ D(z,v) ∧ y = v[u/()].  
 
LEMMA 1.5. Let x,y,z be bit strings. Then z = xy ↔ 
E(x,y,z).  
 
Proof: By Lemmas 1.3 and 1.4. QED 
 
LEMMA 1.6. (∃n ≥ 0)(x = 10n) ↔ x is a bit string and 
x[01/()] = x. (∃n ≥ 0)(x = 0n1) ↔ x is a bit string and 
x[10/()] = x.  
 
Proof: By x[01/()] = x, then 01 is not a substring of x. 
Since x is a bit string, x must be of the required form. By 
x[01/()] = x, then 01 is not a substring of x. Since x is a 
bit string, x must be of the required form. QED 
 
Let J(x) ↔ (∃y)(x is a bit string ∧ A(y) ∧ x[y/()] = x).   
 
LEMMA 1.7. J(x) ↔ (∃n ≥ 0)(x = 10n ∨ x = 0n1). 
 
Proof: By Lemmas 1.1 and 1.7. QED 
 
We now view each positive integer n as being represented by 
the strings 10n-1. and 0n-11. Thus the "positive integers" 
are the x with J(x). 
 
Let K(x,y,z) ↔ J(x) ∧ J(y) ∧ J(z) ∧ 
E(x[1/0],y[1/0],z[1/0]).   
 
LEMMA 1.8. K(x,y,z) if and only if there exists n,m ≥ 1 such 
that x = 10n-1 ∨ x = 0n-11, y = 10n-1 ∨ y = 0n-11, z = 10n+m-1 ∨ 
z = 0n+m-11.  
 
Proof: Let J(x), J(y), J(z), E(x[1/0],y[1/0],z[1/0]). By 
Lemma 1.8, x = 10n-1 ∨ x = 0n-11, y = 10n-1 ∨ y = 0n-11. By 
Lemma 1.5, z[1/0] = xy[1/0]. Since x,y are bit strings, z 
and xy have the same length. QED 
 
Thus K is an existential definition of addition for 
"positive integers".  
 
We now give an existential definition of squaring of 
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"positive integers". 
 
LEMMA 1.9. Let x be nonempty. Then xy = yx if and only if 
there exists n ≥ 0 such that y = xn.   
 
Proof: Fix nonempty x. We argue by induction on the length 
of y. Suppose xy = yx. Then y starts with x. Write y = xy'. 
Then xxy' = xy'x, and so xy' = y'x. By the induction 
hypothesis, let y' = xm. Then y = xxm = xm+1. QED 
 
LEMMA 1.10. Let x = 10n-1, where n ≥ 1. Then xn is the unique 
y such that xy = yx and y[0/()] = x[0/1].  
 
Proof: Let x = 10n-1, n ≥ 1. We can clearly set y = xn, since 
the condition y[0/()] = x[0/1] asserts that the number of 
1's in y is the same as the length of x (assuming x,y are 
bit strings).  
 
Now let xy = yx and y[0/()] = x[0/1]. Then x,y are bit 
strings, and by Lemma 1.9, y is of the form (10n-1)m, m ≥ 0. 
The number of 1's in y is obviously m. Hence m = n. QED 
 
Let L(x,y) ↔ J(x) ∧ J(y) ∧ xy = yx ∧ y[0/()] = x[0/1]. 
 
LEMMA 1.11. L is an existential definition of the squaring 
relation SQ(x,y) ↔ J(x) ∧ J(y) ∧ len(y) = len(x)2. 
 
Proof: By Lemma 1.10. Use Lemma 1.4. QED 
 
According to the solution to Hilbert's 10th problem, it is 
undecidable whether a polynomial equation with positive 
integer coefficients, in positive integer unknowns, has a 
solution.  
 
This undecidability can be put into many well known forms. 
Here is one.  
 
LEMMA 1.12. There is a fixed set S of equations of the form 
x+y = z and x2 = y, such that the following holds. The set 
of all positive integers n such that S has a solution in 
positive integers, with x = n, is not recursive.  
 
Proof: By the usual method of unraveling polynomials, with 
extra variables. This does require also equations of the 
form x•y = z. But we can use  
 
x = y•z if and only if  
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x = (y+z)2 - y2 - z2 if and only if  
x + y2 + z2 = (y+z)2 
 
and introduce more variables. QED  
 
LEMMA 1.13. There is a fixed existential formula ϕ(x,...) 
in this language, such that the set of character strings x 
for which ϕ(x,...) is true, is not recursive. 
 
Proof: By transformation using Lemma 1.12. QED 
 
THEOREM 1.14. There is a fixed set S of literals in this 
language, with distinguished variable x, such that the set 
of character strings x for which S is realizable, is not 
recursive.  
 
Proof: Use Lemma 1.13. Write ϕ(x,...) as a disjunction of 
existential formulas whose matrix is a conjunction of 
literals. If we have recursivity for each of this 
disjuncts, then we would have recursivity for ϕ(x,...), 
contrary to Lemma 1.13. QED 
 
This negative result is obviously not of direct practical 
importance. It does tell us that a potentially useful kind 
of decidability result is impossible. 
 
What happens if we ask for realizability by character 
strings of limited length, say 264?  
 
Of course, we then have decidability, with the obvious 
method of enumerating all character strings of length at 
most 2^64. Of course, this is entirely unfeasible. Perhaps 
it can be proved that there is no feasible algorithm for 
determining realizability by strings of length at most 264, 
where the size of the path conditions are reasonable.   
 
2. CORRESPONDING DECIDABILITY. 
 
We discuss the kind of decidability investigations that are 
suggested by the undecidability result in the previous 
section. We only establish a weak decidability result. 
However, we expect much stronger decidability results, 
which will require considerably more effort.  
 
For these decidability questions, it is not reasonable to 
restrict the actual strings to be mentioned to merely the 
strings 0,1,2. We now allow any character strings to be 
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mentioned.  
 
To avoid any ambiguity, let us carefully define the terms, 
atomic formulas, literals, and path conditions.  
 
The terms are inductively defined as follows. 
 
1. All variables are terms. 
2. All character strings are terms. 
3. If r,s,t are terms then r[s/t] is a term. 
 
The atomic formulas are of the form s = t, where s,t are 
terms. 
 
The literals are the atomic formulas and their negations.  
 
The path conditions are the finite sets of literals.  
 
The degree of a term, a literal, or a path condition, is 
the total number of left brackets that appear.  
 
A path condition is called realizable if there exists an 
assignment of character strings to the variables such that 
the statements in the path condition are all true.  
 
There is a well known decision procedure for determining 
whether a path condition of degree 0 is satisfiable. The 
procedure depends only on their being infinitely many 
character strings.  
 
We now give an efficient decision procedure for determining 
whether a path condition of degree 1 is realizable.  
 
LEMMA 2.1. It suffices to give an efficient decision 
procedure for determining whether a path condition of the 
following form is realizable: 
 
r[s/t] = p  
x1 ≠ a1 
... 
xn ≠ an 
 
where n ≥ 0, r,s,t,p are variables or character strings, 
x1,...,xn are variables among r,s,t,p, and a1,...,an are 
variables among r,s,t,p or character strings, and no xi is 
ai. 
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Proof: If the sole use of brackets is r[s/t] ≠ p, then we 
replace this by r[s/t] = v, v ≠ p, where v is a new 
variable. We can obviously remove literals without 
variables, and literals whose left and right sides are the 
same. If we have x = a (or a = x), where x is a variable, 
then we remove this equation and replace all occurrences of 
x by a. These operations converge in a path condition of 
the above form, except that some of the xi may not be among 
r,s,t,p. These inequations can be removed. Note that these 
operations do not change realizability. QED 
 
Here is the general form of Lemma 2.1 that we will not use, 
but forms the basis for further, more difficult, 
decidability results.  
 
LEMMA 2.2. Let n ≥ 1. In order to give an efficient decision 
procedure for determining whether a path condition of 
degree n is realizable, it suffices to give an efficient 
decision procedure for determining whether a path condition 
of the following form is realizable: 
 
r1[s1/t1] = p1 
... 
rn[sn/tn] = pn 
x1 ≠ a1 
... 
xm ≠ am 
 
where m ≥ 0, the r's,s's,t's,p's are variables or character 
strings, x1,...,xm are variables among the r's,s's,t's,p's, 
and a1,...,am are variables among the r's,s's,t's,p's or 
character strings, and no xi is ai. 
 
We define the normal path conditions to be the path 
conditions of the form given in Lemma 2.2.  
 
According to Lemma 2.1, we will give a decision procedure 
for realizability of normal path conditions of degree 1.  
 
It will be very convenient to work with what we call rich 
path conditions, C. We say that C is a rich path condition 
if and only if C is a normal path condition as in Lemma 
2.2, such that for every distinct u,v among the 
r's,s's,t's,p's, where u is a variable, u ≠ v is present in 
C.  
 
LEMMA 2.3. It suffices to give a decision procedure for 
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determining whether a rich path condition of degree 1 is 
realizable.  
 
Proof: Let r[s/t] = p, x1 ≠ a1, ..., xn ≠ an be a normal path 
condition of degree 1. This is realizable if and only if it 
is realizable if we add some complete combination of u = v 
or u ≠ v, for u,v distinct elements of {r,s,t,p}, and u a 
variable. These equations can be removed so that each of 
these path conditions become rich path conditions. QED 
 
We say that a rich path condition C is freely realizable if 
and only if for all finite sets E of character strings, we 
can realize C by character strings outside E.  
 
The significance of freely realizable rich path conditions 
C is that every path condition C' obtained by adding 
inequations v ≠ α, where v is a variable and α is a 
character string, is realizable. 
 
We now proceed according to the shape of the leading 
equation in rich path conditions of degree 1. We use Greek 
letters for particular character strings used in the 
leading equation.  
 
x[x/x] = x. Freely realizable. 
x[x/x] = y, x,y distinct. Not realizable. 
 
x]x/y] = x, x,y distinct. Not realizable.  
x[x/y] = y, x,y distinct. Freely realizable. 
x[x/y] = z, x,y,z distinct. Not realizable. 
 
x[y/x] = x, x,y distinct. Freely realizable. Set x = an, y = 
a2n.                     
x[y/x] = y, x,y distinct. Not realizable. 
x[y/x] = z, x,y,z distinct. Freely realizable. Set x = a2n. 
y = an. z = a4n.    
x[y/y] = x, x,y distinct. Freely realizable. 
x[y/y] = y, x,y distinct. Not realizable. 
x[y/y] = z, x,y,z distinct. Not realizable. 
 
x[y/z] = x, x,y,z distinct. Freely realizable. Set x = an, y 
= a2n, z = a3n.  
x[y/z] = y, x,yi,z distinct. Freely realizable. x = anb2n, y 
= anbn, z = an. 
x[y/z] = z, x,y,z distinct. Not realizable.    
x[y/z] = w, x,y,z,w distinct. Freely realizable. Set x = 
anbn, y = an, z = a2n, w = a2nbn.  
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α[y/z] = w, α,y,z,w distinct. See below. 
α[y/z] = z, α,y,z distinct. Not realizable.  
α[y/z] = y, α,y,z distinct. See below.  
α[y/y] = w, α,y,w distinct. Not realizable. 
α[y/y] = y, α,y distinct. Not realizable. 
 
x[α/z] = w, x,α,z,w distinct. Freely realizable. Set x = 
anα, z = bn, w = anbn. 
x[α/z] = z, x,α,z distinct. Not realizable. 
x[α/z] = x, x,α,z distinct. Not realizable.  
x[α/x] = w, x,α,w distinct. If α ≠ () then freely 
realizable. Let x = αn, w = αn^2. If α = () then not 
realizable.  
x[α/x] = x, x,α distinct. Freely realizable. If α = () then 
obviously free realizable. If α ≠ () then let α not begin 
with c. Set x = cn. 
 
x[y/α] = w, x,y,α,w distinct. Freely realizable. Set x = 
anbn, y = an, w = αbn.  
x[y/α] = y, x,y,α distinct. Freely realizable. Set x = αn^2, 
y = α^n. 
x[y/α] = x, x,y,α distinct. Set x = an, y = bn.  
x[x/α] = w, x,α,w distinct. Not realizable. 
x[x/α] = x, x,α distinct. Not realizable. 
 
x[y/z] = α, x,y,z,α distinct. See below.  
x[y/y] = α, x,y,α distinct. Not realizable. 
x[y/x] = α, x,y,α distinct. See below. 
x[x/y] = α, x,y,α distinct. Not realizable. 
x[x/x] = α, x,α distinct. Not realizable. 
 
x[y/α] = β, x,y,α distinct, x,y,β distinct. See below.  
x[x/α] = β, x,α distinct, x,β distinct. If α = β then freely 
realizable, by setting x = αn. If α ≠ β then not realizable.  
x[α/z] = β, x,z,α distinct, x,z,β distinct. See below. 
x[α/x] = β, x,α distinct, x,β distinct. See below. 
x[α/β] = w, x,w,α distinct, x,w,β distinct. If α = () or α 
= β, then not realizable. Suppose α ≠ (), α ≠ β. Let α not 
begin with c. Then freely realizable by setting x = αcn, w = 
βcn.    
x[α/β] = x, x,α distinct, x,β distinct. If α = () then 
freely realizable. Suppose α ≠ (), and let α not begin with 
c. Freely realizable. Set x = cn.  
α[y/z] = β, y,z,α distinct, y,z,β distinct. See below. 
α[y/y] = β, y,α distinct, y,β distinct. If α = β then freely 
realizable. If α ≠ β then not realizable.  
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α[y/β] = w, y,w,α distinct, y,w,β distinct. See below.  
α[y/β] = y, y,α distinct, y,β distinct. See below. 
α[β/z] = w, z,w,α distinct, z,w,β distinct. See below. 
α[β/z] = z, z,α distinct, z,β distinct. If β is not a proper 
substring of α, or β = (), then not realizable. If β is a 
nonempty proper substring of α, then not realizable.  
x[α/β] = γ, x ≠ α,β,γ. See below. 
α[y/β] = γ, y ≠ α,β,γ. See below. 
α[β/z] = γ, z ≠ α,β,γ. See below. 
α[β/γ] = w, w ≠ α,β,γ. See below.   
 
So it remains to consider only the following lead 
equations.  
 
1. α[y/z] = w, α,y,z,w distinct. 
2. α[y/z] = y, α,y,z distinct.  
3. x[y/z] = α, x,y,z,α distinct.  
4. x[y/x] = α, x,y,α distinct. 
5. x[y/α] = β, x,y,α distinct, x,y,β distinct. 
6. x[α/z] = β, x,z,α distinct, x,z,β distinct. 
7. x[α/x] = β, x ≠ α,β. 
8. α[y/z] = β, y,z,α distinct, y,z,β distinct. 
9. α[y/β] = w, y,w,α distinct, y,w,β distinct. 
10. α[y/β] = y, y ≠ α,β. 
11. α[β/z] = w, z,w,α distinct, z,w,β distinct. 
12. x[α/β] = γ, x ≠ α,β,γ.  
13. α[y/β] = γ, y ≠ α,β,γ. 
14. α[β/z] = γ, z ≠ α,β,γ. 
15. α[β/γ] = w, w ≠ α,β,γ. 
 
In each of these 15 cases, we must give a decision 
procedure for determining whether any extension by v1 ≠ a1, 
..., vn ≠ an, where v1,...,vn are variables among those 
appearing in the case, and the a's are character strings, 
is realizable.  
 
In some of these cases, we give very crude algorithms, a 
few of which are even exponential. We have no doubt that 
efficient linear time algorithms can be given with much 
more careful analyses.  
 
LEMMA 2.4. Let n ≥ 0. No nonempty proper initial substring 
of anbn is a tail of anbn.  
 
Proof: Any nonempty proper initial segment has more a's 
than b's. Any nonempty proper tail has more b's than a's. 
QED 
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1. α[y/z] = w, α,y,z,w distinct. Then y is a nonempty 
proper substring of α. There are only finitely many 
relevant y. Thus it suffices to determine realizability of 
extensions of  
 
α[β/z] = w, α,β,z,w distinct. 
 
This is handled in 11. 
 
2. α[y/z] = y, α,y,z distinct. Then y is a nonempty proper 
substring of α. There are only finitely many relevant y. 
Thus it suffices to determine realizability of extensions 
of  
 
α[β/z] = β, α,β,z distinct. 
 
This is handled in 14.  
 
3. x[y/z] = α, x,y,z,α distinct. Then y is a nonempty 
proper substring of x, and so z is a proper substring of α. 
There are only finitely many relevant y,z. Thus it suffices 
to determine realizability of extensions of  
 
x[β/γ] = α, x,β,γ,α distinct. 
 
This is handled in 12. 
 
4. x[y/x] = α, x,y,α distinct. Then y is a nonempty proper 
substring of x, and so x is a proper substring of α. There 
are only finitely many relevant x,y. Thus it suffices to 
determine realizability of extensions of  
 
β[γ/β] = α. 
 
Since there are no variables left, there are no proper 
extensions, in which case realizability is the same as 
truth.  
 
5. x[y/α] = β, x,y,α distinct, x,y,β distinct. Then y is a 
nonempty proper substring of x. 
 
case 1. α = β = (). Freely realizable. Set x = a2n, y = an.  
 
case 2. α = (), β ≠ (). Freely realizable. Let β not begin 
with c. Set x = cnβ, y = cn. 
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case 3. α ≠ (). For realizability, it is necessary to be 
able to write β as γ1αγ2α...γk, k ≥ 2. Let β = γ1αγ2α...γk, k ≥ 
2. We have free realizability, since we can set x = 
γ1anbnγ2anbn...γk, y = anbn. Apply Lemma 2.4, to see that the 
successive copies of y in x are as displayed.  
 
6. x[α/z] = β, x,z,α distinct, x,z,β distinct. Then α is a 
nonempty proper substring of x, and z is a nonempty 
substring of β. There are only finitely many relevant z. 
Thus it suffices to determine realizability of extensions 
of  
 
x[α/γ] = β, x ≠ α,β,γ.  
 
This is handled in 12.  
 
7. x[α/x] = β, x ≠ α,β. Then α is a nonempty proper 
substring of x, and so x is a substring of β. There are only 
finitely many relevant x. Thus it suffices to determine 
realizability of extensions of  
 
γ[α/γ] = β. 
 
Since there are no variables left, there are no proper 
extensions, in which case realizability is the same as 
truth.  
 
8. α[y/z] = β, y,z,α distinct, y,z,β distinct.  
 
case 1. α = β. Then we have free realizability, by setting y 
= an, z = bn.  
 
case 2. α ≠ β. Then y is a nonempty proper substring of α. 
There are only finitely many relevant y. Thus it suffices 
to determine realizabilty of extensions of  
 
α[γ/z] = β, z ≠ α,γ,β. 
 
This is handled in 14.  
 
9. α[y/β] = w, y,w,α distinct, y,w,β distinct. Then y is a 
nonempty proper substring of α. There are only finitely 
many relevant y. Thus it suffices to determine 
realizability of extensions of  
 
α[γ/β] = w. 
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This is handled in 15.  
 
10. α[y/β] = y, y ≠ α,β. Then y is a nonempty proper 
substring of α. There are only finitely many relevant y. 
Thus it suffices to determine realizability of extensions 
of  
 
α[γ/β] = γ. 
 
Since there are no variables, there are no proper 
extensions, in which case realizability is equivalent to 
truth.  
 
11. α[β/z] = w, z,w,α distinct, z,w,β distinct.  
 
case 1. β is a nonempty proper substring of α. Then freely 
realizable, by setting z = an, w = α[β/an].  
 
case 2. Otherwise. Then α = w, and hence not realizable.  
 
12. x[α/β] = γ, x ≠ α,β,γ. Then α is a nonempty proper 
substring of x.  
 
case 1. β = (). If we have realizability, then we have free 
realizability, since we add any number of α's at the end of 
x. Note that if the number of α's that are being replaced 
exceeds the length of γ, then there are two adjacent α's 
that are being replaced. One of these can be removed. This 
establishes a bound on the x of least length.    
 
case 2. β ≠ (). Note that the number of copies of α that are 
being replaced must be at most len(γ), and what is left over 
in α must have length at most len(γ). So the length of x 
must be at most len(α)(len(γ)+1). This bounds the lengths of 
the relevant x.  
 
13. α[y/β] = γ, y ≠ α,β,γ. Then y is a nonempty substring of 
α. There are only finitely many relevant y.  
 
14. α[β/z] = γ, z ≠ α,β,γ.  
 
case 1. β is a nonempty substring of α. The relevant z are 
of length at most that of γ.  
 
case 2. Otherwise. We have free realizability, since z can 
be arbitrary.  
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15. α[β/γ] = w, w ≠ α,β,γ. The only w to be considered is 
α[β/γ].  
 
____________________________ 
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